Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.

dc.contributor.advisorMoreno Herrera, Claudia Ximena
dc.contributor.advisorPenagos Vélez, Lucas
dc.contributor.authorFeria Cáceres, Pedro Felipe
dc.contributor.researchgroupMicrobiodiversidad y Bioprospecciónspa
dc.coverage.countryColombia
dc.date.accessioned2021-10-02T16:10:54Z
dc.date.available2021-10-02T16:10:54Z
dc.date.issued2021-10-01
dc.descriptionilustraciones, mapas, diagramasspa
dc.description.abstractLa contaminación de suelos cultivables por metales pesados es un problema global, su acumulación puede causar efectos tóxicos que afectan la calidad y la seguridad de los productos cosechados, la composición y el funcionamiento de las comunidades bacterianas del suelo. El Cadmio (Cd) es un metal pesado, el cual se encuentra tanto en la corteza terrestre como en las aguas oceánicas, es emitido al ambiente como resultado conjunto de actividades naturales (origen volcánico) como antropogénicas (múltiples actividades industriales). El Cd presente en el suelo puede entrar a la cadena alimentaria a través de las raíces y tejido foliar de las plantas, cuya tasa de translocación y bioacumulación depende de múltiples variables como el tipo de planta y de las características fisicoquímicas de los suelos. El chocolate y sus derivados provienen de la fruta del árbol Theobroma cacao L. (familia Sterculiaceae) nativo de la selva tropical, cuya siembra se extiende desde la cuenca Amazónica hasta el sur de México; distintos reportes señalan que el cacao bioacumula el Cd en sus raíces, el cual transloca hacia la parte aérea y se deposita en la mazorca y las almendras, imponiendo serias limitaciones en cuanto a la calidad y seguridad alimentaria. El cacao colombiano, el cual en los últimos años ha tenido gran auge, en especial, por el incremento en las exportaciones de grano y derivados, puede verse afectado por la presencia de Cd en el grano de cacao proveniente de algunas regiones del país. Por su parte, se conoce que las comunidades bacterianas presentes en los suelos juegan un papel importante en aspectos de las plantas como la nutrición, el estado fitosanitario y el desarrollo de biomasa vegetal. En general, se sabe poco de las comunidades microbianas del cacao y de la microbiota presente en suelos, por lo tanto, como objetivo de esta tesis se planteó el estudiar, en muestras de suelo recopiladas en fincas del municipio de San Vicente de Chucurí (Departamento de Santander) cultivadas con plantaciones comerciales de cacao en presencia de distintas concentraciones de Cd, la filogenia molecular y su microbiota bacteriana con tolerancia asociada a Cd, identificando sus mecanismos de acción y para algunas de estas, determinar el factor de translocación del metal a la planta; esta tesis se encuentra enmarcada dentro de la estrategia de investigación de la Compañía Nacional de Chocolates, la cual busca mediante ciencia básica, ahondar en el conocimiento de nuevas técnicas que permitan el mejoramiento de recursos colombianos como lo es el caso del cacao y sus prácticas agrícolas. En las siguientes páginas, se describe la composición bacteriana de suelos de plantaciones de cacao en un amplio rango de concentraciones de Cd (0.2 a 18 mg/Kg), que se encuentran naturalmente en esta región. Los filos de mayor abundancia relativa en todas las muestras fueron Proteobacteria, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Myxococcota, Chloroflexi, Plactomycetota, Bacteroidota, Gemmatimonadota, Nitrospirota, Firmicutes y NB1_J y los géneros bacterianos géneros bacterianos con mayor abundancia relativa (>0.5%), se identificó a a Nitrospira, candidatus Udaeobacter, Haliangium, Cupriavidus, MND1, Bacillus, Kitasatospora, Niveibacterium, Acidothermus, Burkholderia, Acidibacter, Terrimonas, Gaiella, ADurb.Bin063-1, candidatus Solibacter, Kitasatospora, Sphingomonas, Streptomyces, han sido relacionados con procesos de tolerancia a Cd. Para las muestras de estudio se identificó los géneros bacterianos que conforman la comunidad central, los cuales están presentes en todas las muestras como Nitrospira sp., Cupriavidus sp., Burkholderia sp., ADurb.Bin063-1, Haliangium sp., candidatus Udaeobacter, MND1, Kitasatospora, Acidothermus, Acidibacter, Streptomyces, Gaiella, candidatus Solibacter y Terramonas, géneros que pueden jugar un papel fundamental en el funcionamiento del ecosistema, siendo indicativos de fenómenos que ocurren en el ambiente. Por otro lado, en esta investigación se estudió, para doce cepas nativas, su tolerancia e inmovilización de Cd en medio de cultivo líquido (caldo nutritivo) en presencia de dos concentraciones (10 y 15 mg/L Cd). La mayoría de los aislados mostró una curva de crecimiento retardada en presencia de Cd, de acuerdo con los valores µ y K calculados para cada cepa; la capacidad de captura del metal en el medio de cultivo fue caracterizada por microscopía electrónica de transmisión (TEM), reportando dos mecanismos como extracelular (biosorpción a nivel de pared celular) e intracelular (precipitación de Cd en citoplasma), dependiendo del tiempo y condiciones de incubación. Los cambios en los grupos funcionales en la superficie celular se analizaron por espectroscopia infrarroja transformada de Fourier (FT-IR), se identificó diferentes picos a 3275, 1634 y 1531 cm-1 (grupo amida I y II), la adsorpción indicó que el átomo de nitrógeno puede ser el sitio principal de interacción de Cd por las cepas; otro cambio notado en los picos 914, 1057 y 1636 cm-1, refiere la ampliación y estiramiento de la banda la presencia de grupos C=O; otro cambio interesante en los picos 2958, 2923, 2873, 2852, 1467, 1455 y 860 cm-1, esta región corresponde tanto a estiramientos de grupos C–H y O–H, donde la posibilidad en que los átomos de oxígeno en los grupos hidroxilo de la biomasa celular están envueltos en los procesos de absorpción. Los picos en la región 966, 1230 y 1060 cm-1 indican la intervención de enlaces fosfato en la biosorpción de Cd con la posible producción de fosfato de Cd sobre la superficie celular de la biomasa. En este trabajo se realizó un bioensayo bajo condiciones controladas de vivero comercial, aplicando algunas cepas nativas en tratamientos combinados con diferentes concentraciones de Cd utilizando semillas de cacao del genotipo CCN51. Los resultados mostraron que, independiente del género bacteriano, la biomasa en la planta de cacao aumenta y la concentración de Cd se distribuyó y bioacumuló en las partes de las plantas. Sin embargo, cierto grado de inmovilización de Cd pudo ocurrir en el suelo, lo que impidió una mayor concentración de Cd en raíz, evitando su translocación a la planta, especialmente cuando el suelo se bioaugmentó con Klebsiella sp. (18-4B). En conclusión, la combinación de diferentes enfoques permitió analizar la microbiota cultivable y no cultivable con características de biosorpción y bioprecipitación de Cd, las cuales están presentes en los suelos cacaoteros bajo distintas concentraciones de Cd en el departamento de Santander. Lo anterior proporciona una línea base sobre dicha composición bacteriana, para que en estudios futuros se logre complementar, los microorganismos asociados, sus interacciones y la dinámica para contrarrestar Cd en suelo y aquellos con actividad biotecnológica, que puedan ser alternativas de innovación, desarrollo y fuente de creación de bionegocios, considerarlos como opción de solución de muchos de los problemas causados por el hombre. (Texto tomado de la fuente)spa
dc.description.abstractSoils used for food production could have a relatively high naturally occurring concentration of heavy metals, which could affect plant growth, compromise quality and safety of the derived products, and could also impact the soil bacterial community composition and functioning. Theobroma cacao L. crops in several neotropical regions produce food and nutrient sources consumed worldwide. A region at the northeastern Colombian Andes (Santander) has extensive T. cacao crops to produce cacao for national consumption and for exports. Cadmium (Cd) is a naturally occurring heavy metal toxic at higher concentrations. Cacao crops are able to bioaccumulated Cd in roots and translocate it to the beans, imposing a serious limitation regarding quality and safety. Soils could have very different natural concentrations of Cd. We present here the bacterial composition of soils cocoa plantations with a wide range of Cd concentrations 0.2 to 18 mg/Kg, found naturally in this region. Microbial community was described by means of 16S rRNA amplicon sequencing analyses, together with culture-dependent methods isolating Cd tolerant strains and soils physicochemical properties were recorded. Results showed that bacterial composition diversity was dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Myxococcota, Chloroflexi, Plactomycetota, Bacteroidota, Gemmatimonadota, Nitrospirota, Firmicutes y NB1_J and did not have significant changes across sample soils with different Cd concentrations. We observed statistically significant differences in beta-diversity correlated with soil properties; moreover, we report the presence of a core community among the samples, dominated by Nitrospira sp., Cupriavidus sp., Burkholderia sp., ADurb.Bin063-1, Haliangium sp., candidatus Udaeobacter, MND1, Kitasatospora, Acidothermus, Acidibacter, Streptomyces, Gaiella, candidatus Solibacter and Terramonas; genera typically reported in soils with healthy plant cultures and playing fundamental roles in soil geochemical cycles. Culture-dependent techniques allowed the isolation of bacterial strains tolerating high Cd concentrations up to 120 mg/L for potencial Cd biosorption or intracellular sequestration. Bacteria have been applied for the bioremediation of cadmium-contaminated environments by biosorption or bioaccumulation interactions; this process is considered as a potential eco-friendly alternative. In the present work, twelve cadmium native bacteria tolerant to 2,500 µM CdCl2 (120 mg/L) isolated in soils of cocoa farms in presence of differents levels of Cd selected, to evaluate their Cd tolerance and immobilization using liquid culture medium (Nutritive broth) in the presence of two Cd concentration (10 and 15 mg/L), most of the isolates shows delayed growth curve in Cd levels. In the study, the ability to Cd capture by native strains in the liquid broth was characterized by Transmission Electron Microscopy (TEM) and changes in the functional groups in cell surface were analyzed by Fourier Transform infrared spectroscopy (FT-IR). All the genera have been reported in literatura with Cd capability properties in differents ways; these bacteria revealed, under methodology development, have been two different forms to Cd capture, such extracellular capability (biosorption) and extracellular mechanism (Cd cytoplasm precipitation) in differents concentrations, that depended time and incubation conditions. Furthermore, in the greenhouse experiments were carried out applied some strains in combined treatments using CCN51 cacao genotype seeds, grown in soil with different concentrations of Cd. The results showed that cell morphology and functional groups on cell surfaces changed after Cd interaction; regardless of bacteria genera biomass increases in cacao plant and the Cd concentration is distributed, that promoted bioaccumulation in parts of the plants, but certain Cd immobilization degree can occur in soil, preventing the Cd root concentration, which can prevent the translocation to plant, especially when the soil bioaugmentation with Klebsiella sp. (18-4B). In conclusión, these results allow us to elucidate the cultivable and non-cultivable bacterial microbiota present in soil cultivated with cocoa under different concentration of Cd in Santander Region; This will provide a baseline with information for future studies to clarify and complement the associated microorganisms, their interactions to counteract Cd in soil and those bacterial with biotechnological activity, they can be alternatives to influence for lower Cd accumulation in cacao crops.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.funderAuxilio educativo para el pago de las matrículas.spa
dc.description.researchareaBiorremediaciónspa
dc.format.extentviii, 176 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80355
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.references1. Afzal, A., Rasool, M., Wassen, M. 2017. Assesment of heavy metal tolerance and biosorptive potencial of Klebsiella variicola isolated from industrial effluents. AMB Express, 7, 184. https://doi-org.ezproxy.unal.edu.co/10.1186/s13568-017-0482-2.spa
dc.relation.references2. Aiking, H., Kok, H., Heerikhuizen, H., Riet, J. 1982. Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture procedes mainly via formation of Cadmium sulfide. Appl.Environ. Microbiol. 44,938–944.spa
dc.relation.references3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Oxford University Press, 25(17), 3389–3402.spa
dc.relation.references4. An, M., Chang, D., Hong, D., Fan, H., Wang, K. 2021. Metabolic regulation in soil microbial succession and niche differentiation by the polymer amendment under cadmium stress. Journal of Hazardous Materials. 416. 126094. https://doi.org/10.1016/j.jhazmat.2021.126094.spa
dc.relation.references5. Apprill, A., Mcnally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129–137. https://doi.org/10.3354/ame01753.spa
dc.relation.references6. Arévalo-Gardini, E., Arévalo-Hernández, C., Baligar, V., He, Z. 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment. 605-606. 792 – 800. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.06.122 0048-9697.spa
dc.relation.references7. Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., Montalvo, D., 2019. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: a nationwide survey in Ecuador. Sci. Total Environ. 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292.spa
dc.relation.references8. Atlas, M., Bartha, R. 2002. Ecología microbiana y microbiología ambiental. Cuarta edición. Addison Wesley. New York, USA. 217 – 262.spa
dc.relation.references9. Becerra-Castro C, Kidd PS, Prieto-Fernandez A, Weyens N, Acea MJ, Vangronsveld J. 2011. Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterization. Plant and Soil. 340:413-433. https://doi.org/10.1007/s11104-010-0613-x.spa
dc.relation.references10. Bhattacharya, A., Naik, S., Khare, S., 2018. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management. 215. 143-152. https://doi.org/10.1016/j.jenvman.2018.03.055spa
dc.relation.references11. Bissett, A., Brown, M. V., Siciliano, S. D., Thrall, P. H., 2013. Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters. 16,128. doi: https://doi.org/10.1111/ele.12109.spa
dc.relation.references12. Bolívar, H., Contreras, M., Teherán, L. 2016. Burkholderia tropica una bacteria con gran potencial para su uso en agricultura. Revista Especializada en Ciencias Químico-Biológicas, 19(2):102-108, 2016. https://doi.org/10.1016/j.recqb.2016.06.003.spa
dc.relation.references13. Böhmer, M.; Ozdín, D.; Račko, M.; Lichvár, M.; Budiš, J.; Szemes, T. 2020. Identification of Bacterial and Fungal Communities in the Roots of Orchids and Surrounding Soil in Heavy Metal Contaminated Area of Mining Heaps. Applied Science. 10. 7367. https://doi.org/10.3390/app10207367spa
dc.relation.references14. Bravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Brassiant, O., Leon-Moreno, C. 2018. Cadmium and Cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J Appl Microbiol. 2018 May; 124(5):1175-1194. doi: https: //10.1111/jam.13698. Epub 2018 Feb 26.spa
dc.relation.references15. Bravo, D., Leon-Moreno, C., Martinez, C., Varon-Ramirez, V., Araujo-Carrillo, G., Vargas, R., Quiroga-Mateus, R., Zamora, A., Gutierrez, E. 2021. The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy. 11. 761. doi: https://doi.org/10.3390/agronomy11040761spa
dc.relation.references16. Burges, A., Epelde, L., Garbisu, C. 2015. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere. 120,8–15.doi: https://doi.org/10.1016/j.chemosphere.2014.05.037.spa
dc.relation.references17. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference fromIllumina amplicon data. Nat. Methods 13. 7. 581–583.spa
dc.relation.references18. Cao, X., Luo, J., Wang, X, Chen, Z., Liu, G., Khan, M., Kang, K., Feng, Y., He, Z., Yang, X. 2020. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of The Total Environment. 723, 138-152. doi: https://doi.org/10.1016/j.scitotenv.2020.138152.spa
dc.relation.references19. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G. a, Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C. a, Mcdonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W. a, Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr. 7, 335–336. doi: https://doi.org/10.1038/nmeth0510-335.spa
dc.relation.references20. Carlon, C., 2007. Derivation Methods of Soil Screening Values in Europe: A Review and Evaluation of National Procedures Towards Harmonization. European Commission, Joint Research Centre, Ispra (EUR 22805-EN).spa
dc.relation.references21. Carter, J., Rice, E., Buchberger, S., Lee, Y. 2000. Relationships between levels of heterotrophic bacteria and water quality parameters in a drinking water distribution system, Water Research, Volume 34, Issue 5, Pages 1495-1502, https://doi.org/10.1016/S0043-1354(99)00310-3.spa
dc.relation.references22. Castañeda, V., Junca, H., García, E., Montoya, O., Moreno, C., 2019. Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus), Aquaculture, 512, 734325. https://doi.org/10.1016/j.aquaculture.2019.734325.spa
dc.relation.references23. Ceribasi, I, et al., 2001. Biosorption of Ni (II) and Pb (II) by Phanaerochaete chysosporium from a binary metal system- kinetics. Water SA. 27 (1), 15-19, DOI: 10.4314/wsa.v27i1.5004spa
dc.relation.references24. Chavez, E., He, Z., Stofella, P., Mylavarapu, R., Li, Y., Moyano, B., Baligar, V., 2015. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment 533. 205–214. doi: https://doi.org/10.1016/j.scitotenv.2015.06.106.spa
dc.relation.references25. Chavez, E., He, Z., Stoffella, P., Mylavarapu, R., Li, Y., Baligar, V. 2016. Chemical speciation of cadmium: An approach to evaluate plantavailable cadmium in Ecuadorian soils under cacao production. Chemosphere. 150. 57–62. doi: http://dx.doi.org/10.1016/j.chemosphere.2016.02.013.spa
dc.relation.references26. Chakravarty, R and Banerjee, P., 2012. Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresource Technology 108, 176–183. doi: https://doi.org/10.1016/j.biortech.2011.12.100.spa
dc.relation.references27. Chavez, C., et al., 2014. Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Comprehensive Reviews in food science and foos safety. 13. doi: https://doi.org/10.1111/1541-4337.12098.spa
dc.relation.references28. Chen, Y., Chen, F., Xie, M., Jiang, Q., Ao, T. 2020. The impact of stabilizing amendments on the microbial community and metabolism in cadmium-contaminated paddy soils. Chemical Engineering Journal. 395, 125132. doi: https://doi.org/10.1016/j.cej.2020.125132.spa
dc.relation.references29. Chen, Y., Zhu, Q., Dong, X., Huang, W., Du, Ch., Lu, D. 2019. How Serratia marcescens HB-4 absorbs Cadmium and its implication on phytoremediation. Ecology and Environmental Safety, 185, 109723, https://doi.org/10.1016/j.ecoenv.2019.109723.spa
dc.relation.references30. Chi, M.-C., & Li, C.-S. 2007. Fluorochrome in Monitoring Atmospheric Bioaerosols and Correlations with Meteorological Factors and Air Pollutants. Aerosol Science and Technology, 41(7), 672–678. http://doi.org/10.1080/02786820701383181.spa
dc.relation.references31. Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., Zhang, D. 2020. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsortion and resistence to cadmium. Science of the total environment 741, 140422, https://doi.org/10.1016/j.scitotenv.2020.140422.spa
dc.relation.references32. Chodak, M., Go, I., Ebiewski, M., Morawska-Ploskonka, J., Kuduk, K., Niklínska, M., 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl soil Ecol. 64, 7-14. doi: https://doi.org/10.1016/j.apsoil.2012.11.004.spa
dc.relation.references33. Chojnacka, K. 2010. Biosorption and bioaccumation – The prospects for practical applications. Review article. Environment International. 36. 299 – 307. doi:10.1016/j.envint.2009.12.001.spa
dc.relation.references34. Chun, S., Kim, Y., Cui, Y., Nam, K. 2021. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environmental Pollution. 289. 117851. doi: https://doi.org/10.1016/j.envpol.2021.117851.spa
dc.relation.references35. Chun-yu, J., Xia-fang, S., Meng, Q., Qing-ya, W. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, Volume 72, Issue 2, Pages 157-164 https://doi.org/10.1016/j.chemosphere.2008.02.006.spa
dc.relation.references36. Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R., Tiedje, J. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, 141–145. https://doi.org/10.1093/nar/gkn879.spa
dc.relation.references37. Daims H. 2014. The Family Nitrospiraceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-38954-2_126.spa
dc.relation.references38. Davidova, I., Wawrik, B., Callaghan, A., Duncan, K., Marks, C., Suflita, J. 2016. Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae. International Journal od Systematic and Evolutionary Microbiology. 66: 1242-1248. doi: https://doi.org/10.1099/ijsem.0.000864.spa
dc.relation.references39. Ding, C., Ma, Y., Li, X., Zhang, T., Wang, X. 2018. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assesment. Science of the Total Environment. 619-620. 700 – 706. doi: https://doi.org/10.1016/j.scitotenv.2017.11.137.spa
dc.relation.references40. Duan, C., Liu, Y., Zhang, H., Chen, G., Song, J. 2020. Cadmium Pollution Impact on the Bacterial Community of Haplic Cambisols in Northeast China and Inference of Resistant Genera. Journal of Soil Science and Plant Nutrition. 20. 1156–1170. https://doi.org/10.1007/s42729-020-00201-5.spa
dc.relation.references41. Edgar, R., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: https://doi.org/10.1093/bioinformatics/btq461.spa
dc.relation.references42. Ehsan M., K. Santamaría-Delgado, A. Vázquez-Alarcón, et al. 2009. Phytostabilization of cadmium contaminated soils by “Lupinus uncinatus” Schdl. Journal of Agricultural Research 7(2): 390-397.spa
dc.relation.references43. EU, 2014. COMMISSION REGULATION (EU) No 488/2014 amending regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 138, 75.spa
dc.relation.references44. Evanko, C., Dzombak, D., 1997. Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report (TE-97-01). Ground-Water Remediation Technologies Analysis Center (GWRTAC - E Series). October 1997.spa
dc.relation.references45. Ezekoye CC, Chikere CB, Okpokwasili GC (2018). Field Metagenomics of Bacterial Community Involved in Bioremediation of Crude Oil Polluted Soil. J Bioremediat Biodegrad 9. 5: 449. doi:10.4172/2155-6199.1000449.spa
dc.relation.references47. FEDECACAO. Departamento de Estadística y Recaudos; Reporte de Febrero 2020; Version en línea: Nelsy Yanira Alvarado; Federación Nacional de Cacaoteros: Bogotá, Colombia, 2020; disponible en web: https://www.fedecacao.com.co/portal/index.php/es/2015-2 002-2012-2017-2020-2059/nacionales (acceso 30 Abril de 2020).spa
dc.relation.references48. Feng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., Zhao, Y. 2018. Metagenomic analyst of microbial community and fuction involved in Cd Contaminated soil. BMC Microbiology. 18. 11. https://doi.org/10.1186/s12866-018-1152-5.spa
dc.relation.references49. Ferreira, Paulo Ademar Avelar, Bomfeti, Cleide Aparecida, Soares, Cláudio Roberto Fonsêca de Souza, Soares, Bruno Lima, & Moreira, Fatima Maria de Souza. 2018. Cupriavidus necator strains: zinc and cadmium tolerance and bioaccumulation. Scientia Agricola, 75(6), 452-460. https://doi.org/10.1590/1678-992x-2017-0071.spa
dc.relation.references50. Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., Caporaso, J. G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America. 109, 52, 21390-21395. doi: https://doi.org/10.1073/pnas.1215210110.spa
dc.relation.references51. Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology. 15. 579–590. doi: https://doi.org/10.1038/nrmicro.2017.87.spa
dc.relation.references52. Gadd, G. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840. https://doi-org.ezproxy.unal.edu.co/10.1007/BF01935534spa
dc.relation.references53. Gómez, A., Yannarell, A., Sims, G., Cadavid, R., Moreno, C. 2011. Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology & Biochemistry 43, 1275-1284. doi: https://doi.org/10.1016/j.soilbio.2011.02.018.spa
dc.relation.references54. Gómez-Sagasti, M. T., Alkorta, I., Becerril, J. M., Epelde, L., Anza, M., Garbisu, C.,2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Poll. 223:3249–3262. doi: https://doi.org/10.1007/s11270-012-1106-8.spa
dc.relation.references55. Gosai, H., Sachaniya, B., Panseriya, H., Dave, B. 2018. Functional and phylogenetic diversity assessment of microbial communities at Gulf of Kachchh, India: An ecological footprint. Ecological Indicators. 93. 65-75. https://doi.org/10.1016/j.ecolind.2018.04.072.spa
dc.relation.references56. Gramlich, A., Tandy, S., Andres, C., Chincheros, J., Armengot, L., Scheneider, M., Schulin, R. 2016. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment. 580, 677 – 686. https://doi.org/10.1016/j.scitotenv.2016.12.014.spa
dc.relation.references57. Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., Schulin, R. 2018. Soil cadmium uptake by cocoa in Honduras. Science of the Total Environment. 612. 370 – 378. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.08.145.spa
dc.relation.references58. Griffin, D. et al., 2007. Airborne desert dust and aero-microbiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41(19), 4050–4062. http://doi.org/10.1016/j.atmosenv.2007.01.023.spa
dc.relation.references59. Grimont, P., Grimont F., 2005. Genus: Klebsiella, In: Volume Two: Нe Proteobacteria, Part B: Нe Gammaproteobacteria. In: Brenner DJ, Krieg NR, Staley JT (Edn.) Bergey’s Manual of Systematic Bacteriology, (2nd edn), Springer, New York, pp. 685-693.spa
dc.relation.references60. Gundacker, C., Gencik, M., Hengstschläger, M., 2010. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutation Research. 705. 130–140.spa
dc.relation.references61. Guo, H., Nasir, M., Lv, J., Dai, Y., Gao, J., 2017. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicoogy Environment Safety. 144. 300–306.spa
dc.relation.references62. Hashimoto, T., Whang, K., Nagaoka, K., 2006. A quantitative evaluation and phylogenetic characterization of oligotrophic denitrifying bacteria harbored in subsurface upland soil using improved culturability. Biology Fertility Soils. 42.3.179-185.spa
dc.relation.references63. He, S., He, Z., Yang, X., Stoffella, P. J., Baligar, V. C., 2015. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils. Advances in Agronomy 134, pp. 135–225. https://doi.org/10.1016/bs.agron.2015.06.005.spa
dc.relation.references64. Holmes, D., Nevin, K., Lovley, D., 2004. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 54, 1591-1599. doi: https://doi.org/10.1099/ijs.0.02958-0.spa
dc.relation.references65. Holmes, J., Richardson D., Saed, S., Evans-Gowing, R., Russell, A., Sodeau, J. 1997. Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology 143, 2521– 2530. https://doi.org/10.1099/00221287-143-8-2521.spa
dc.relation.references66. Holmgren, G., Meyer, M., Chaney, R., Daniels, R. 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal Environment Quality 22, 335-348. doi: https://doi.org/10.2134/jeq1993.00472425002200020015xspa
dc.relation.references67. Huang, F., Dang, Z., Guo, Ch., Lu, X., Zhang, X., 2013. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces, Volume 107, 11-18. https://doi.org/10.1016/j.colsurfb.2013.01.062.spa
dc.relation.references68. Huang, F., Guo, Ch., Lu, G., Yi, X., 2014. Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, Volume 109, 134-142. https://doi.org/10.1016/j.chemosphere.2014.01.066.spa
dc.relation.references69. Hseu, Z.Y., Chen, Z.S., Tsai, C.C., Tsui, C.C., Cheng, S.F., Liu, C.L., Lin, H.T., 2002. Digestion methods for total heavy metals in sediments and soils. Water Air Soil Pollut. 141, 189–205. doi: 10.1023/A:1021302405128.spa
dc.relation.references70. Jan, R., Khan, M., Asaf, S., Lubna, Lee, I., Kim, K. 2019. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants. 8. 363. doi:10.3390/plants8100363.spa
dc.relation.references71. Jensen M., Webster J. and Straus N. (1993). Method for rapid identification of bacteria based on Polymerase Chain-Reaction amplified ribosomal DNA spacer poly-morphisms. Appl. Environ. Microb. 59 (4), 945-952.spa
dc.relation.references72. Jezequel, K., Lebeau, T., 2008. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresource Technology, Volume 99, Issue 4, 690-698. https://doi.org/10.1016/j.biortech.2007.02.002.spa
dc.relation.references73. Jiang, C., Sheng, X., Qian, M., Wang, Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72, 157 – 164. doi:10.1016/j.chemosphere.2008.02.006.spa
dc.relation.references74. Jiménez, C., 2015. Estado legal mundial del cadmio en cacao (Theobroma cacao): fantasía o realidad. Artículo de Revisión / Review Article / Artigo de Revisão. Producción + Limpia. 10, 1, 89–104. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S19094552015000100009&lng=en&nrm=iso.spa
dc.relation.references75. Joseph, S. J., Hugenholz, P., Sangwan, P., Osborne, C. A. y Janssen, P. H. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied Environment Microbiology. 69, 7210-7215. doi: 10.1128/AEM.69.12.7210-7215.2003.spa
dc.relation.references76. Kief, T., Soroker, E., Firestone, M., 1987. Microbial biomass response to a rapid increase in water potencial when dry soil is wetted. Soil Biol. Biochem. 19: 119 – 126 https://doi.org/10.1016/0038-0717(87)90070-8.spa
dc.relation.references77. Kim, S., Jin, M., Chung, C., Yun, Y., Jahng, K., Yu, K. 2015. Biosortion of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. Journal of bioscience and bioengineering 119, 4, 433-439. http://dx.doi.org/10.1016/j.jbiosc.2014.09.022.spa
dc.relation.references78. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.spa
dc.relation.references79. Kirkham, M. (2006). Cadmium in plants on polluted soils: effect of soil factors, hyperaccumulation and amendments. Geoderma 137, 19e32.spa
dc.relation.references80. Kongor, J., Hinneh, M., Van de Walle, D., Afoakwa, E., Boeckx, P., Dewettinck, K. 2016. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review Food Research International 82, 44 – 52. http://dx.doi.org/10.1016/j.foodres.2016.01.012 0963-9969.spa
dc.relation.references81. Kumari, D., Pan, X., Lee, D., Achal, V., 2014. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Short communication. International Biodeterioration & Biodegradation, Volume 94, 98-102. https://doi.org/10.1016/j.ibiod.2014.07.007.spa
dc.relation.references82. Lata, S., Kaur, H. P., & Mishra, T. (2019). Cadmium Bioremediation: a Review. International Journal of Pharmaceutical Sciences and Research, 10(9), 4120–4128. https://doi.org/10.13040/IJPSR.0975-8232.10(9).4120-28.spa
dc.relation.references83. Lauber, C., Hamady, M., Knight, R., Fierer, N. (2009). Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and environmental microbiology, Aug. 2009, p. 5111–5120 Vol. 75, No. 15. doi: 10.1128/AEM.00335-09.spa
dc.relation.references84. Lazzaro, A., Hartmann, M., Blaser, P., Widmer, F., Schulin, R., Frey., B., 2006. Bacterial community structure and activity in diferent Cd-treated forest soils. FEMS Microbiol Ecol 58 (2006) 278–292. https://doi.org/10.1111/j.1574-6941.2006.00163.x.spa
dc.relation.references85. Lee, K., Liu, C., Anzai, Y., Kim, H., Aono, T., Oyaizu, H. 2005. The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology. 55, 1907-1919. doi: https://doi.org/10.1099/ijs.0.63663-0.spa
dc.relation.references86. Lemos, L. N., Fulthorpe, R. R., Triplett, E. W., & Roesch, L. F. W. (2011). Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 86(1), 42–51. https://doi.org/10.1016/j.mimet.2011.03.014.spa
dc.relation.references87. Lewin, G., Carlos, C., Chevrette, M., Horn, H., Mcdonald, B., Stankey, R., Stankey, R., Fox., B., Currie, C. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016; 70: 235–254. doi:10.1146/annurev-micro-102215-095748.spa
dc.relation.references88. Li, J., Liu, Y., Zhang, L., He, J. 2019. Sorption mechanism and distribution of cadmium by different microbial species. Journal of Environmental Management. 237. 552 – 559. https://doi.org/10.1016/j.jenvman.2019.02.057.spa
dc.relation.references89. Liang Xia., He Chi-Quan, Ni Gang Tang, Gui-E., Chen Xue-Ping, Lei Yan-Ru. 2014. Growth and Cd Accumulation or Orychophragmus violaceus as Affected by Inoculation of Cd-Tolerant Bacteria Strains. Pedosphere 24(3): 322-329. https://doi.org/10.1016/S1002-0160(14)60018-7.spa
dc.relation.references90. Li, Y., Yu, X., Cui, Y., Tu, W., Shen, T., Yan, M., Wei, Y., Chen, X., Wang, Q., Chen, Q., Gu, Y., Zhao, K., Xiang, Q., Zou, L., Ma, M. 2018. The potential of cadmium ion-immobilized Rhizobium pusense KG2 to prevent soybean root from absorbing cadmium in cadmium-contaminated soil. Journal of Applied Microbiology. 126. 919 – 930. doi:10.1111/jam.14165.spa
dc.relation.references91. Liu H, Xie Y, Li J, Zeng G, Li H, Xu F, Feng S, Xu H (2020) Efect of Serratia sp. K3 combined with organic materials on cadmium migration in soil-Vetiveria zizanioides L. system and bacterial community in contaminated soil. Chemosphere 242:125164. https://doi.org/10.1016/j.chemosphere.2019.125164.spa
dc.relation.references92. Ludlow, C., Cromie, G., Garmendia-Torres, C., Sirr, A., Hays, M., Field, C., Jeffery, E., Fay, J., Dudley, A. 2016. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Current biology 26, 965 – 971. http://dx.doi.org/10.1016/j.cub.2016.02.012.spa
dc.relation.references93. Luo, L., Xie, I., Jin, D., Mi, B., Wang, D., Dai, X., Zou, X., Zhang, Z., 2019. Bacterial community response to cadmium contamination of agricultural paddy soil. Applied Soil Ecology, 139, 100-106. doi: https://doi.org/10.1016/j.apsoil.2019.03.022.spa
dc.relation.references94. Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecol. Indic. 2020, 117, 106626spa
dc.relation.references95. Madigan, M.T., J.M. Martinko, D.A. Stahl, D.P. Clark. 2012. Brock Biology of Microorganisms, 13ª ed. Benjamin Cummings.spa
dc.relation.references96. McGrath, S., Zhao, F., Dunham, S., Crosland, A., Coleman, K. 2000. Long term changes in the extractability and bioavailability of Zinc and Cadmium after sludge application. Journal of environment quality. 29, 3, 875-883. doi: https://doi.org/10.2134/jeq2000.00472425002900030025x.spa
dc.relation.references97. Mann, C., Lynch, D., Fillmore, S., Mills, A. 2019. Relationships between field management, soil health, and microbial community composition. Applied Soil Ecology 144, 12-21. doi: https://doi.org/10.1016/j.apsoil.2019.06.012.spa
dc.relation.references98. McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217.spa
dc.relation.references99. Mantilla, L., Bissig, T., Valencia, V., Hart, C. 2013. The magmatic history of the Vetas-California mining district, Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 45. 235-249. doi: https://doi.org/10.1016/j.jsames.2013.03.006.spa
dc.relation.references100. Mathew, B.B., Biju, V.G. & Nideghatta Beeregowda, K. Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. Appl Nanosci 9, 49–66 (2019). https://doi.org/10.1007/s13204-018-0892-8.spa
dc.relation.references101. Margensin, R. P., Laza, G. A., Kasenbacher, S. 2011. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere. 82, 1583–1588. doi: https://doi.org/10.1016/j.chemosphere.2010.11.056.spa
dc.relation.references102. Ministerio de Agricultura 2019. Agronet: Reporte: Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo. https://www.agronet.gov.co.spa
dc.relation.references103. Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao From Latin America and The Caribbean. A Review of Research and Potential Mitigation Solutions. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1506spa
dc.relation.references104. Mite, F., Carrillo, M., Durango, W., 2010. Avances del monitoreo de presencia de Cadmio en almendras de Cacao, suelos y aguas en Ecuador. XII congreso ecuatoriano de la ciencia del Suelo. Santo Domingo, 17-19 de noviembre del 2010.spa
dc.relation.references105. Mitra, S., Pramanik, K., Kumar, P., Soren, T., Sarkar, A., Sundar, R., Pandey, S., Kanti, T. 2018. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress, Microbiological Research. 210. 12-25, https://doi.org/10.1016/j.micres.2018.03.003.spa
dc.relation.references106. Mohapatra, B., Gould, W., Dinardo, O., Koren, D., 2011. Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Minerals Engineer. 24, 709–718.spa
dc.relation.references107. Montaño, P.C.; Nova, G.; Bayona, G.; Mahecha, H.; Ayala, C.; Jaramillo, C.; De La Parra, F. 2016. Análisis de secuencias y procedencia en sucesiones sedimentarias de grano fino: Un ejemplo de la formación Umir y base de la formación Lisama, en el sector de Simacota (Santander, Colombia). Boletín Geología, 38, 51–72.spa
dc.relation.references108. Moreno C., Romero J. and Espejo R. (2002). Polymor¬phism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 148 (4), 1233-1239. DOI: 10.1099/00221287-148-4-1233.spa
dc.relation.references109. Motamayor, J. C., Risterucci, A. M., López, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. 2002. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380–386. https://doi.org/10.1038/sj.hdy.6800156spa
dc.relation.references110. Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., Schulin, R. 2019. Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment. 678. 660–670 https://doi.org/10.1016/j.scitotenv.2019.05.001.spa
dc.relation.references111. Naomi L., Challacombe, J., Janssen, P., Henrissat, B., Coutinho, P., Wu, M., Xie, G., Haft, D., Sait, M., Badger, J., Barabote, R., Bradley, B., Brettin, T., Brinkac, L., Bruce, D., Creasy, T., Daugherty, S., Davidsen, T., DeBoy, R., Detter, C., Dodson, R., Durkin, S., Ganapathy, A., Gwinn-Giglio, M., Han, C., Khouri, H., Kiss, H., Kothari, S., Madupu, R., Nelson, K., Nelson, W., Paulsen, I., Penn, K., Ren, Q., Rosovitz, M., Selengut, J., Shrivastava, S., Sullivan, S., Tapia, R., Thompson, S., Watkins, S., Yang, Q., Yu, C., Zafar, N., Zhou, L., Kuske C. 2009. Three genomes from the Phyla Acidobacter provide insight into the lifestyles ot these microorganism in soils. Applied and environmental microbiology, p. 2046–2056. doi:10.1128/AEM.02294-08.spa
dc.relation.references112. Navarrete, A., Soares, T., Rossetto, R., Van Veen, J., Tsai, S., Kuramae, E. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek (2015) 108:741–752. doi: 10.1007/s10482-015-0530-3.spa
dc.relation.references113. Nies, D. 1999. Microbial heavy-metal resistance. Applied Microbiology Biotechnology. 51. 730–750. https://doi-org.ezproxy.unal.edu.co/10.1007/s002530051457.spa
dc.relation.references114. Nies, D. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 2-3, 313 – 339, https://doi.org/10.1016/S0168-6445(03)00048-2.spa
dc.relation.references115. NTC 4113-6. 2017. Gestión Ambiental. Calidad de suelo. Muestreo. Guía para la recolección, manejo y almacenamiento de suelo para la evaluación de procesos microbianos aeróbicos en el laboratorio. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) 2016. https://www.icontec.org.spa
dc.relation.references116. Oladipo, O., Ezeokoli, O., Maboeta, M., Bezuidenhout, J., Tiedjt, L., Jordaan, A., Bezuidenhout, C. 2018. Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations, Journal of Environmental Management, 212, 357-366, https://doi.org/10.1016/j.jenvman.2018.01.038.spa
dc.relation.references117. Oren A., Xu XW. (2014) The Family Hyphomicrobiaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30197-1_257.spa
dc.relation.references118. Osorio, W., Ruiz, O. 2013. Guía para el muestreo. Laboratorio de suelos. Universidad Nacional de Colombia, sede Medellín, Colombia. https://ciencias.medellin.unal.edu.co/laboratorios/suelos/.spa
dc.relation.references119. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., Güven, K. 2009. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sP. Decanicus and Geobacillus thermoleovorans sub.sP. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 152 (1) (2009), pp. 195-206, 10.1016/j.cej.2009.04.041.spa
dc.relation.references120. Pabon, M., Sepúlveda, W., Herrera, L., 2014. Caracterización de la producción de cacao en Santander y analisis de la presencia de Cadmio en los suelos y cultivos. Proyecto de investigación financiado por Colciencias Convocatoria 586 de 2012, Contrato 822 de 2012. http://repositorio.colciencias.gov.co:80/handle/11146/2441.spa
dc.relation.references121. Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023spa
dc.relation.references122. Park, Y., Ko, J., Yun, S., Lee, E., Kim, S., Kang, S, Lee, B., Kim, S. 2008. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn. Bioresource Technology 99, 7458-7463. https://doi.org/10.1016/j.biortech.2008.02.024.spa
dc.relation.references123. Pathom, W., Nogi, Y., Ward, A., Horikoshi, K., Bull, A., Goodfellow, M. (2006). Dermacoccus barathi sp. nov., novel actinomycetes isolated from Deep-sea mud of the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology. 56, 2303-2307. https://doi.org/10.1099/ijs.0.64250-0.spa
dc.relation.references124. Pereira De Araújo, R., De Almeida, A., Pereira, L., Mangabeira, P., Souza, J., Pirovania, C., Ahnerta, D., Baligarc, V. 2017. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety. 144, 148 – 157. http://dx.doi.org/10.1016/j.ecoenv.2017.06.006.spa
dc.relation.references125. Pereira, L., Vicentini, R., Ottobini, L. 2015. Short Communicarion. Characterization of the core microbiota of the drainage and surrounding soil of Brazilian copper mine. Genet. Mol. Biol. 38, 4, 484-489. doi: http://dx.doi.org/10.1590/S1415-475738420150025.spa
dc.relation.references126. Pérez-Jaramillo, J.E., Carrión, V.J., Bosse, M., Ferrão, L.F.V., De Hollander, M., Garcia, A.A.F., Ramírez, C.A., Mendes, R., Raaijmakers, J.M., 2017. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257. https://doi.org/10.1038/ismej.2017.85.spa
dc.relation.references127. Porras, L., Torres, J., Gil, M., Martinez, O. 2019. Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International 115, 259-267. doi: https://doi.org/10.1016/j.foodres.2018.08.084.spa
dc.relation.references128. Prabha K. Padmavathiamma & Loretta Y. Li Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollut (2007) 184:105–126. DOI 10.1007/s11270-007-9401-5.spa
dc.relation.references129. Pramanik, K., Mitra, S., Sarkar, A., Kanti, T.2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092, Journal of Hazardous Materials, Volume 351, Pages 317-329, https://doi.org/10.1016/j.jhazmat.2018.03.009.spa
dc.relation.references130. Prosser J.I., Head I.M., Stein L.Y. (2014) The Family Nitrosomonadaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30197-1_372.spa
dc.relation.references131. Pugazhendhi, A., Boovaragamoorthy, G., Ranganathan, K., Naushad, M., Kaliannan, T. 2018. New insight into effective biosorption of lead from aqueos solution using Ralstonia solanacearum: Characterization and mechanism studies. Journal of cleaner production, 174, 1234-1239. https://doi.org/10.1016/j.jclepro.2017.11.061.spa
dc.relation.references132. Qi, F., Lamb, D., Naidu, R., Bolan, N., Yan, Y., Ok, Y., Rahman, M., Choppala, G. 2018. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466. https://doi.org/10.1016/j.scitotenv.2017.08.228.spa
dc.relation.references133. Rajendran, P., Muthukrishnan, J., Gunasekaran, P. 2003. Microbes in heavy metal remediation. Indian Journal of Experimental Biology. 41, 935-944.spa
dc.relation.references134. Ryan T. Jones, et al., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J. 3. 4. 442–453.spa
dc.relation.references135. Rodríguez Albarrcín, H.S.; Darghan Contreras, A.E.; Henao, M.C. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of central Colombia. Geoderma Reg. 2019, 16, 1–13. doi: https://doi.org/10.1016/j.geodrs.2019.e00214.spa
dc.relation.references136. Nelino, R., Hildauro, J., Paucar, G., Salinas, S., Mamani, F., García, T. 2019. Efecto del compost y NPK sobre los niveles de microorganismos y cadmio en suelo y almendra de cacao. Revista de Investigaciones Altoandinas. 21, 4. http://dx.doi.org/10.18271/ria.2019.503.spa
dc.relation.references137. Sabir, A., Naveed, M., Bashir, M., Hussain, A., Mustafa, A., Zahir, Z., Kamran, M., Ditta, A., Núñez-Delgado, A., Saeed, Q., Qadeer, A. 2020. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Journal of Environmental Management. 265. 110522. https://doi.org/10.1016/j.jenvman.2020.110522.spa
dc.relation.references138. Saitou N. and Nei M. (1987). The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4), 406-425. doi: 10.1093/oxfordjournals.molbev.a040454.spa
dc.relation.references139. Sangkhobol, V., Skerman, B. 1981. Chitinophaga, a new genus of Chitinolytic myxobacteria. International Journal of Systematic Bacteriology, 31, 3, pág.: 285 – 293. https://doi.org/10.1099/00207713-31-3-285.spa
dc.relation.references140. Sauvé, S, Norvell, W.A, McBride, M. Hendershot, W. Speciation and complexation of cadmium in extracted soil solutions. Environmental Science and TechnologyVolume 34, Issue 2, 15 January 2000, Pages 291-296. DOI: 10.1021/es990202z.spa
dc.relation.references141. Sea, B., Wendell, A., Murray, M., Hendershot, W. 2000. Speciation and Complexation of Cadmium in Extracted Soil Solutions. Environ. Sci. Technol. 2000, 34, 291-296. doi: 10.1021/es990202.spa
dc.relation.references142. Shahid, M., Dumat, C., Khalid, S., Niazi, N., Antunes, P. 2016. Cadmium bioavailability, uptake, toxicity and detoxifcation in soilplant system. Rev Environ Contam Toxicol 241:73–137 DOI: 10.1007/398_2016_8.spa
dc.relation.references143. Shamin, S. and Rehman, A. 2012. Cadmium resistance and acumulation potencial of Klebsiella pneumoniae strain CBL-1 isolated from industrial wastewater. Pakistan J. Zool., 44, 1, 203-208.spa
dc.relation.references144. She, J., Wang, J., Wei, X., Zhang, Q., Xie, Z., Beiyuan, J., Xiao, E., Yang, X., Liu, J., Zhou, Y., Xiao, T., Wang, Y., Chen, N., Tsang, D. 2021. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of The Total Environment. 774. 145143. https://doi.org/10.1016/j.scitotenv.2021.145143.spa
dc.relation.references145. Sheng, Y., Wang, Y., Yang, X., Zhang, B., He, X., Xu, W., Huang, K. 2016. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis. Environmental toxicology and pharmacology. 48, 183-190. https://doi.org/10.1016/j.etap.2016.10.007.spa
dc.relation.references146. Shi, Z., Zhang, Z., Yuan, M., Wang, S., Yang, M., Yao, O., Ba, W., Zhao, J., Xie, B. 2020. Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2, Chemosphere, Volume 247, 125834, https://doi.org/10.1016/j.chemosphere.2020.125834.spa
dc.relation.references147. Siripornadulsil, S. and Siripornadulsil, W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation, Ecotoxicology and Environmental Safety, Volume 94, Pages 94-103, https://doi.org/10.1016/j.ecoenv.2013.05.002.spa
dc.relation.references148. Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. 2020. Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. PeerJ 8:e10302 http://doi.org/10.7717/peerj.10302.spa
dc.relation.references149. Soliman, T., Yang, S., Yamazaki, T., Kodama, H. 2017. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ 5:e4178. doi: https://doi.org/10.7717/peerj.4178.spa
dc.relation.references150. Spain, A., Krumholz, L., Elshahed, M. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal (2009) 3, 992–1000; doi:10.1038/ismej.2009.43.spa
dc.relation.references151. Sriram, M. I., Gayathiri, S., Gnanaselvi, U., Jenifer, P. S., Mohan Raj, S., & Gurunathan, S. (2011). Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresource Technology, 102, 9291-9295 doi:10.1016/j.biortech.2011.06.094.spa
dc.relation.references152. Stefanowicz, A. M., Niklinska, M., Kapusta, P., Szarek-Łukaszewska, G.,2010. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Sci Total Environ. 408,6134–6141.doi: https://doi.org/10.1016/j.scitotenv.2010.08.056.spa
dc.relation.references153. Stuart, E., Jones, J., Lennon, T. 2010. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. Unit. States Am. 107. 13. 5881–5886.spa
dc.relation.references154. Sun, R., Wang, L., Huang, R., Huang, F., Gan, D., Wang, J., Guan, R., Han, W., Qu, J., Yan, L., Zhang, Y. 2020. Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China, Environmental Pollution, Volume 263, Part B, 114612, https://doi.org/10.1016/j.envpol.2020.114612.spa
dc.relation.references155. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., Sheng, X. F.,2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology. 101,501–509. doi: https://doi.org/10.1016/j.biortech.2009.08.011.spa
dc.relation.references156. Sun, R., Wang, L., Huang, R., Huang, F., Gan, D., Wang, J., Guan, R., Han, W., Qu, J., Yan, L., Zhang, Y. 2020. Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China. Environmenttal Pollution. 263, 114612. doi: https://doi.org/10.1016/j.envpol.2020.114612.spa
dc.relation.references157. Sylvia, D., Fuhrmann, J., Hartel, P., Zuberer, D. 2005. Principles and aplications of soil microbiology. Prentice Hall. New Jersey, USA. 53. 218 – 256.spa
dc.relation.references158. Tchakounté, G., Berger, B., Patz, S., Fankem, H., Ruppel, S. 2018. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiological Research. 214. 47-59. https://doi.org/10.1016/j.micres.2018.05.008.spa
dc.relation.references159. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673.spa
dc.relation.references160. Tossapol, L., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrache, M., Pokethitiyook, P., Auesukaree, C. 2015. Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 122, 322 – 330, https://doi.org/10.1016/j.ecoenv.2015.08.013.spa
dc.relation.references161. Uribe, A., Méndez H. y Mantilla J. (2009). Efecto de niveles de nitrógeno, fósforo y potasio sobre la producción de cacao en suelo del Departamento de Santander. Revista Suelos Ecuatoriales, Nro. 28:31-36.spa
dc.relation.references162. US Department of Health and Human Services. 2008. Draft Toxicological Profile for Cadmium. Atlanta, Georgia. Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences (proposed) Environmental Toxicology Branch (proposed).spa
dc.relation.references163. USEPA soil screening Levels. 2013. Versión 1. http://www.gahp.net/new/wp-content/uploads/2013/12/GUIDANCE-ON-SCREENING-LEVELS-Version-1-Dec-2013.pdf.spa
dc.relation.references164. Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J., Umaharan, P., Chavez, E., Sarret, G., Smolders, E. 2021. Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment. 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779.spa
dc.relation.references165. Valls, M., Gonzalez-Duarte, R., Atrian, S., De Lorenzo, V., 1998. Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. Biochimie 80, 855–861. https://doi.org/10.1016/S0300-9084(00)88880-X.spa
dc.relation.references166. Veglio, F. and Beolchini, F., 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44, 3, 301 – 316, https://doi.org/10.1016/S0304-386X(96)00059-X.spa
dc.relation.references167. Venkatachalam, S., Vatharamattathil, M., Vadakke, S., Dinesh, L., Mahesh, M., Kottekkatu, K. Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic. 2021. Ecological Indicators. 126. 107704. https://doi.org/10.1016/j.ecolind.2021.107704.spa
dc.relation.references168. Verbruggen, N., Hermans, C., Schat, H., 2009. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 12, 364–372. DOI: 10.1016/j.pbi.2009.05.001.spa
dc.relation.references169. Vijayaraghavan, K., and Yun, Y.S., 2008. Bacterial biosorbents and biosorption, Biotechnology Advances, 26, 3, 266–291, https://doi.org/10.1016/j.biotechadv.2008.02.002.spa
dc.relation.references170. Wang, G., Yang, D., Wang, W., Ji, J., Jin, C., Guan, C. 2021. Endophytic bacteria associated with the enhanced cadmium resistance in NHX1- overexpressing tobacco plants. Environmental and Experimental Botany. 188. 104524. https://doi.org/10.1016/j.envexpbot.2021.104524.spa
dc.relation.references171. Wang, X., Ya, T., Zhang, M., Liu, L., Hou, P., Hou, P., Lu, S. 2019. Cadmium (II) alters the microbial community structure and molecular ecological network in activated sludge system. Environmental Pollution. 255. 113225. https://doi.org/10.1016/j.envpol.2019.113225 0269-7491.spa
dc.relation.references172. Wang, M., Ahrné, M., Antonsson, M., Molin, G. 2004. T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. Journal of microbiological methods, 59, 1, 53 – 69. https://doi.org/10.1016/j.mimet.2004.06.002.spa
dc.relation.references173. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environment Microbiology. 73. 5261. doi: 10.1128/AEM.00062-07.spa
dc.relation.references174. Wang, T., Sun, H., Jiang, C., Mao, H., Zhang, Y. 2014. Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. European Journal of Soil Biology, 65, 62 – 69. http://dx.doi.org/10.1016/j.ejsobi.2014.10.001.spa
dc.relation.references175. Wang, Q., Li, Q., Lin, Y., Hou, Y., Deng, Z., Liu, W., Wang, H., Xia, Z. 2020. Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. Environmental pollution 264, 114637, https://doi.org/10.1016/j.envpol.2020.114637.spa
dc.relation.references176. Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X., Chen, Y. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Enviromental Safety, 67, 1, 75-81. doi: https://doi.org/10.1016/j.ecoenv.2006.03.007.spa
dc.relation.references177. Wang, J., Yao, J., Zening, Y., Guan, J., Chenyu, L., Lixin, L., 2017. Analysis of Bacterial Community Structure and Diversity in Different Restoration Methods in Qixing River Wetland. Adv. J. Toxicol. Curr. Res. 201. 1. 2, 049-055.spa
dc.relation.references178. Welch, R., 2006. The genus Escherichia. Procariotes 6: 60-71 Chapter 3.3.3. DOI: 10.1007/0-387-30746-x_3.spa
dc.relation.references179. Worden, C.R., Kovac, W.K., Dorn, L.A. and Sandrin, T.R. 2009. Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655). FEMS Microbiol Letters, 293, 1, 58–64. https://doi.org/10.1111/j.1574-6968.2009.01508.x.spa
dc.relation.references180. Woldetsadik, D., Drechsel, P., Keraita, B, et al. 2016. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (lactuca sativa) in two contrasting soils. SpringerPlus. 5, 397, https://doi.org/10.1186/s40064-016-2019-6.spa
dc.relation.references181. Wong, C and Cobbett, C., 2009. HMA P-type ATPases are the major mechanism for root to shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181, 71-78, https://doi.org/10.1111/j.1469-8137.2008.02638.x.spa
dc.relation.references182. World Health Organization, 2010. Exposure to cadmium: a major public health concern. Preventing Disease Through Healthy Environments.spa
dc.relation.references183. Wu, W.C., Dong, C.X., Wu, J.H., Liu, X.W., Wu, Y.X., Chen, X.B., et al., 2017. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Sci. Total Environ. 601, 57–65.spa
dc.relation.references184. Xiaoqi, L., Delong, M., Juan L., Huaqun Y., Hongwei, L., Xueduan, L., Cheng, C., Yunhua, X., Zhenghua, L., Mingli, Y. 2017. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination, Environmental Pollution, Volume 231, Part 1, Pages 908-917, https://doi.org/10.1016/j.envpol.2017.08.057.spa
dc.relation.references185. Xiaoxi Zeng, Hong Xu, Jijie Lu, Qimin Chen, Wen Li, Ling Wu, Jianxin Tang & Liang Ma. The immobilization of soil Cadmium by the combined amendment of bacteria and Hydroxyapatite. Scientific reports (2020) 10:2189 https://doi.org/10.1038/s41598-020-58259-1.spa
dc.relation.references186. Xie, Y., Li, H., Wang, X., Son, Ng., Lu, Y., Jing, K. 2014. Kinetic simulating of Cr (VI) removal by the waste Chlorella vulgaris biomass. Journal of the Taiwan institute of chemical engineers. 45, 4, 1773 – 1782, https://doi.org/10.1016/j.jtice.2014.02.016.spa
dc.relation.references187. Xu, C., He, S., Liu, Y., Zhang, W., Lu, D. 2017. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU, Chemosphere, Volume 173, Pages 622-629, https://doi.org/10.1016/j.chemosphere.2017.01.005.spa
dc.relation.references188. Xue, W., Peng, Z., Huang, D., Zeng, G., Wan, J., Xu, R., Cheng, M., Zhang, C., Jiang, D., Hu, Z. 2018. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbón changes. Journal of hazardous materials, 290 – 299. doi: https://doi.org/10.1016/j.jhazmat.2018.07.062.spa
dc.relation.references189. Yadav, S. K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76 (2), 167–179, doi:10.1016/j.sajb.2009.10.007.spa
dc.relation.references190. Yang, Z., Zijan, W., Liao, Y., Liao, Q., Yang, W., Chai, L. 2017. Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere. 181, 1–8. doi: https://doi.org/10.1016/j.chemosphere.2017.04.041.spa
dc.relation.references191. Yang, Y., Chen, W., Wang, M., Peng, C., 2016. Regional accumulation characteristics of cadmium in vegetables: influencing factors, transfer model and indication of soil threshold content. Environ. Pollut. 219, 1036e1043. doi: http://dx.doi.org/ 10.1016/j.envpol.2016.09.003.spa
dc.relation.references192. Yim, O., & Ramdeen, K. (2015). Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data. The Quantitative Methods for Psychology. 11, 1, 8–21. https://doi.org/10.20982/tqmp.11.1.p008.spa
dc.relation.references193. Yin, P., Liu, X., Liao, J and Hu, X. 2019. Effects od cadmium stress on Microbial diversity in soil potted with Sasa Argenteastriatus. IOP Conference Series Earth and Environmental Science. 300: 052051. doi:10.1088/1755-1315/300/5/052051.spa
dc.relation.references194. Yin, K., Wang, Q., Lv, M., Chen, L. 2019. Review. Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal. 360, 1553-1563. https://doi.org/10.1016/j.cej.2018.10.226.spa
dc.relation.references195. Yun, B., Malik, A., Kim, S. 2020. Genome based characterization of Kitasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene. 733. 144379. https://doi.org/10.1016/j.gene.2020.144379.spa
dc.relation.references196. Zao, M., Zhang, C., Zeng, G., Huang, D., Xu, P., Cheng, M. 2015. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138, 560 – 567, https://doi.org/10.1016/j.chemosphere.2015.07.019.spa
dc.relation.references197. Zhang, Y., Cong, J., Lu, H., Li, G., Qu, Y., Su, X., Zhou, J., Li, D. 2014. Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences. 26. 1717 – 1724. http://dx.doi.org/10.1016/j.jes.2014.06.012 1001-0742.spa
dc.relation.references198. Zhang, J., Li, Q., Zeng, Y., Zhang, J., Lu, G., Dang, Z., Guo, Ch. 2019. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. Ecotoxicology and environmental safety 176, 162-169. https://doi.org/10.1016/j.ecoenv.2019.03.091.spa
dc.relation.references199. Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q., Li, J. 2020. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under contamined environment. Environmental pollution, 260, 113990. https://doi.org/10.1016/j.envpol.2020.113990.spa
dc.relation.references200. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, E., Tzannetaki, L., Kyriakides, M., 2007. Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in a single and binary mixtures. Bioresource Tecnhnology 98, 2859 – 2865. https://doi.org/10.1016/j.biortech.2006.09.043.spa
dc.relation.references201. Zoropogui, A., Gambarelli, S., Covès, J., 2008. CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem. Biophys. Res. Commun. 365(4), 735–739. https://doi.org/10.1016/j.bbrc.2007.11.030.spa
dc.relation.references202. Zug, M., Yupanqui, H., Meyberg, F., Cierjacks, J., Cierjacks, A. 2019. Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut, 230: 72 https://doi.org/10.1007/s11270-019-4109-x.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.lembContaminación de suelos
dc.subject.lembSoils - bacteriology
dc.subject.lembBacteriología de suelos
dc.subject.lembSoil pollution
dc.subject.proposalCacaospa
dc.subject.proposalCadmio (Cd)spa
dc.subject.proposalSuelosspa
dc.subject.proposalGen ARNr16Sspa
dc.subject.proposalBacteriasspa
dc.subject.proposalCadmium (Cd)eng
dc.subject.proposalSoilseng
dc.subject.proposalRNAr 16S geneeng
dc.titleEstudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.spa
dc.title.translatedStudy of microbial diversity associated with cocoa soils with presence of cadmium (Cd) and bioremediation potencial evaluation.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCompañía Nacional De Chocolatesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
74184396.2021VF.pdf
Tamaño:
13.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: