Semi-supervised deep learning for ocular image classification

Cargando...
Miniatura

Autores

Arrieta Ramos, José Miguel

Document language:

Inglés

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

La pérdida de visión y ceguera como complicacíon de la diabetes se podrían prevenir con diagnóstico temprano, exámenes de deteccíon frequentes, y tratamiento oportuno adecuado. Desafortunadamente, el acceso a un oftalmólogo experto es limitado y no es fácilmente disponible. Es por esto que los sistemas de detección automatizados podrían mejorar el acceso a la atención especializada al reducir el tiempo, el costo y el esfuerzo para la detección. Los métodos de aprendizaje profundo se hicieron populares para la detección de enfermedades oculares en imágenes de fondo de ojo debido a sus buenos resultados. Sin embargo, los métodos de aprendizaje profundo necesitan una gran cantidad de imágenes etiquetadas para aprender, siendo el etiquetado manual de imágenes médicas un proceso costoso y lento que requiere escasos expertos médicos en la retina. Como resultado, el número de imágenes anotadas disponibles es limitado. Con este trabajo de tesis se propone un método semi-supervisado que aproveche las imágenes no etiquetadas además de las imágenes etiquetadas para entrenar un modelo que detecte la retinopatía diabética a través de aprendizaje auto-supervisado seguido de un ajuste fino supervisado y destilacion de conocimiento. Este método fue evaluado en el dataset de Messidor-2 logrando un AUC de 0.89 usando solamente 2 % de la particion de entrenamiento de EyePACS-Kaggle con imagenes etiquetadas. (Texto tomado de la fuente).

Abstract

Regular screening, early diagnosis, and appropriate on-time treatment could prevent vision loss and blindness as a complication of diabetes. Unfortunately, access to expert ophthal- mologists is limited and not readily available. Therefore, automated detection systems could improve access to specialized care by reducing screening time, cost, and e↵ort. Deep learning methods became popular for detecting ocular disease on eye fundus images because of their promising results. However, deep learning models need a large number of labeled images to learn, and the manual labeling of medical images results in a time-consuming and expensive process that requires medical experts in the retina, with little time to devote to this task. As a result, a limited number of annotated images are available. This thesis work proposes a semi-supervised method that leverages unlabeled images and labeled ones to train a mo- del that detects diabetic retinopathy via self-supervised pre-training followed by supervised fine-tuning and knowledge distillation with a small set of labeled images. This method was evaluated on the Messidor-2 dataset achieving 0.89 AUC using only 2 % EyePACS-Kaggle train labeled images.

Descripción

ilustraciones, gráficas, tablas

Palabras clave

Citación