Entropía de entanglement de agujeros negros en la dualidad AdS/CFT

dc.contributor.advisorArenas Salazar, José Robel
dc.contributor.authorAlvarado Chavez, Sebastian Armando
dc.contributor.researchgroupGrupo de Física Teóricaspa
dc.date.accessioned2023-04-20T14:25:01Z
dc.date.available2023-04-20T14:25:01Z
dc.date.issued2023-04-19
dc.description.abstractEn esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente, se estudia la correspondencia entre un espacio tiempo Anti-de Sitter y una teoría de campos cuánticos conformes llamada Dualidad AdS/CFT y la forma en que trata de explicar la entropía de Bekenstein-Hawking.(Texto tomado de la fuente)spa
dc.description.abstractIn this thesis a scalar field over a Schwarzschild spacetime is studied using the Boulware and Hartle-Hawking-Israel vacuum states taking into account the Mukohyama-Israel interpretation to try to explain the Bekenstein-Hawking entropy and where it can be to locate. Likewise, the correspondence between an Anti-de Sitter spacetime and a conformal quantum field theory called AdS/CFT Duality is studied and the way in which it tries to explain the Bekenstein- Hawking entropy.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaTermodinámica de agujeros negrosspa
dc.format.extent55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83745
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesHawking, S. W. (1975). Particle creation by black holes. In Euclidean quantum gravity (pp. 167-188).spa
dc.relation.referencesBekenstein, J. D. (1983). Entropy bounds and the second law for black holes. Physical Review D, 27(10), 2262.spa
dc.relation.referencesDomagala, M., & Lewandowski, J. (2004). Black-hole entropy from quantum geometry. Classical and Quantum Gravity, 21(22), 5233.spa
dc.relation.referencesYdri, B. (2017). Lectures on General Relativity, Cosmology and Quantum Black Holes.spa
dc.relation.referencesSrednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666.spa
dc.relation.referencesBombelli, L., Koul, R. K., Lee, J., & Sorkin, R. D. (1986). Quantum source of entropy for black holes. Physical Review D, 34(2), 373.spa
dc.relation.referencesTerashima, H. (2000). Entanglement entropy of the black hole horizon. Physical Review D, 61(10), 104016.spa
dc.relation.referencesEmparan, R. (2006). Black hole entropy as entanglement entropy: a holographic derivation. Journal of High Energy Physics, 2006(06), 012.spa
dc.relation.referencesHooft, G. T. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745.spa
dc.relation.referencesSusskind, L., & Lindesay, J. (2004). Introduction To Black Holes, Information And The String Theory Revolution, An: The Holographic Universe. World Scientific.spa
dc.relation.referencesTakahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.spa
dc.relation.referencesIsrael, W. (1976). Thermo-field dynamics of black holes. Physics Letters A, 57(2), 107- 110.spa
dc.relation.referencesMukohyama, S., & Israel, W. (1998). Black holes, brick walls, and the Boulware state. Physical Review D, 58(10), 104005.spa
dc.relation.referencesTejeiro-Sarmiento, J. M., & Arenas-Salazar, J. R. (2006, June). Black Hole Entanglement Entropy. In AIP Conference Proceedings (Vol. 841, No. 1, pp. 385-388). American Institute of Physics.spa
dc.relation.referencesPulido, W., & Arenas, J. R. Dinámica de Campos Térmicos y Agujeros Negros Thermofields Dynamics and Black Holes.spa
dc.relation.referencesRojas Castillo, W. A. (2018). Mecánica estadística de la termódinamica de black shells. Departamento de Física.spa
dc.relation.referencesRojas Castillo, W. A., & Arenas Salazar, J. R. (2020). A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects. Symmetry, 12(12), 2072.spa
dc.relation.referencesSusskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396.spa
dc.relation.referencesHooft, G. T. (2001). The holographic principle. In Basics and Highlights in Fundamental Physics (pp. 72-100).spa
dc.relation.referencesBousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825.spa
dc.relation.referencesBigatti, D., & Susskind, L. (2001). TASI lectures on the holographic principle. In Strings, branes and gravity (pp. 883-933).spa
dc.relation.referencesBak, D., & Rey, S. J. (2000). Holographic principle and string cosmology. Classical and Quantum Gravity, 17(1), L1.spa
dc.relation.referencesThorlacius, L. (2004). Black holes and the holographic principle. Note Lectures. arXiv preprint hep-th/0404098.spa
dc.relation.referencesItzhaki, N., Maldacena, J. M., Sonnenschein, J., & Yankielowicz, S. (1998). Supergravity and the large N limit of theories with sixteen supercharges. Physical Review D, 58(4), 046004.spa
dc.relation.referencesIntroduction to gauge/gravity duality. In String Theory And Its Applications: TASI 2010 From meV to the Planck Scale (pp. 3-45).spa
dc.relation.referencesPolchinski, J. (1998). String theory: Volume 1, an introduction to the bosonic string. Cambridge university press.spa
dc.relation.referencesPenington, G. (2020). Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9), 1-84.spa
dc.relation.referencesZhang, J. L., Cai, R. G., & Yu, H. (2015). Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS 5× S 5 spacetime. Journal of High Energy Physics, 2015(2), 1-16.spa
dc.relation.referencesHawking, S., Maldacena, J., & Strominger, A. (2001). DeSitter entropy, quantum entanglement and AdS/CFT. Journal of High Energy Physics, 2001(05), 001.spa
dc.relation.referencesPathria, R. K., & Beale, P. D. (2011). Statistical mechanics.spa
dc.relation.referencesReif, F. (1969). Física estadística (Vol. 5). Revertéspa
dc.relation.referencesGreiner, W., & Reinhardt, J. (2013). Field quantization. Springer Science & Business Media.spa
dc.relation.referencesRyder, L. H. (1996). Quantum field theory. Cambridge university press.spa
dc.relation.referencesTakahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.spa
dc.relation.referencesUmezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states.spa
dc.relation.referencesKhanna, F. C. (2009). Thermal quantum field theory: algebraic aspects and applications. World Scientific.spa
dc.relation.referencesDe la Torre, L. (2008). Elementos de relatividad. Universidad de Antioquia.spa
dc.relation.referencesCarroll, S. M. (2019). Spacetime and geometry. Cambridge University Press.spa
dc.relation.referencesFrolov, V. P., & Zelnikov, A. (2011). Introduction to black hole physics. OUP Oxford.spa
dc.relation.referencesBlau, M. (2011). Apuntes de clase sobre relatividad general . Berna: Centro Albert Einstein de F´ısica Fundamental.spa
dc.relation.referencesGriffiths, J. B.,& Podolsk´y, J. (2009). Exact space-times in Einstein’s general relativity. Cambridge University Press.spa
dc.relation.referencesBañados, M., Teitelboim, C., & Zanelli, J. (1992). Black hole in three-dimensional space time. Physical Review Letters, 69(13), 1849.spa
dc.relation.referencesBañados, M., Henneaux, M., Teitelboim, C., & Zanelli, J. (1993). Geometry of the 2+ 1 black hole. Physical Review D, 48(4), 1506.spa
dc.relation.referencesFrancesco, P., Mathieu, P., & Sénéchal, D. (2012). Conformal field theory. Springer Science & Business Media.spa
dc.relation.referencesKetov, S. V. (1995). Conformal field theory. World Scientific.spa
dc.relation.referencesMoore, G., & Seiberg, N. (1989). Classical and quantum conformal field theory. Communications in Mathematical Physics, 123(2), 177-254.spa
dc.relation.referencesGaberdiel, M. R. (2000). An introduction to conformal field theory. Reports on Progress in Physics, 63(4), 607.spa
dc.relation.referencesHassani, S. (2009). Mathematical methods: for students of physics and related fields (Vol. 2). New York: springer.spa
dc.relation.referencesAsh, R. B. (2014). Complex variables. Academic Press.spa
dc.relation.referencesKrantz, S. G., Kress, S., & Kress, R. (1999). Handbook of complex variables. Boston: Birkh¨auser.spa
dc.relation.referencesNastase, H. (2015). Introduction to AdS/CFT Correspondence. Cambridge University Press.spa
dc.relation.referencesD. Tong. Lectures on string theory. arXiv: hep-th/0908.0333, 2012.spa
dc.relation.referencesPetersen, J. L. (1994). Notes on Conformal Field Theory. University of Copenhagen, Niels Borh Institute tryk (1994).spa
dc.relation.referencesGinsparg, P. (1988). Applied conformal field theory. arXiv: hep-th/9108028.spa
dc.relation.referencesVisser, M., Verlinde, E., & Hofman, D. (2014). The emergence of space and gravity from entanglement in AdS3/CFT2. Master thesis, University of Amsterdam, Amsterdam, The Netherlandsspa
dc.relation.referencesMichopolus N., (2019). Conformal quantum field theory and black hole entropy. Doctoral dissertation. University of Patras, Grecia.spa
dc.relation.referencesKarozis, N., (2011). Black Hole Entropy and 2D Confermal Field Theory-Towards Quantum Gravity. Doctoral dissertation, Kobenhavns Universitet. Niels Bohr Institutet.spa
dc.relation.referencesGómez R. S., (2017). La fórmula de Cardy Anisotrópica. Disertación Doctoral, Universidad de Talca, Chile.spa
dc.relation.referencesBrown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986).spa
dc.relation.referencesA. Strominger, Black hole entropy from near-horizon microstates, JHEP 9802 (1998) 009. arXiv:hep-th/9712251spa
dc.relation.referencesRyu, S., & Takayanagi, T. (2006). Aspects of holographic entanglement entropy. Journal of High Energy Physics, 2006(08), 045.spa
dc.relation.referencesRyu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Physical review letters, 96 (18), 181602.spa
dc.relation.referencesRangamani, M., & Takayanagi, T. (2017). Holographic entanglement entropy. In Holographic Entanglement Entropy (pp. 35-47). Springer, Cham.spa
dc.relation.referencesBueno, P., & Myers, R. C. (2015). Corner contributions to holographic entanglement entropy. Journal of High Energy Physics, 2015(8), 1-54.spa
dc.relation.referencesCasini, H., Huerta, M., Myers, R. C., & Yale, A. (2015). Mutual information and the Ftheorem. Journal of High Energy Physics, 2015(10), 1-70.spa
dc.relation.referencesCasini, H., Huerta, M., & Myers, R. C. (2011). Towards a derivation of holographic entanglement entropy. Journal of High Energy Physics, 2011(5), 1-41.spa
dc.relation.referencesSusskind, L., & Witten, E. (1998). The holographic bound in anti-de Sitter space. arXiv preprint hep-th/9805114.spa
dc.relation.referencesPeet, A. W., & Polchinski, J. (1999). UV-IR relations in AdS dynamics. Physical Review D, 59(6), 065011.spa
dc.relation.referencesHolzhey, C., Larsen, F., &Wilczek, F. (1994). Geometric and renormalized entropy in conformal field theory. Nuclear physics b, 424(3), 443-467.spa
dc.relation.referencesCalabrese, P., & Cardy, J. (2004). Entanglement entropy and quantum field theory. Journal of statistical mechanics: theory and experiment, 2004(06), P06002.sspa
dc.relation.referencesCalabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50), 504005.spa
dc.relation.referencesCadoni, M., & Melis, M. (2010). Entanglement entropy of AdS black holes. Entropy, 12 (11), 2244-2267.spa
dc.relation.referencesPenrose, R.,& Hawking, S. (2010). The nature of space and time. Princeton University Press.spa
dc.relation.referencesHawking, S.W. (1979). Euclidean quantum gravity. In Recent developments in gravitation (pp. 145-173). Springer, Boston, MA.spa
dc.relation.referencesGibbons, G. W., & Hawking, S. W. (1993). Action integrals and partition functions in quantum gravity. In Euclidean Quantum Gravity (pp. 233-237).spa
dc.relation.referencesHawking, S. W. (1977). Zeta function regularization of path integrals in curved spacetime. In Euclidean quantum gravity (pp. 114-129).spa
dc.relation.referencesCassani, D. (2020). Black Holes and Semiclassical Quantum Gravity.spa
dc.relation.referencesArenas Salazar, J. R, (2020). Notas de clase: Agujeros Negros cuánticos. Universidad Nacional de Colombia. Departamento de Física.spa
dc.relation.referencesHartman, T. (2015). Lectures on quantum gravity and black holes. Cornell University, 21.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc530 - Física::534 - Sonido y vibraciones relacionadasspa
dc.subject.lembTeoría del campo cuántico
dc.subject.lembQuantum field theoryeng
dc.subject.proposalAgujero negro de Schwarzschildspa
dc.subject.proposalEstado de vacío de Boulwarespa
dc.subject.proposalEstado de vacío de Hartle-Hawking-Israelspa
dc.subject.proposalEntropía de Bekenstein-Hawkingspa
dc.subject.proposalDualidad AdS/CFTspa
dc.subject.proposalHolografíaspa
dc.subject.proposalSchwarzschild Black Holeeng
dc.subject.proposalBoulware vacuum stateeng
dc.subject.proposalHartle-Hawking-Israel vacuum stateeng
dc.subject.proposalBekenstein-Hawking entropyeng
dc.subject.proposalAdS/CFT dualityeng
dc.subject.proposalHolographyeng
dc.titleEntropía de entanglement de agujeros negros en la dualidad AdS/CFTspa
dc.title.translatedBlack hole entanglement entropy in the AdS/CFT dualityeng
dc.title.translatedEntropia de emaranhamento de buracos negros na dualidade AdS/CFTpor
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1120218226.2023.pdf
Tamaño:
1.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: