Nanomaterial for the control of rheological properties of hydrolyzed polyacrylamide based polymeric solutions
dc.contributor.advisor | Lopera Castro, Sergio Hernando | |
dc.contributor.advisor | Cortés Correa, Farid Bernal | |
dc.contributor.author | Santamaria Torres, Oveimar | |
dc.date.accessioned | 2021-06-23T16:39:43Z | |
dc.date.available | 2021-06-23T16:39:43Z | |
dc.date.issued | 2020-10-15 | |
dc.description.abstract | Enhanced oil recovery (EOR) processes were developed as a strategy to extend the productivity of mature reservoirs. Polymer flooding-based HPAM is the EOR process more implemented due to its relatively low cost and operational flexibility; however, the degradation and retention in the reservoir are the main challenges. Several copolymers of polyacrylamide have been proposed to mitigate polymer deficiencies in “hard” conditions; however, these technologies are limited to favorable pricing scenarios. Nanotechnology has attracted widespread interest for use in recovery processes. Nanoparticles (NPs) incorporate new properties into traditional technologies applied in EOR. Polymer-based nanofluids or polymeric nanofluids consist of a combination of nanoparticles with polymeric solutions. Polymeric nanofluids are of great interest because they combine the advantages of inorganic NPs and organic polymers, generating synergy between the best of each of the two materials. Although numerous studies have shown a high potential of polymeric nanofluids, little evidence is available about the stability of polymeric microstructure exposed at thermal degradation, adsorption, and deformations caused by converging-diverging flow in pores. Hence, the main objective of this study is to characterize the rheological behavior of polymeric nanofluids formed by solutions of HPAM and SiO2 nanoparticles under the instability of the microstructure due to thermal degradation and concentration losses. This study provides crucial evidence about the stability of polymeric nanofluids and offers an understanding of its performance in the porous medium. Finally, it opens the landscape about the use of nanofluids in IOR/EOR processes. (Tomado de la fuente) | eng |
dc.description.abstract | Los procesos de recuperación mejorada de petróleo (EOR) se desarrollaron como una estrategia para extender la productividad de los yacimientos maduros. La inyección de polímeros basada en HPAM, es el proceso EOR más implementado debido a su costo relativamente bajo y flexibilidad operativa; sin embargo, la degradación y retención en el yacimiento son los principales desafíos. Se han propuesto varios copolímeros de poliacrilamida para mitigar las deficiencias del polímero en condiciones "duras"; sin embargo, estas tecnologías se limitan a escenarios de precios favorables. La nanotecnología ha atraído un interés generalizado para su uso en procesos de recuperación. Las nanopartículas (NP) incorporan nuevas propiedades a las tecnologías tradicionales aplicadas en EOR. Los nanofluidos a base de polímeros o nanofluidos poliméricos consisten en una combinación de nanopartículas con soluciones poliméricas. Los nanofluidos poliméricos son de gran interés porque combinan las ventajas de los NP inorgánicos y los polímeros orgánicos, generando sinergia entre lo mejor de cada uno de los dos materiales. Aunque numerosos estudios han demostrado un alto potencial de los nanofluidos poliméricos, hay poca evidencia disponible sobre la estabilidad de la microestructura polimérica expuesta a la degradación térmica, adsorción y deformaciones causadas por el flujo convergente-divergente en los poros. Por tanto, el objetivo principal de este estudio es caracterizar el comportamiento reológico de los nanofluidos poliméricos formados por soluciones de HPAM y nanopartículas de SiO2, bajo inestabilidad de la microestructura por degradación térmica y pérdidas de concentración. Este estudio proporciona evidencia crucial sobre la estabilidad de los nanofluidos poliméricos y ofrece una comprensión de su desempeño en el medio poroso. Finalmente, abre el panorama sobre el uso de nanofluidos en procesos IOR / EOR. (Tomado de la fuente) | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.researcharea | Recobro Mejorado | spa |
dc.description.researcharea | Nanotecnología | spa |
dc.description.sponsorship | Convocatoria 721-2015 Colciencias-ANH Nacional a través de Proyecto De Investigación | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79687 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Procesos y Energía | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos | spa |
dc.relation.references | Agista, M. N., Guo, K., & Yu, Z. (2018). A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery. Applied Scienced, 8(6), 871. https://doi.org/10.3390/app8060871 | spa |
dc.relation.references | Akbari, S., Mahmood, S. M., Tan, I. M., Ghaedi, H., & Ling, O. L. (2017). Assessment of polyacrylamide based co-polymers enhanced by functional group modifications with regards to salinity and hardness. Polymers, 9(12). https://doi.org/10.3390/polym9120647 | spa |
dc.relation.references | Aliabadian, E., Kamkar, M., Chen, Z., & Sundararaj, U. (2019). Prevention of network destruction of partially hydrolyzed polyacrylamide (HPAM): Effects of salt, temperature, and fumed silica nanoparticles. Physics of Fluids, 31(1), 013104. https://doi.org/10.1063/1.5080100 | spa |
dc.relation.references | Aliabadian, E., Sadeghi, S., Kamkar, M., Chen, Z., & Sundararaj, U. (2018). Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations. Journal of Rheology, 62(5), 1197–1216. https://doi.org/10.1122/1.5024384 | spa |
dc.relation.references | Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery Concepts. Enhanced Oil Recovery, 7–16. https://doi.org/10.1016/B978-1-85617-855-6.00008-5 | spa |
dc.relation.references | Alvarez, J. M., & Sawatzky, R. P. (2013). Water-flooding: Same old, same old? Society of Petroleum Engineers - SPE Heavy Oil Conference Canada 2013, 1, 274–291. https://doi.org/10.2118/165406-ms | spa |
dc.relation.references | Argillier, J.-F., Audibert, A., Lecourtier, J., Moan, M., & Rousseau, L. (1996). Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 113(3), 247–257. https://doi.org/10.1016/0927-7757(96)03575-3 | spa |
dc.relation.references | Bagaria, H.G., Yoon, K. Y., Neilson, B. M., Cheng, V., Lee, J. H., Worthen, A. J., … Johnston, K. P. (2013). Stabilization of iron oxide nanoparticles in high sodium and calcium brine at high temperatures with adsorbed sulfonated copolymers. Langmuir, 29(10), 3195–3206. https://doi.org/10.1021/la304496a | spa |
dc.relation.references | Bagaria, Hitesh G., Xue, Z., Neilson, B. M., Worthen, A. J., Yoon, K. Y., Nayak, S., … Johnston, K. P. (2013). Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica. ACS Applied Materials and Interfaces, 5(8), 3329–3339. https://doi.org/10.1021/am4003974 | spa |
dc.relation.references | Berret, J.-F., Calvet, D., Collet, A., & Viguier, M. (2003). Fluorocarbon associative polymers. Current Opinion in Colloid and Interface Science, 8(3), 296–306. https://doi.org/10.1016/S1359-0294(03)00048-7 | spa |
dc.relation.references | Chegenizadeh, N., Saeedi, A., & Quan, X. (2016). Application of Nanotechnology for Enhanced Oil Recovery: A Review. Defect and Diffusion Forum, 367, 149–156. https://doi.org/10.4028/www.scientific.net/DDF.367.149 | spa |
dc.relation.references | Chen, Q., Wang, Y., Lu, Z., & Feng, Y. (2013). Thermoviscosifying polymer used for enhanced oil recovery: Rheological behaviors and core flooding test. Polymer Bulletin, 70(2), 391–401. https://doi.org/10.1007/s00289-012-0798-7 | spa |
dc.relation.references | Cheraghian, G. (2017). Evaluation of clay and fumed silica nanoparticles on adsorption of surfactant polymer during enhanced oil recovery. Journal of the Japan Petroleum Institute, 60(2), 85–94. https://doi.org/10.1627/jpi.60.85 | spa |
dc.relation.references | Cheraghian, G., Shahram, S., Nezhad, K., Kamari, M., Hemmati, M., Masihi, M., … Bazgir, S. (2014). Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO 2. International Nano Letters, 4(3), 114. https://doi.org/10.1007/s40089-014-0114-7 | spa |
dc.relation.references | Corredor, L. M., Husein, M. M., & Maini, B. B. (2019). A review of polymer nanohybrids for oil recovery. Advances in Colloid and Interface Science, 272, 102018. https://doi.org/10.1016/j.cis.2019.102018 | spa |
dc.relation.references | Cram, S. L., Brown, H. R., Spinks, G. M., Hourdet, D., & Creton, C. (2005). Hydrophobically modified dimethylacrylamide synthesis and rheological behavior. Macromolecules, 38(7), 2981–2989. https://doi.org/10.1021/ma048504v | spa |
dc.relation.references | Denys, K. F. J. (2003). Flow of Polymer Solutions through Porous Media (Technische Universiteit Delft; Vol. 29). https://doi.org/10.1021/ie00106a028 | spa |
dc.relation.references | Deshpande, A., Krishnan, M., & Kumar, S. (2010). Rheology of Complex Fluids. In Asuhan Kebidanan Ibu Hamil (Vol. 53). https://doi.org/10.1007/978-1-4419-6494-6 | spa |
dc.relation.references | Fernández, I. J. (2005). Evaluation of cationic water-soluble polymers with improved thermal stability. SPE International Symposium on Oilfield Chemistry Proceedings. | spa |
dc.relation.references | Franco, C. A., Zabala, R., & Cortés, F. B. (2017). Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39–55. https://doi.org/10.1016/j.petrol.2017.07.004 | spa |
dc.relation.references | Gbadamosi, A. O., Junin, R., Manan, M. A., Yekeen, N., Agi, A., & Oseh, J. O. (2018). Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery. Journal of Industrial and Engineering Chemistry, 66, 1–19. https://doi.org/10.1016/j.jiec.2018.05.020 | spa |
dc.relation.references | Giraldo, L. J. L. J., Giraldo, M. A., Llanos, S., Maya, G., Zabala, R. D. R. D., Nassar, N. N. N., … Cortés, F. B. F. B. (2017). The effects of SiO2nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 159, 841–852. https://doi.org/10.1016/j.petrol.2017.10.009 | spa |
dc.relation.references | Griffith, C., & Daigle, H. (2017). Stability of polyvinyl alcohol-coated biochar nanoparticles in brine. Journal of Nanoparticle Research, 19(1), 1–12. https://doi.org/10.1007/s11051-016-3705-6 | spa |
dc.relation.references | Guo, K., Li, H., & Yu, Z. (2015). Metallic Nanoparticles for Enhanced Heavy Oil Recovery: Promises and Challenges. Energy Procedia, 75. https://doi.org/10.1016/j.egypro.2015.07.294 | spa |
dc.relation.references | He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe - Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46(1), 29–34. https://doi.org/10.1021/ie0610896 | spa |
dc.relation.references | Hendraningrat, L., & Torsæter, O. (2015). A Stabilizer that Enhances the Oil Recovery Process Using Silica-Based Nanofluids. Transport in Porous Media, 108(3). https://doi.org/10.1007/s11242-015-0495-8 | spa |
dc.relation.references | Hu, X., Ke, Y., Zhao, Y., Lu, S., Yu, C., & Peng, F. (2018). Synthesis and characterization of a β-cyclodextrin modified polyacrylamide and its rheological properties by hybriding with silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548(March), 10–18. https://doi.org/10.1016/j.colsurfa.2018.03.039 | spa |
dc.relation.references | Hu, Z., Haruna, M., Gao, H., Nourafkan, E., & Wen, D. (2017). Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. Industrial and Engineering Chemistry Research, 56(12), 3456–3463. https://doi.org/10.1021/acs.iecr.6b05036 | spa |
dc.relation.references | Kamal, M. S., Hussien, I. A., Sultan, A. S., & Han, M. (2013). Rheological study on ATBS-AM copolymer-surfactant system in high-temperature and high-salinity environment. Journal of Chemistry. https://doi.org/10.1155/2013/801570 | spa |
dc.relation.references | Khalilinezhad, S.S., Cheraghian, G., Roayaei, E., Tabatabaee, H., & Karambeigi, M. S. (2017). Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–10. https://doi.org/10.1080/15567036.2017.1302521 | spa |
dc.relation.references | Khalilinezhad, Seyyed Shahram, Cheraghian, G., Karambeigi, M. S., Tabatabaee, H., & Roayaei, E. (2016). Characterizing the Role of Clay and Silica Nanoparticles in Enhanced Heavy Oil Recovery During Polymer Flooding. Arabian Journal for Science and Engineering, 41(7), 2731–2750. https://doi.org/10.1007/s13369-016-2183-6 | spa |
dc.relation.references | Kujawa, P., Audibert-Hayet, A., Selb, J., & Candau, F. (2006). Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules, 39(1), 384–392. https://doi.org/10.1021/ma051312v | spa |
dc.relation.references | Lee, J., Moesari, E., Dandamudi, C. B., Beniah, G., Chang, B., Iqbal, M., … Johnston, K. P. (2017). Behavior of Spherical Poly(2-acrylamido-2-methylpropanesulfonate) Polyelectrolyte Brushes on Silica Nanoparticles up to Extreme Salinity with Weak Divalent Cation Binding at Ambient and High Temperature. Macromolecules, 50(19), 7699–7711. https://doi.org/10.1021/acs.macromol.7b01243 | spa |
dc.relation.references | Li, Q., Wei, B., Lu, L., Li, Y., Wen, Y., Pu, W., … Wang, C. (2017). Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery. Fuel, 207, 352–364. https://doi.org/10.1016/j.fuel.2017.06.103 | spa |
dc.relation.references | Li, Qing, Zhu, W., Fu, J., Zhang, H., Wu, G., & Sun, S. (2016). Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy, 24, 1–9. https://doi.org/10.1016/j.nanoen.2016.03.024 | spa |
dc.relation.references | Li, S., Hendraningrat, L., & Torsaeter, O. (2013). Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2-Phase Flow Experimental Studies. International Petroleum Technology Conference, 3, 1–15. https://doi.org/10.2523/IPTC-16707-MS | spa |
dc.relation.references | Li, X., Xu, Z., Yin, H., Feng, Y., & Quan, H. (2017). Comparative Studies on Enhanced Oil Recovery: Thermoviscosifying Polymer Versus Polyacrylamide. Energy and Fuels, 31(3), 2479–2487. https://doi.org/10.1021/acs.energyfuels.6b02653 | spa |
dc.relation.references | Maghzi, A., Mohebbi, A., Kharrat, R., & Ghazanfari, M. H. (2013). An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery. Petroleum Science and Technology, 31(5), 500–508. https://doi.org/10.1080/10916466.2010.518191 | spa |
dc.relation.references | Maghzi, Ali, Kharrat, R., Mohebbi, A., & Ghazanfari, M. H. (2014). The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel, 123, 123–132. https://doi.org/10.1016/j.fuel.2014.01.017 | spa |
dc.relation.references | Maurya, N. K., & Mandal, A. (2016). Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery. Petroleum Science and Technology, 34(5), 429–436. https://doi.org/10.1080/10916466.2016.1145693 | spa |
dc.relation.references | Najafiazar, B., Yang, J., Simon, C. R., Karimov, F., Torsæter, O., & Holt, T. (2016, April 20). Transport Properties of Functionalised Silica Nanoparticles in Porous Media. https://doi.org/10.2118/180064-MS | spa |
dc.relation.references | Nguyen, B. D. B. D., Ngo, T. K. T. K., Bui, T. H. T. H., Pham, D. K. D. K., Dinh, X. L. X. L., & Nguyen, P. T. P. T. (2015). The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(1), 15012. https://doi.org/10.1088/2043-6262/6/1/015012 | spa |
dc.relation.references | Nguyen, T. P., Le, U. T. P., Ngo, K. T., Pham, K. D., & Dinh, L. X. (2016). Synthesis of Polymer-Coated Magnetic Nanoparticles from Red Mud Waste for Enhanced Oil Recovery in Offshore Reservoirs. Journal of Electronic Materials, 45(7). https://doi.org/10.1007/s11664-016-4513-6 | spa |
dc.relation.references | Otsubo, Y., & Umeya, K. (1984). Rheological Properties of Silica Suspensions in Polyacrylamide Solutions. Journal of Rheology, 28(2), 95–108. https://doi.org/10.1122/1.549742 | spa |
dc.relation.references | Schwenke, K., Isa, L., & Del Gado, E. (2014). Assembly of nanoparticles at liquid interfaces: Crowding and ordering. Langmuir, 30(11), 3069–3074. https://doi.org/10.1021/la404254n | spa |
dc.relation.references | Seright, R. S., Campbell, A. R., Mozley, P. S., & Han, P. (2010). Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE Journal, 15(2), 341–348. https://doi.org/10.2118/121460-PA | spa |
dc.relation.references | Shamsijazeyi, H., Miller, C. A., Wong, M. S., Tour, J. M., & Verduzco, R. (2014, August 5). Polymer-coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, Vol. 131. https://doi.org/10.1002/app.40576 | spa |
dc.relation.references | Sharma, T., Iglauer, S., & Sangwai, J. S. J. S. (2016). Silica Nanofluids in an Oilfield Polymer Polyacrylamide: Interfacial Properties, Wettability Alteration, and Applications for Chemical Enhanced Oil Recovery. Industrial and Engineering Chemistry Research, 55(48), 12387–12397. https://doi.org/10.1021/acs.iecr.6b03299 | spa |
dc.relation.references | Sheng, J. J. (2011a). Mobility Control Requirement in EOR Processes. Modern Chemical Enhanced Oil Recovery, 79–100. https://doi.org/10.1016/B978-1-85617-745-0.00004-8 | spa |
dc.relation.references | Sheng, J. J. (2011b). Polymer Flooding. In Modern Chemical Enhance Oil Recovery (pp. 101–206). https://doi.org/10.1016/B978-1-85617-745-0.00005-X | spa |
dc.relation.references | Sorbie, K. S. (1991). Polymer-improved oil recovery. https://doi.org/10.1007/978-94-011-3044-8 | spa |
dc.relation.references | Sun, X., Zhang, Y., Chen, G., & Gai, Z. (2017). Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies, 10(3). https://doi.org/10.3390/en10030345 | spa |
dc.relation.references | Swiecinski, F., Reed, P., & Andrews, W. (2016). The thermal stability of polyacrylamides in EOR applications. SPE - DOE Improved Oil Recovery Symposium Proceedings, 2016-Janua. https://doi.org/10.2118/179558-ms | spa |
dc.relation.references | Wei, Q., Zhang, Y., Wang, Y., & Yang, M. (2017). A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. Journal of Materials Science, 52(21), 12889–12901. https://doi.org/10.1007/s10853-017-1330-0 | spa |
dc.relation.references | Wever, D. A. Z. Z., Picchioni, F., & Broekhuis, A. A. (2011). Polymers for enhanced oil recovery: A paradigm for structure-property relationship in aqueous solution. Progress in Polymer Science (Oxford), 36(11), 1558–1628. https://doi.org/10.1016/j.progpolymsci.2011.05.006 | spa |
dc.relation.references | Whitby, C. P., Scales, P. J., Grieser, F., Healy, T. W., Kirby, G., Lewis, J. A., & Zukoski, C. F. (2003). PAA/PEO comb polymer effects on rheological properties and interparticle forces in aqueous silica suspensions. Journal of Colloid and Interface Science, 262(1), 274–281. https://doi.org/10.1016/S0021-9797(03)00179-6 | spa |
dc.relation.references | Yoon, K.Y., Kotsmar, C., Ingram, D. R., Huh, C., Bryant, S. L., Milner, T. E., & Johnston, K. P. (2011). Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells. Langmuir, 27(17), 10962–10969. https://doi.org/10.1021/la2006327 | spa |
dc.relation.references | Yoon, Ki Youl, Kotsmar, C., Ingram, D. R., Huh, C., Bryant, S. L., Milner, T. E., & Johnston, K. P. (2011). Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells. Langmuir, 27(17), 10962–10969. https://doi.org/10.1021/la2006327 | spa |
dc.relation.references | Yousefvand, H., & Jafari, A. (2015). Enhanced Oil Recovery Using Polymer/nanosilica. Procedia Materials Science, 11, 565–570. https://doi.org/10.1016/J.MSPRO.2015.11.068 | spa |
dc.relation.references | Zamani, N., Bondino, I., Kaufmann, R., & Skauge, A. (2017). Computation of polymer in-situ rheology using direct numerical simulation. Journal of Petroleum Science and Engineering, 159, 92–102. https://doi.org/10.1016/j.petrol.2017.09.011 | spa |
dc.relation.references | Zeyghami, M., Kharrat, R., & Ghazanfari, M. H. H. (2014). Investigation of the Applicability of Nano Silica Particles as a Thickening Additive for Polymer Solutions Applied in EOR Processes. Energy Sources Part A-Recovery Utilization and Environmental Effects, 36(12), 1315–1324. https://doi.org/Doi 10.1080/15567036.2010.551272 | spa |
dc.relation.references | Zhang, C., Oostrom, M., Wietsma, T. W., Grate, J. W., & Warner, M. G. (2011). Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy and Fuels, 25(8), 3493–3505. https://doi.org/10.1021/ef101732k | spa |
dc.relation.references | Zhang, R., He, X., Cai, S., & Liu, K. (2017). Rheology of diluted and semi-diluted partially hydrolyzed polyacrylamide solutions under shear: Experimental studies. Petroleum, 3(2), 258–265. https://doi.org/10.1016/j.petlm.2016.08.001 | spa |
dc.relation.references | Zheng, C., Cheng, Y., Wei, Q., Li, X., & Zhang, Z. (2017). Suspension of surface-modified nano-SiO2in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524(April), 169–177. https://doi.org/10.1016/j.colsurfa.2017.04.026 | spa |
dc.relation.references | Zhu, D., Han, Y., Zhang, J., Li, X., & Feng, Y. (2014). Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles. Journal of Applied Polymer Science, 131(19), n/a-n/a. https://doi.org/10.1002/app.40876 | spa |
dc.relation.references | Zhu, D., Wei, L., Wang, B., & Feng, Y. (2014). Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs. Energies, 7(6), 3858–3871. https://doi.org/10.3390/en7063858 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.proposal | Polymeric nanofluid | eng |
dc.subject.proposal | SiO2 Nanoparticles | eng |
dc.subject.proposal | Polymer Flooding | eng |
dc.subject.proposal | Transport in porous medium | eng |
dc.title | Nanomaterial for the control of rheological properties of hydrolyzed polyacrylamide based polymeric solutions | eng |
dc.title.translated | Nanomaterial para el control de propiedades reológicas de soluciones poliméricas a base de poliacrilamida hidrolizada | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Uso de nanotecnología para el potenciamiento de la técnica de recobro mejorado de agua alternada con gas (eWAG) | spa |
oaire.fundername | Colciencias - Agencia Nacional de Hidrocarburos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80883010-2021.pdf
- Tamaño:
- 22.74 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Medellín Doctorado en Ingeniería - Sistemas Energéticos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: