En 21 día(s), 2 hora(s) y 36 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Metodología para el aprendizaje de máquina a partir de múltiples expertos en procesos de clasificación de bioseñales

dc.contributor.advisorCastellanos Domínguez, César Germán (Thesis advisor)spa
dc.contributor.authorMurillo Rendón, Santiagospa
dc.date.accessioned2019-06-25T00:35:24Zspa
dc.date.available2019-06-25T00:35:24Zspa
dc.date.issued2013spa
dc.description.abstractEn este trabajo se presenta una metodología de entrenamiento de máquina a partir de ambientes multi-etiquetador, cuando la presencia de un conjunto de etiquetas confiable o Ground Truth no puede obtenerse de manera trivial y requiere obtenerse a partir del criterio de un grupo de evaluadores. Mediante la modificación de la formulación estándar de una máquina de soporte vectorial es posible no solo obtener un conjunto de etiquetas confiable, sino también penalizar la calidad de evaluación de cada persona y emitir un valor de carácter objetivo de cara a la naturaleza de los datos. La metodología es probada sobre bases de datos reales como son la base de datos de voz para el estudio de hipernasalidad y la base de datos de fonocardiografía para el estudio de soplos, ambas bases de datos cuentan con etiquetas obtenidas de personal especialista. También es sometida a la base de datos Iris, ampliamente utilizada para ilustrar procedimientos relacionados con el reconocimiento de patrones y a la cual se han adicionado conjuntos de etiquetas simulados para presentar características particulares de la metodología expuesta. De manera adicional, se presenta la extensión de la metodología al caso multiclase abordado desde las propuestas habituales para máquinas de soporte vectorial y se sugiere una formulación especial del problema de optimización que incluye los datos de todas las clases al tiempospa
dc.description.abstractAbstract : In this work, a machine training methodology from multi-labeler environments is presented, when a truthful label set (Ground Truth) cannot obtain by a trivial way and it is necessary to obtain from the experts team criteria. A modification of traditional Support Vector Machine formulation is proposed to obtain a truthful label set and a penalization value for each expert, this penalization values is an objective criterion corresponding with the data nature. The methodology is tested over real database, for instance voice and phonocardiography database used to detect hypernasality and heart murmurs, respectively. Also, the Iris database widely used in pattern recognition scenarios and a simulated label set allow to show particular characteristics of the methodology. Additionally, the multiclass methodology extension is addressed by means of habitual support vector machine proposes. Finally a special optimization formulation is considered to take the information from all the classes at the same timespa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/9624/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/12022
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.ispartofDepartamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.referencesMurillo Rendón, Santiago (2013) Metodología para el aprendizaje de máquina a partir de múltiples expertos en procesos de clasificación de bioseñales. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc61 Ciencias médicas; Medicina / Medicine and healthspa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalAprendizaje automático (inteligencia artificial)spa
dc.subject.proposalelectrónica médicaspa
dc.subject.proposalfonocardiografíaspa
dc.subject.proposalReconocimiento óptico de modelosspa
dc.subject.proposalMachine learningspa
dc.subject.proposalmedical electronicsspa
dc.subject.proposalphonocardiographyspa
dc.subject.proposalMulti-etiquetadorspa
dc.subject.proposalvector de etiquetasspa
dc.subject.proposallti-labeler, labeling vectorspa
dc.titleMetodología para el aprendizaje de máquina a partir de múltiples expertos en procesos de clasificación de bioseñalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
7110505.2013.pdf
Tamaño:
3.99 MB
Formato:
Adobe Portable Document Format