Nanomaterial for the control of rheological properties of hydrolyzed polyacrylamide based polymeric solutions

dc.contributor.advisorLopera Castro, Sergio Hernando
dc.contributor.advisorCortés Correa, Farid Bernal
dc.contributor.authorSantamaria Torres, Oveimar
dc.date.accessioned2021-06-23T16:39:43Z
dc.date.available2021-06-23T16:39:43Z
dc.date.issued2020-10-15
dc.description.abstractEnhanced oil recovery (EOR) processes were developed as a strategy to extend the productivity of mature reservoirs. Polymer flooding-based HPAM is the EOR process more implemented due to its relatively low cost and operational flexibility; however, the degradation and retention in the reservoir are the main challenges. Several copolymers of polyacrylamide have been proposed to mitigate polymer deficiencies in “hard” conditions; however, these technologies are limited to favorable pricing scenarios. Nanotechnology has attracted widespread interest for use in recovery processes. Nanoparticles (NPs) incorporate new properties into traditional technologies applied in EOR. Polymer-based nanofluids or polymeric nanofluids consist of a combination of nanoparticles with polymeric solutions. Polymeric nanofluids are of great interest because they combine the advantages of inorganic NPs and organic polymers, generating synergy between the best of each of the two materials. Although numerous studies have shown a high potential of polymeric nanofluids, little evidence is available about the stability of polymeric microstructure exposed at thermal degradation, adsorption, and deformations caused by converging-diverging flow in pores. Hence, the main objective of this study is to characterize the rheological behavior of polymeric nanofluids formed by solutions of HPAM and SiO2 nanoparticles under the instability of the microstructure due to thermal degradation and concentration losses. This study provides crucial evidence about the stability of polymeric nanofluids and offers an understanding of its performance in the porous medium. Finally, it opens the landscape about the use of nanofluids in IOR/EOR processes. (Tomado de la fuente)eng
dc.description.abstractLos procesos de recuperación mejorada de petróleo (EOR) se desarrollaron como una estrategia para extender la productividad de los yacimientos maduros. La inyección de polímeros basada en HPAM, es el proceso EOR más implementado debido a su costo relativamente bajo y flexibilidad operativa; sin embargo, la degradación y retención en el yacimiento son los principales desafíos. Se han propuesto varios copolímeros de poliacrilamida para mitigar las deficiencias del polímero en condiciones "duras"; sin embargo, estas tecnologías se limitan a escenarios de precios favorables. La nanotecnología ha atraído un interés generalizado para su uso en procesos de recuperación. Las nanopartículas (NP) incorporan nuevas propiedades a las tecnologías tradicionales aplicadas en EOR. Los nanofluidos a base de polímeros o nanofluidos poliméricos consisten en una combinación de nanopartículas con soluciones poliméricas. Los nanofluidos poliméricos son de gran interés porque combinan las ventajas de los NP inorgánicos y los polímeros orgánicos, generando sinergia entre lo mejor de cada uno de los dos materiales. Aunque numerosos estudios han demostrado un alto potencial de los nanofluidos poliméricos, hay poca evidencia disponible sobre la estabilidad de la microestructura polimérica expuesta a la degradación térmica, adsorción y deformaciones causadas por el flujo convergente-divergente en los poros. Por tanto, el objetivo principal de este estudio es caracterizar el comportamiento reológico de los nanofluidos poliméricos formados por soluciones de HPAM y nanopartículas de SiO2, bajo inestabilidad de la microestructura por degradación térmica y pérdidas de concentración. Este estudio proporciona evidencia crucial sobre la estabilidad de los nanofluidos poliméricos y ofrece una comprensión de su desempeño en el medio poroso. Finalmente, abre el panorama sobre el uso de nanofluidos en procesos IOR / EOR. (Tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.researchareaRecobro Mejoradospa
dc.description.researchareaNanotecnologíaspa
dc.description.sponsorshipConvocatoria 721-2015 Colciencias-ANH Nacional a través de Proyecto De Investigaciónspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79687
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesAgista, M. N., Guo, K., & Yu, Z. (2018). A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery. Applied Scienced, 8(6), 871. https://doi.org/10.3390/app8060871spa
dc.relation.referencesAkbari, S., Mahmood, S. M., Tan, I. M., Ghaedi, H., & Ling, O. L. (2017). Assessment of polyacrylamide based co-polymers enhanced by functional group modifications with regards to salinity and hardness. Polymers, 9(12). https://doi.org/10.3390/polym9120647spa
dc.relation.referencesAliabadian, E., Kamkar, M., Chen, Z., & Sundararaj, U. (2019). Prevention of network destruction of partially hydrolyzed polyacrylamide (HPAM): Effects of salt, temperature, and fumed silica nanoparticles. Physics of Fluids, 31(1), 013104. https://doi.org/10.1063/1.5080100spa
dc.relation.referencesAliabadian, E., Sadeghi, S., Kamkar, M., Chen, Z., & Sundararaj, U. (2018). Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations. Journal of Rheology, 62(5), 1197–1216. https://doi.org/10.1122/1.5024384spa
dc.relation.referencesAlvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery Concepts. Enhanced Oil Recovery, 7–16. https://doi.org/10.1016/B978-1-85617-855-6.00008-5spa
dc.relation.referencesAlvarez, J. M., & Sawatzky, R. P. (2013). Water-flooding: Same old, same old? Society of Petroleum Engineers - SPE Heavy Oil Conference Canada 2013, 1, 274–291. https://doi.org/10.2118/165406-msspa
dc.relation.referencesArgillier, J.-F., Audibert, A., Lecourtier, J., Moan, M., & Rousseau, L. (1996). Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 113(3), 247–257. https://doi.org/10.1016/0927-7757(96)03575-3spa
dc.relation.referencesBagaria, H.G., Yoon, K. Y., Neilson, B. M., Cheng, V., Lee, J. H., Worthen, A. J., … Johnston, K. P. (2013). Stabilization of iron oxide nanoparticles in high sodium and calcium brine at high temperatures with adsorbed sulfonated copolymers. Langmuir, 29(10), 3195–3206. https://doi.org/10.1021/la304496aspa
dc.relation.referencesBagaria, Hitesh G., Xue, Z., Neilson, B. M., Worthen, A. J., Yoon, K. Y., Nayak, S., … Johnston, K. P. (2013). Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica. ACS Applied Materials and Interfaces, 5(8), 3329–3339. https://doi.org/10.1021/am4003974spa
dc.relation.referencesBerret, J.-F., Calvet, D., Collet, A., & Viguier, M. (2003). Fluorocarbon associative polymers. Current Opinion in Colloid and Interface Science, 8(3), 296–306. https://doi.org/10.1016/S1359-0294(03)00048-7spa
dc.relation.referencesChegenizadeh, N., Saeedi, A., & Quan, X. (2016). Application of Nanotechnology for Enhanced Oil Recovery: A Review. Defect and Diffusion Forum, 367, 149–156. https://doi.org/10.4028/www.scientific.net/DDF.367.149spa
dc.relation.referencesChen, Q., Wang, Y., Lu, Z., & Feng, Y. (2013). Thermoviscosifying polymer used for enhanced oil recovery: Rheological behaviors and core flooding test. Polymer Bulletin, 70(2), 391–401. https://doi.org/10.1007/s00289-012-0798-7spa
dc.relation.referencesCheraghian, G. (2017). Evaluation of clay and fumed silica nanoparticles on adsorption of surfactant polymer during enhanced oil recovery. Journal of the Japan Petroleum Institute, 60(2), 85–94. https://doi.org/10.1627/jpi.60.85spa
dc.relation.referencesCheraghian, G., Shahram, S., Nezhad, K., Kamari, M., Hemmati, M., Masihi, M., … Bazgir, S. (2014). Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO 2. International Nano Letters, 4(3), 114. https://doi.org/10.1007/s40089-014-0114-7spa
dc.relation.referencesCorredor, L. M., Husein, M. M., & Maini, B. B. (2019). A review of polymer nanohybrids for oil recovery. Advances in Colloid and Interface Science, 272, 102018. https://doi.org/10.1016/j.cis.2019.102018spa
dc.relation.referencesCram, S. L., Brown, H. R., Spinks, G. M., Hourdet, D., & Creton, C. (2005). Hydrophobically modified dimethylacrylamide synthesis and rheological behavior. Macromolecules, 38(7), 2981–2989. https://doi.org/10.1021/ma048504vspa
dc.relation.referencesDenys, K. F. J. (2003). Flow of Polymer Solutions through Porous Media (Technische Universiteit Delft; Vol. 29). https://doi.org/10.1021/ie00106a028spa
dc.relation.referencesDeshpande, A., Krishnan, M., & Kumar, S. (2010). Rheology of Complex Fluids. In Asuhan Kebidanan Ibu Hamil (Vol. 53). https://doi.org/10.1007/978-1-4419-6494-6spa
dc.relation.referencesFernández, I. J. (2005). Evaluation of cationic water-soluble polymers with improved thermal stability. SPE International Symposium on Oilfield Chemistry Proceedings.spa
dc.relation.referencesFranco, C. A., Zabala, R., & Cortés, F. B. (2017). Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39–55. https://doi.org/10.1016/j.petrol.2017.07.004spa
dc.relation.referencesGbadamosi, A. O., Junin, R., Manan, M. A., Yekeen, N., Agi, A., & Oseh, J. O. (2018). Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery. Journal of Industrial and Engineering Chemistry, 66, 1–19. https://doi.org/10.1016/j.jiec.2018.05.020spa
dc.relation.referencesGiraldo, L. J. L. J., Giraldo, M. A., Llanos, S., Maya, G., Zabala, R. D. R. D., Nassar, N. N. N., … Cortés, F. B. F. B. (2017). The effects of SiO2nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 159, 841–852. https://doi.org/10.1016/j.petrol.2017.10.009spa
dc.relation.referencesGriffith, C., & Daigle, H. (2017). Stability of polyvinyl alcohol-coated biochar nanoparticles in brine. Journal of Nanoparticle Research, 19(1), 1–12. https://doi.org/10.1007/s11051-016-3705-6spa
dc.relation.referencesGuo, K., Li, H., & Yu, Z. (2015). Metallic Nanoparticles for Enhanced Heavy Oil Recovery: Promises and Challenges. Energy Procedia, 75. https://doi.org/10.1016/j.egypro.2015.07.294spa
dc.relation.referencesHe, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe - Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46(1), 29–34. https://doi.org/10.1021/ie0610896spa
dc.relation.referencesHendraningrat, L., & Torsæter, O. (2015). A Stabilizer that Enhances the Oil Recovery Process Using Silica-Based Nanofluids. Transport in Porous Media, 108(3). https://doi.org/10.1007/s11242-015-0495-8spa
dc.relation.referencesHu, X., Ke, Y., Zhao, Y., Lu, S., Yu, C., & Peng, F. (2018). Synthesis and characterization of a β-cyclodextrin modified polyacrylamide and its rheological properties by hybriding with silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548(March), 10–18. https://doi.org/10.1016/j.colsurfa.2018.03.039spa
dc.relation.referencesHu, Z., Haruna, M., Gao, H., Nourafkan, E., & Wen, D. (2017). Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. Industrial and Engineering Chemistry Research, 56(12), 3456–3463. https://doi.org/10.1021/acs.iecr.6b05036spa
dc.relation.referencesKamal, M. S., Hussien, I. A., Sultan, A. S., & Han, M. (2013). Rheological study on ATBS-AM copolymer-surfactant system in high-temperature and high-salinity environment. Journal of Chemistry. https://doi.org/10.1155/2013/801570spa
dc.relation.referencesKhalilinezhad, S.S., Cheraghian, G., Roayaei, E., Tabatabaee, H., & Karambeigi, M. S. (2017). Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–10. https://doi.org/10.1080/15567036.2017.1302521spa
dc.relation.referencesKhalilinezhad, Seyyed Shahram, Cheraghian, G., Karambeigi, M. S., Tabatabaee, H., & Roayaei, E. (2016). Characterizing the Role of Clay and Silica Nanoparticles in Enhanced Heavy Oil Recovery During Polymer Flooding. Arabian Journal for Science and Engineering, 41(7), 2731–2750. https://doi.org/10.1007/s13369-016-2183-6spa
dc.relation.referencesKujawa, P., Audibert-Hayet, A., Selb, J., & Candau, F. (2006). Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules, 39(1), 384–392. https://doi.org/10.1021/ma051312vspa
dc.relation.referencesLee, J., Moesari, E., Dandamudi, C. B., Beniah, G., Chang, B., Iqbal, M., … Johnston, K. P. (2017). Behavior of Spherical Poly(2-acrylamido-2-methylpropanesulfonate) Polyelectrolyte Brushes on Silica Nanoparticles up to Extreme Salinity with Weak Divalent Cation Binding at Ambient and High Temperature. Macromolecules, 50(19), 7699–7711. https://doi.org/10.1021/acs.macromol.7b01243spa
dc.relation.referencesLi, Q., Wei, B., Lu, L., Li, Y., Wen, Y., Pu, W., … Wang, C. (2017). Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery. Fuel, 207, 352–364. https://doi.org/10.1016/j.fuel.2017.06.103spa
dc.relation.referencesLi, Qing, Zhu, W., Fu, J., Zhang, H., Wu, G., & Sun, S. (2016). Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy, 24, 1–9. https://doi.org/10.1016/j.nanoen.2016.03.024spa
dc.relation.referencesLi, S., Hendraningrat, L., & Torsaeter, O. (2013). Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2-Phase Flow Experimental Studies. International Petroleum Technology Conference, 3, 1–15. https://doi.org/10.2523/IPTC-16707-MSspa
dc.relation.referencesLi, X., Xu, Z., Yin, H., Feng, Y., & Quan, H. (2017). Comparative Studies on Enhanced Oil Recovery: Thermoviscosifying Polymer Versus Polyacrylamide. Energy and Fuels, 31(3), 2479–2487. https://doi.org/10.1021/acs.energyfuels.6b02653spa
dc.relation.referencesMaghzi, A., Mohebbi, A., Kharrat, R., & Ghazanfari, M. H. (2013). An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery. Petroleum Science and Technology, 31(5), 500–508. https://doi.org/10.1080/10916466.2010.518191spa
dc.relation.referencesMaghzi, Ali, Kharrat, R., Mohebbi, A., & Ghazanfari, M. H. (2014). The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel, 123, 123–132. https://doi.org/10.1016/j.fuel.2014.01.017spa
dc.relation.referencesMaurya, N. K., & Mandal, A. (2016). Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery. Petroleum Science and Technology, 34(5), 429–436. https://doi.org/10.1080/10916466.2016.1145693spa
dc.relation.referencesNajafiazar, B., Yang, J., Simon, C. R., Karimov, F., Torsæter, O., & Holt, T. (2016, April 20). Transport Properties of Functionalised Silica Nanoparticles in Porous Media. https://doi.org/10.2118/180064-MSspa
dc.relation.referencesNguyen, B. D. B. D., Ngo, T. K. T. K., Bui, T. H. T. H., Pham, D. K. D. K., Dinh, X. L. X. L., & Nguyen, P. T. P. T. (2015). The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(1), 15012. https://doi.org/10.1088/2043-6262/6/1/015012spa
dc.relation.referencesNguyen, T. P., Le, U. T. P., Ngo, K. T., Pham, K. D., & Dinh, L. X. (2016). Synthesis of Polymer-Coated Magnetic Nanoparticles from Red Mud Waste for Enhanced Oil Recovery in Offshore Reservoirs. Journal of Electronic Materials, 45(7). https://doi.org/10.1007/s11664-016-4513-6spa
dc.relation.referencesOtsubo, Y., & Umeya, K. (1984). Rheological Properties of Silica Suspensions in Polyacrylamide Solutions. Journal of Rheology, 28(2), 95–108. https://doi.org/10.1122/1.549742spa
dc.relation.referencesSchwenke, K., Isa, L., & Del Gado, E. (2014). Assembly of nanoparticles at liquid interfaces: Crowding and ordering. Langmuir, 30(11), 3069–3074. https://doi.org/10.1021/la404254nspa
dc.relation.referencesSeright, R. S., Campbell, A. R., Mozley, P. S., & Han, P. (2010). Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE Journal, 15(2), 341–348. https://doi.org/10.2118/121460-PAspa
dc.relation.referencesShamsijazeyi, H., Miller, C. A., Wong, M. S., Tour, J. M., & Verduzco, R. (2014, August 5). Polymer-coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, Vol. 131. https://doi.org/10.1002/app.40576spa
dc.relation.referencesSharma, T., Iglauer, S., & Sangwai, J. S. J. S. (2016). Silica Nanofluids in an Oilfield Polymer Polyacrylamide: Interfacial Properties, Wettability Alteration, and Applications for Chemical Enhanced Oil Recovery. Industrial and Engineering Chemistry Research, 55(48), 12387–12397. https://doi.org/10.1021/acs.iecr.6b03299spa
dc.relation.referencesSheng, J. J. (2011a). Mobility Control Requirement in EOR Processes. Modern Chemical Enhanced Oil Recovery, 79–100. https://doi.org/10.1016/B978-1-85617-745-0.00004-8spa
dc.relation.referencesSheng, J. J. (2011b). Polymer Flooding. In Modern Chemical Enhance Oil Recovery (pp. 101–206). https://doi.org/10.1016/B978-1-85617-745-0.00005-Xspa
dc.relation.referencesSorbie, K. S. (1991). Polymer-improved oil recovery. https://doi.org/10.1007/978-94-011-3044-8spa
dc.relation.referencesSun, X., Zhang, Y., Chen, G., & Gai, Z. (2017). Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies, 10(3). https://doi.org/10.3390/en10030345spa
dc.relation.referencesSwiecinski, F., Reed, P., & Andrews, W. (2016). The thermal stability of polyacrylamides in EOR applications. SPE - DOE Improved Oil Recovery Symposium Proceedings, 2016-Janua. https://doi.org/10.2118/179558-msspa
dc.relation.referencesWei, Q., Zhang, Y., Wang, Y., & Yang, M. (2017). A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. Journal of Materials Science, 52(21), 12889–12901. https://doi.org/10.1007/s10853-017-1330-0spa
dc.relation.referencesWever, D. A. Z. Z., Picchioni, F., & Broekhuis, A. A. (2011). Polymers for enhanced oil recovery: A paradigm for structure-property relationship in aqueous solution. Progress in Polymer Science (Oxford), 36(11), 1558–1628. https://doi.org/10.1016/j.progpolymsci.2011.05.006spa
dc.relation.referencesWhitby, C. P., Scales, P. J., Grieser, F., Healy, T. W., Kirby, G., Lewis, J. A., & Zukoski, C. F. (2003). PAA/PEO comb polymer effects on rheological properties and interparticle forces in aqueous silica suspensions. Journal of Colloid and Interface Science, 262(1), 274–281. https://doi.org/10.1016/S0021-9797(03)00179-6spa
dc.relation.referencesYoon, K.Y., Kotsmar, C., Ingram, D. R., Huh, C., Bryant, S. L., Milner, T. E., & Johnston, K. P. (2011). Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells. Langmuir, 27(17), 10962–10969. https://doi.org/10.1021/la2006327spa
dc.relation.referencesYoon, Ki Youl, Kotsmar, C., Ingram, D. R., Huh, C., Bryant, S. L., Milner, T. E., & Johnston, K. P. (2011). Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells. Langmuir, 27(17), 10962–10969. https://doi.org/10.1021/la2006327spa
dc.relation.referencesYousefvand, H., & Jafari, A. (2015). Enhanced Oil Recovery Using Polymer/nanosilica. Procedia Materials Science, 11, 565–570. https://doi.org/10.1016/J.MSPRO.2015.11.068spa
dc.relation.referencesZamani, N., Bondino, I., Kaufmann, R., & Skauge, A. (2017). Computation of polymer in-situ rheology using direct numerical simulation. Journal of Petroleum Science and Engineering, 159, 92–102. https://doi.org/10.1016/j.petrol.2017.09.011spa
dc.relation.referencesZeyghami, M., Kharrat, R., & Ghazanfari, M. H. H. (2014). Investigation of the Applicability of Nano Silica Particles as a Thickening Additive for Polymer Solutions Applied in EOR Processes. Energy Sources Part A-Recovery Utilization and Environmental Effects, 36(12), 1315–1324. https://doi.org/Doi 10.1080/15567036.2010.551272spa
dc.relation.referencesZhang, C., Oostrom, M., Wietsma, T. W., Grate, J. W., & Warner, M. G. (2011). Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy and Fuels, 25(8), 3493–3505. https://doi.org/10.1021/ef101732kspa
dc.relation.referencesZhang, R., He, X., Cai, S., & Liu, K. (2017). Rheology of diluted and semi-diluted partially hydrolyzed polyacrylamide solutions under shear: Experimental studies. Petroleum, 3(2), 258–265. https://doi.org/10.1016/j.petlm.2016.08.001spa
dc.relation.referencesZheng, C., Cheng, Y., Wei, Q., Li, X., & Zhang, Z. (2017). Suspension of surface-modified nano-SiO2in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524(April), 169–177. https://doi.org/10.1016/j.colsurfa.2017.04.026spa
dc.relation.referencesZhu, D., Han, Y., Zhang, J., Li, X., & Feng, Y. (2014). Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles. Journal of Applied Polymer Science, 131(19), n/a-n/a. https://doi.org/10.1002/app.40876spa
dc.relation.referencesZhu, D., Wei, L., Wang, B., & Feng, Y. (2014). Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs. Energies, 7(6), 3858–3871. https://doi.org/10.3390/en7063858spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.proposalPolymeric nanofluideng
dc.subject.proposalSiO2 Nanoparticleseng
dc.subject.proposalPolymer Floodingeng
dc.subject.proposalTransport in porous mediumeng
dc.titleNanomaterial for the control of rheological properties of hydrolyzed polyacrylamide based polymeric solutionseng
dc.title.translatedNanomaterial para el control de propiedades reológicas de soluciones poliméricas a base de poliacrilamida hidrolizadaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleUso de nanotecnología para el potenciamiento de la técnica de recobro mejorado de agua alternada con gas (eWAG)spa
oaire.fundernameColciencias - Agencia Nacional de Hidrocarburosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80883010-2021.pdf
Tamaño:
22.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Medellín Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: