Contenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianos

dc.contributor.advisorSanchez Mendoza, Yuly Edith
dc.contributor.advisorLeidy, Chad
dc.contributor.authorJaramillo Berrio, Sara Isabel
dc.date.accessioned2022-08-04T14:59:45Z
dc.date.available2022-08-04T14:59:45Z
dc.date.issued2021-10-21
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa población bacteriana ha desarrollado la capacidad de modular sus componentes celulares, tales como la bicapa lipídica, sistemas de generación de energía, síntesis de proteínas, enzimas biodegradativas y absorción de nutrientes debido a los cambios de pH, temperatura, presión, disponibilidad de nutrientes o salinidad que se presentan en los diferentes ambientes del planeta. Estos cambios en la expresión génica de la bacteria le han permitido sobrevivir y evadir la detección del sistema inmune del huésped. La alteración composicional de la membrana, es decir, la modulación de ácidos grasos saturados e insaturados, también tiene efectos en la permeabilidad, susceptibilidad a sustancias bactericidas y a los antibióticos. En este trabajo se propone cómo los cambios de distribución en el orden de los ácidos grasos y los cambios en la elasticidad de la membrana lideran la inhibición de formación de poros mediada por los péptidos antimicrobianos (PAM’s). La acción de los péptidos antimicrobianos en la formación de poros se puede explicar en tres fases (Figura 1). La primera, es la interacción superficial entre el péptido catiónico y la membrana bacteriana aniónica. En esta fase los péptidos forman estructuras helicoidales y su interacción con la membrana se hace de tal forma que los aminoácidos con carga positiva quedan ubicados de forma paralela horizontal a los aminoácidos hidrofóbicos de la hélice (Huang H. , 2020). La segunda fase es la permeabilización de la membrana, en otras palabras, es la inserción de los péptidos antimicrobianos al interior de la membrana celular. Antes de la inserción se genera una concentración crítica de péptidos en la superficie de la membrana, la cual depende de la tensión lateral de la misma. Dicha tensión está ligada a las propiedades de la bicapa, y se propone que los cambios en la tensión lateral están influenciados por la distribución de los ácidos grasos que la componen. Este proceso de inserción es netamente mecánico debido a las interacciones electrostáticas entre los péptidos catiónicos y las membranas aniónicas con condiciones energéticas favorables (Jenssen, Hamill , & Hancock, 2006), generando áreas de inestabilidad en ella y así inducir la formación de poros. Sin embargo, se han planteado diferentes mecanismos de acción tales como promover la captación de lípidos o como una acción detergente sobre la membrana para promover la formación de poros. La tercera y última fase, se lleva a cabo la lisis celular ya que después de la formación de poros en la membrana, se genera un estrés osmótico donde se ve alterado el intercambio de moléculas del interior celular al exterior (Ogata, y otros, 1992) y por lo tanto hay una pérdida en el gradiente electroquímico de la bacteria. Específicamente, se quiere determinar cómo los cambios porcentuales de ácidos grasos monoinsaturados presentes en la membrana emulan una respuesta adaptativa a la resistencia bacteriana y disminuyen la actividad de los péptidos antimicrobianos. Primero, se va a evaluar la actividad de los péptidos antimicrobianos LL-37 y Atra-1 en vesículas grandes unilamelares (por sus siglas en inglés LUV’s) con composiciones lipídicas de DMPG (14:0/14:0), DPPG (16:0/16:0) y POPG (16:0/18:1), emulando diferentes niveles de insaturación presentes en las membranas bacterianas, sugiriendo cómo la presencia de insaturaciones en la bicapa lipídica inhibe la actividad peptídica. Mediante el análisis cinético de porcentaje de fuga de calceína, estimar la energía de activación para la formación de poros en mezclas de lípidos sintéticos saturados (DMPG y DPPG) con pequeñas cantidades porcentuales de lípido monoinsaturado (POPG). Y segundo, se sugiere que los lípidos insaturados disminuyen la actividad de los péptidos antimicrobianos debido a la flexibilidad que le otorgan a la membrana dificultando poder alcanzar la concentración crítica en la superficie para inducir la translocación del péptido al interior de la membrana. Mediante la polarización generalizada (GP) en medidas de Laurdan con lípidos en una fase líquida-cristalina, mostrar como los diferentes porcentajes de insaturaciones van incrementando el nivel de espaciamiento de las cabezas polares en comparación con membranas completamente saturadas, lo cual indicaría como la flexibilidad inducida en la membrana puede estar relacionada con los valores de GP y el espaciamiento de cabezas hidrofóbicas en los lípidos. (Texto tomado de la fuente)spa
dc.description.abstractThe bacterial population has developed the ability to modulate its cellular components, such as the lipid bilayer, energy generation systems, protein synthesis, biodegradative enzymes and nutrient absorption due to changes in pH, temperature, pressure, availability of nutrients or salinity that occur in the different environments of the planet. These changes in the gene expression of the bacterium have allowed it to survive and evade detection by the host's immune system. The compositional alteration of the membrane, mean, the modulation of saturated and unsaturated fatty acids, also has effects on permeability, susceptibility to bactericidal substances and antibiotics. In this work, it is proposed how the changes in the distribution in the order of the fatty acids and the changes in the elasticity of the membrane lead the inhibition of pore formation mediated by antimicrobial peptides (AMP’s). The action of antimicrobial peptides on pore formation (Figure 2) can be explained in three phases. The first is the surface interaction between the cationic peptide and the anionic bacterial membrane. In this phase, the peptides form helical structures and their interaction with the membrane is done in such a way that the positively charged amino acids are located horizontally parallel to the hydrophobic amino acids of the helix (Huang H. , 2020). The second phase is the permeabilization of the membrane, in other words, it is the insertion of antimicrobial peptides into the cell membrane. Before insertion, a critical concentration of peptides is generated on the membrane surface, which depends on the lateral tension of the membrane. This tension is linked to the properties of the bilayer, and it is proposed that changes in lateral tension are influenced by the distribution of the fatty acids that compose it. This insertion process is purely mechanical due to the electrostatic interactions between the cationic peptides and the anionic membranes with favorable energetic conditions (Jenssen, Hamill , & Hancock, 2006), generating areas of instability in it and thus inducing the formation of pores. However, different mechanisms of action have been proposed, such as promoting lipid uptake or as a detergent action on the membrane to promote pore formation. The third and last phase, cell lysis is carried out since after the formation of pores in the membrane, an osmotic stress is generated where the exchange of molecules from the inside of the cell to the outside is altered (Ogata, y otros, 1992) and therefore there is a loss in the electrochemical gradient of the bacteria. Specifically, we want to determine how the percentage changes of monounsaturated fatty acids present in the membrane emulate an adaptive response to bacterial resistance and decrease the activity of antimicrobial peptides. First, the activity of the antimicrobial peptides LL-37 and Atra-1 in large unilamellar vesicles (LUV's) with lipid compositions of DMPG (14:0/14:0), DPPG (16:0/16:0) and POPG (16:0/18:1), emulating different levels of unsaturation present in bacterial membranes, suggesting how the presence of membrane unsaturation’s inhibits activity peptide. Using calcein leakage percentage kinetic analysis, estimate the activation energy for pore formation in mixtures of saturated synthetic lipids (DMPG and DPPG) with small percentage amounts of monounsaturated lipid (POPG). Second, it is suggested that unsaturated lipids decrease the activity of antimicrobial peptides due to the flexibility they give to the membrane, making it difficult to reach the critical concentration on the surface to induce the translocation of the peptide to the interior of the membrane. Through generalized polarization (GP) in Laurdan measurements with lipids in a liquid-crystalline phase, show how the different percentages of unsaturation’s increase the level of spacing of the polar heads compared to fully saturated membranes, which would indicate how flexibility induced in the membrane may be related to GP values and hydrophobic head spacing in lipids.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaBiofísica Molecularspa
dc.format.extent66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81779
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlmeida, P. F., & Pokorny, A. (2009). Mechanisms of antimicrobial, cytolytic, and cell- penetrating peptides: from kinetics to thermodynamics. Biochemistry, 8083-8093.spa
dc.relation.referencesBagatolli, L. A., Gratton, E., & Fidelio, G. D. (1998). Bagatolli, L. A., Gratton, E., & Fidelio, G. D. (1998). Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophysical journal, 331-341.spa
dc.relation.referencesBagatolli, L. A., Maggio, B., Aguilar, F., Sotomayor, C. P., & Fidelo, G. D. (1997). Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochimica et Biophysica Acta (BBA)-Biomembranes, 80-90.spa
dc.relation.referencesBagatolli, L. A., Parasassi, T., Fidelo, G. D., & Gratton, E. (1999). A model for the interaction of 6‐lauroyl‐2‐(N, N‐dimethylamino) naphthalene with lipid environments: implications for spectral properties. Photochemistry and photobiology, 557-564.spa
dc.relation.referencesBayer, A. S., Prasad, R., Chandra, J., Koul, A., Smriti, M., Varma, A., & Yeaman, M. R. (2000). In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infection and immunity, 3548-3553.spa
dc.relation.referencesBoparai, J. K., & Sharma, P. K. (2020). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and Peptide Letters, 4-16.spa
dc.relation.referencesChow, S. (2018). Mecanismos de acción de la Penicilina. https://www.news-medical.net. Obtenido de https://www.news-medical.net/health/Penicillin-Mechanism- (Spanish).aspx#:~:text=El%20mecanismo%20de%20la%20penicilina%20de%20la%2 0acci%C3%B3n&text=La%20penicilina%20mata%20a%20bacterias,formaci%C3%B3 n%20de%20la%20pared%20celular.spa
dc.relation.referencesClark, K. S., Svetlovics, J., McKeown, A. N., Huskins, L., & Almeida, P. F. (2011). What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry, 7919-7932.spa
dc.relation.referencesDean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC microbiology, 1-13.spa
dc.relation.referencesDumas, F., Sperotto, M. M., Lebrun, M. C., Tocanne, J. F., & Mouritsen, O. G. (1997). Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophysical journal, 1940-1953.spa
dc.relation.referencesDürr, U. H., Sudheendra, U. S., & Ramamoorthy, A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1408-1425.spa
dc.relation.referencesEpand, R. M., & Epand, R. F. (2011). Bacterial membrane lipids in the action of antimicrobial agents. Journal of Peptide Science, 298-305.spa
dc.relation.referencesGan, B. H., Gaynord, J., Rowe, S. M., Deingruber, T., & Spring, D. R. (2021). The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chemical Society Reviews, 7820-7880.spa
dc.relation.referencesGregory, S. M., Pokorny, A., & Almeida, P. F. (2009). Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophysical journal, 116-131.spa
dc.relation.referencesHarmouche, N., & Bechinger, B. (2018). Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophysical journal, 1033- 1044.spa
dc.relation.referencesHarroun, T. A., Heller, W. T., Weiss, T. M., Yang, L., & Huang, H. W. (1999). Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophysical journal, 937-945.spa
dc.relation.referencesHasan, M., Karal, M. S., Levadnyy, V., & Yamazaki, M. (2018). Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir, 3349-3362.spa
dc.relation.referencesHeimburg, T. (2007). Thermal Biophysics of Membranes. Copenhague: Wiley-VCH.spa
dc.relation.referencesHuang, H. (2020). DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes.spa
dc.relation.referencesHuang, H. W. (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1292-1302.spa
dc.relation.referencesHuang, W. H. (2009). Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophysical journal, 3263-3272.spa
dc.relation.referencesJenssen, H., Hamill , P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical microbiology reviews, 491-511.spa
dc.relation.referencesKahya, N., Wiersma, D. A., Poolman, B., & Hoekstra, D. (2002). Spatial organization of bacteriorhodopsin in model membranes: Light-induced mobility changes. Journal of Biological Chemistry, 39304-39311.spa
dc.relation.referencesKhandelia, H., Ipsen, J. H., & Mouritsen, O. G. (2008). The impact of peptides on lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1528-1536.spa
dc.relation.referencesKoo, H. B., & Seo, J. (2019). Antimicrobial peptides under clinical investigation. Peptide Science, e24122.spa
dc.relation.referencesKučerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophysical journal, L83-L85.spa
dc.relation.referencesKumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules.spa
dc.relation.referencesLeidy, C., Celis, A., Carazzone, C., Manrique, M., Cossio, P., & Aponte, C. (2017). Desarrollo de nuevos péptidos derivados de la Crotalicidina como potenciales agentes antimicrobianos para el tratamiento de aislados clínicos de Staphylococcus Aureus resistente a antibióticos. Bogotá, Colombia: Universidad de Los Andes.spa
dc.relation.referencesLewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 48-56.spa
dc.relation.referencesLongo, M. L., Waring, A. J., Gordon, L. M., & Hammer, D. A. (1998). Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin. Langmuir, 2385-2395.spa
dc.relation.referencesLundbæk, J. A., Birn, P., Hansen, A. J., Søgaard, R., Nielsen, C., Girshman, J., & Anderson, O. S. (2004). Regulation of Sodium Channel Function by Bilayer Elasticity The Importance of Hydrophobic Coupling. Effects of Micelle-forming Amphiphiles and Cholesterol. Journal of General Physiology, 599-621.spa
dc.relation.referencesLundbæk, J. A., Collingwood, S. A., Ingólfsson, H. I., Kapoor, R., & Andersen, O. S. (2010). Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of The Royal Society Interface, 373-395.spa
dc.relation.referencesLundbæk, J. A., Koeppe, R. E., & Anderson, O. S. (2010). Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proceedings of the National Academy of Sciences, 15427-15430.spa
dc.relation.referencesMarín-Medina, N., Ramírez, D. A., Trier, S., & Leidy, C. (2016). Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Applied microbiology and biotechnology, 10251-10263.spa
dc.relation.referencesMatsuzaki, K., Murase, O., & Mijayima, K. (1995). Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry, 12553- 12559.spa
dc.relation.referencesMazzuca, C., Orioni, B., Coletta, M., Formaggio, F., Toniolo, C., Maulucci, G., & Stella, L. (2010). Fluctuations and the rate-limiting step of peptide-induced membrane leakage. Biophysical journal, 1791-1800.spa
dc.relation.referencesNielsen, S. B., & Otzen, D. E. (2010). Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. Journal of colloid and interface science, 248-256.spa
dc.relation.referencesNishida, K., Anada, T., Kobayashi, S., Ueda, T., & Tanaka, M. (2021). Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomaterialia, 313-324.spa
dc.relation.referencesOgata, K., Linzer, B. A., Zuberi, R. I., Ganz, T., Lehrer, R. I., & Catanzaro, A. (1992). Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium- Mycobacterium intracellulare. Infection and immunity, 4720-4725.spa
dc.relation.referencesOñate-Garzón, J., Manrique-Moreno, M., Trier, S., Leidy, C., Torres, R., & Patiño, E. (2017). Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. The Journal of antibiotics, 238-245.spa
dc.relation.referencesPan, J., Tristram-Nagle, S., Kučerka, N., & Nagle, J. F. (2008). Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophysical journal, 117-124.spa
dc.relation.referencesRijnaarts, H. H., Norde, W., Lyklema, J., & Zehnder, A. J. (1999). DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerface, 179-195.spa
dc.relation.referencesSchujman, G. E., & de Mendoza, D. (2005). Transcriptional control of membrane lipid synthesis in bacteria. Current opinion in microbiology, 149-153.spa
dc.relation.referencesSeemann, H., & Winter, R. (2003). Volumetric properties, compressibilities and volume fluctuations in phospholipid-cholesterol bilayers. Zeitschrift für Physikalische Chemie, 831-846.spa
dc.relation.referencesSeo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. (2012). Antimicrobial peptides for therapeutic applications: a review. Molecules, 12276-12286.spa
dc.relation.referencesSeparovic, F., Gehman, J. D., Lee, T. H., Bowie, J. H., & Aguilar, M. I. (2009). Effect of Antimicrobial Peptides from Australian Tree Frogs on Anionic Phospholipid Membranes. Biophysical Journal, 156.spa
dc.relation.referencesShai, Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 55-70.spa
dc.relation.referencesSoni, S. P., Ward, J. A., Sen, S. E., Feller, S. E., & Wassal, S. R. (2009). Soni, S. P., Ward, J. A., Sen, S. E., Feller, S. E., & Wassall, S. R. (2009). Effect of trans unsaturation on molecular organization in a phospholipid membrane. Biochemistry, 11097-11107.spa
dc.relation.referencesYeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews, 27-55.spa
dc.relation.referencesZakany, F., Kovacs, T., Panyi, G., & Varga, Z. (2020). Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids.spa
dc.relation.referencesZhang, Y. M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 222-233.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembPeptide antibioticseng
dc.subject.lembANTIBIOTICOS PEPTIDOSspa
dc.subject.lembFourier transform infrared spectroscopyeng
dc.subject.lembESPECTROSCOPIA DE INFRARROJOS DE TRANSFORMACIONES DE FOURIERspa
dc.subject.proposalPéptido antimicrobianospa
dc.subject.proposalFosfolípidospa
dc.subject.proposalSaturación/Insaturaciónspa
dc.subject.proposalLaurdanspa
dc.subject.proposalAntimicrobial peptideeng
dc.subject.proposalPhospholipidseng
dc.subject.proposalSaturation/Unsaturationeng
dc.subject.proposalLaurdaneng
dc.titleContenido de insaturación de la membrana lipídica como modulador de la actividad de péptidos antimicrobianosspa
dc.title.translatedUnsaturation content of the lipid membrane as a modulator of the activity of antimicrobial peptideseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088330442.2022.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: