Variaciones de las islas de calor y su relación con el arbolado urbano en Bogotá usando imágenes satelitales y análisis espaciales
dc.contributor.advisor | Rodríguez Eraso, Nelly | |
dc.contributor.author | Quintana Linares, Angélica María | |
dc.coverage.city | Bogotá | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-11T21:43:12Z | |
dc.date.available | 2025-09-11T21:43:12Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, mapas | spa |
dc.description.abstract | El fenómeno de islas de calor urbanas representa uno de los mayores desafíos para la planificación sostenible de ciudades, afectando el bienestar humano y la eficiencia energética en entornos urbanos. La vegetación urbana emerge como una solución basada en la naturaleza con potencial para mitigar estos efectos térmicos adversos. Esta investigación analiza las variaciones espacio-temporales de las islas de calor y su relación con el arbolado urbano en Bogotá (Colombia), usando metodologías que combinan teledetección y análisis espaciales. Se evaluaron los patrones de temperatura superficial terrestre (LST) durante 2014-2024 usando imágenes LANDSAT 8 y temperatura del aire nocturna (TA) para 2023-2024 con información de 24 estaciones meteorológicas. Para establecer las relaciones entre la intensidad de la isla de calor y la distribución y configuración del arbolado urbano, se emplearon métricas del paisaje e índices de autocorrelación espacial. Finalmente, la intensidad de enfriamiento se evaluó a partir del método de amortiguamiento mediante anillos de 30 m desde el borde del arbolado. Se desarrollaron códigos en JavaScript (Google Earth Engine) para el procesamiento de imágenes satelitales y en Python para el análisis de datos meteorológicos y la interpolación espacial. Los resultados indican un incremento de áreas con alta temperatura del 8% (27% en 2014 a 35% en 2024), concentradas principalmente en el suroccidente de la ciudad en las localidades de Antonio Nariño, Barrios Unidos, Bosa, Engativá, Fontibón, Kennedy, Los Mártires, Puente Aranda, Rafael Uribe Uribe y Tunjuelito, y patrones de agrupamiento de LST estadísticamente significativos (I de Moran > 0,96). Los parches arbóreos (≥ 900m²) señalaron una intensidad de enfriamiento de 1,76°C (LST) y 0,11°C (TA) con un alcance de 210m y 120m respectivamente. Las variables de forma del parche (I=-0,1342) y área núcleo del parche (I=-0,1197) presentaron las correlaciones más fuertes con la reducción térmica. Se identificó que los parches de arbolado de tamaño intermedio (2633-4244 m²) parecen tener la mejor combinación de intensidad de enfriamiento (2,11°C) y alcance alto (300m) para LST, mientras que los parches en zonas ya frescas muestran mejor desempeño térmico (2,2°C) que aquellos en zonas calientes (0,5°C). El análisis mediante Random Forest reveló un potencial de enfriamiento de hasta 8°C en zonas críticas como Kennedy, aunque la mayoría de las intervenciones arbóreas lograrían efectos moderados (1-2.5°C). Para la planificación urbana espacial, es fundamental priorizar la creación de corredores verdes estratégicos en las localidades occidentales que fragmenten la continuidad espacial de los clústeres térmicos, integrando criterios de composición y configuración espacial, priorizando especies con mayor capacidad de sombreado y evapotranspiración. Estos hallazgos proporcionan evidencia científica sobre la contribución del arbolado urbano a la mitigación de islas de calor, ofreciendo criterios para la planificación urbana sostenible (Texto tomado de la fuente). | spa |
dc.description.abstract | This research analyzes the spatiotemporal variations of heat islands and their relationship with urban trees in Bogotá (Colombia), using methodologies that combine remote sensing and spatial analysis. Land Surface Temperature (LST) patterns during 2014-2024 were evaluated using LANDSAT 8 images and nighttime air temperature (TA) for 2023-2024 from 24 meteorological stations. JavaScript (Google Earth Engine) codes were developed for satellite image processing and Python scripts for meteorological data analysis and spatial interpolation. Results reveal an 8% increase in high-temperature areas (27% in 2014 to 35% in 2024), mainly concentrated in the southwestern part of the city in localities such as Antonio Nariño, Barrios Unidos, Bosa, Engativá, Fontibón, Kennedy, Los Mártires, Puente Aranda, Rafael Uribe Uribe, and Tunjuelito. Spatial autocorrelation analysis confirmed statistically significant clustering patterns (Moran's I > 0.96). Tree patches (≥900m²) generate a cooling intensity of 1.76°C (LST) and 0.11°C (TA) with ranges of 210m and 120m respectively. Patch shape (I=-0.1342) and core area (I=-0.1197) showed the strongest correlations with thermal reduction. Medium-sized patches (2633-4244m²) offer the best combination of cooling intensity (2.11°C) and high range (300m) for LST, while patches in already cool areas show better thermal performance (2.2°C) than those in hot areas (0.5°C). Random Forest analysis revealed cooling potential of up to 8°C in critical areas like Kennedy, although most tree interventions would achieve moderate effects (1-2.5°C). For urban spatial planning, it is essential to prioritize strategic green corridors in western localities that fragment the spatial continuity of thermal clusters, integrating composition criteria and spatial configuration, prioritizing species with greater shading and evapotranspiration capacity. These findings provide scientific evidence on the contribution of urban trees to heat island mitigation, offering criteria for sustainable urban planning. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Geomática | |
dc.description.methods | La metodología comprende tres fases, las cuales corresponden al cumplimiento de cada uno de los objetivos planteados: 1) Estimar la temperatura superficial terrestre diurna a partir del uso de imágenes satelitales LANDSAT 8 (en condición de fenómeno del niño), para identificar los patrones espaciales y las tendencias de la isla de calor urbana; 2) Espacializar la temperatura nocturna del aire a partir de datos provenientes de estaciones meteorológicas e identificar patrones espaciales de la isla de calor urbana y 3) Establecer la correlación entre la intensidad de la isla de calor y la distribución y configuración espacial del arbolado urbano. | |
dc.description.researcharea | Geoinformación para el uso sostenible de los recursos naturales | |
dc.description.sponsorship | Esta entidad es responsable de coordinar, programas y proyectos distritales de base científica y tecnológica, para la solución de problemas y desafíos de la ciudad y la región así como la divulgación y apropiación social del conocimiento relacionado con ciencia, tecnología e innovación. Fue creada por medio del Decreto Distrital 273 de 2020 y concebida como una entidad pública de naturaleza especial, descentralizada adscrita al sector de educación distrital y cuenta con autonomía financiera, administrativa y jurídica. | |
dc.format.extent | 130 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88730 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Geomática | |
dc.relation.references | Abotaleb, M., Makarovskikh, T., Yonar, A., Badr, A., Mishra, P., Williams, A. J., & Yonar, H. (2022). State of the art in wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model: Wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model. MAUSAM, 73(1), 129-138. https://doi.org/10.54302/mausam.v73i1.598 | |
dc.relation.references | Abotaleb, M., Makarovskikh, T., Yonar, A., Badr, A., Mishra, P., Williams, A. J., & Yonar, H. (2022). State of the art in wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model: Wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model. MAUSAM, 73(1), 129-138. https://doi.org/10.54302/mausam.v73i1.598 | |
dc.relation.references | Addas, A., Goldblatt, R., & Rubinyi, S. (2020). Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus. Land, 9(6), 191. https://doi.org/10.3390/land9060191 | |
dc.relation.references | Akın, A., Çilek, A., & Middel, A. (2023). Modelling tree canopy cover and evaluating the driving factors based on remotely sensed data and machine learning. Urban Forestry & Urban Greening, 86, 128035. https://doi.org/10.1016/j.ufug.2023.128035 | |
dc.relation.references | Almeida, C. R. D., Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10), 105. https://doi.org/10.3390/environments8100105 | |
dc.relation.references | Ananyeva, O., & Emmanuel, R. (2023). Street trees and Urban Heat Island in Glasgow: Mitigation through the ‘Avenues Programme’. Urban Forestry and Urban Greening, 86, 128041. https://doi.org/10.1016/j.ufug.2023.128041 | |
dc.relation.references | Ángel, L., Ramírez, A., & Domínguez, E. (2010). ISLA DE CALOR Y CAMBIOS ESPACIO-TEMPORALES DE LA TEMPERATURA EN LA CIUDAD DE BOGOTÁ. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(131), 173-183. https://doi.org/10.18257/raccefyn.34(131).2010.2410 | |
dc.relation.references | Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x | |
dc.relation.references | Aragón, J. A., Rodríguez, E. D., Varon, G. A., & Sánchez, G. A. (2020). Análisis de islas de calor por medio de imágenes satelitales y sistemas de información geográficos en el área urbana de la Sabana de Bogotá. Geographicalia, 72, 39-64. https://doi.org/10.26754/ojs_geoph/geoph.2020724571 | |
dc.relation.references | Árboles por Localidad—ArbLoc—Cifras e Indicadores de Medio Ambiente en Bogotá. (2023, diciembre 19). https://oab.ambientebogota.gov.co/arboles-por-localidad/ | |
dc.relation.references | Assaf, G., & Assaad, R. H. (2024). Modeling the impact of land use/land cover (LULC) factors on diurnal and nocturnal Urban Heat Island (UHI) intensities using spatial regression models. Urban Climate, 55, 101971. https://doi.org/10.1016/j.uclim.2024.101971 | |
dc.relation.references | Berndt, C., Rabiei, E., & Haberlandt, U. (2014). Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. Journal of Hydrology, 508, 88-101. https://doi.org/10.1016/j.jhydrol.2013.10.028 | |
dc.relation.references | Bishop, C. (2006). Pattern recognition and machine learning (Information science and statistics) (Vol. 16). Springer. http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.2819119 | |
dc.relation.references | Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006 | |
dc.relation.references | Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006 | |
dc.relation.references | Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1-11. https://doi.org/10.1016/j.atmosenv.2016.11.066 | |
dc.relation.references | Bueno-Bartholomei, C. L., & Labaki, L. C. (2003). How much does the change of species of trees affect their solar radiation attenuation. International Conference on Urban Climate, 5, 267-270. | |
dc.relation.references | Calle-Cárdenas, A., Cárdenas-Agudelo, M. F., & Bedoya-Montoya, C. M. (2025, enero). SERVICIOS ECOSISTÉMICOS DEL ARBOLADO URBANO. Seminario Internacional de Investigación en Urbanismo. Seminario Internacional de Investigación en Urbanismo. https://doi.org/10.5821/siiu.12812 | |
dc.relation.references | Camarero, J. J. (2006). Técnicas de análisis espacial de patrones de superficies y detección de fronteras aplicadas en ecología forestal. | |
dc.relation.references | Cano, D., Cacciuttolo, C., Haller, A., Rosario, C., Guerra, J. C., & De Oliveira, G. G. (2024). Spatio-temporal tendencies of urban land surface temperature on the Andean piedmont under climate change: A case study of Metropolitan Lima, Peru (1986–2024). Remote Sensing Applications: Society and Environment, 36, 101378. https://doi.org/10.1016/j.rsase.2024.101378 | |
dc.relation.references | Celemín, J. P. (2009). Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, estructura y aplicación. Rev. Univ. geogr. [online], 18(1), 11-31. | |
dc.relation.references | Chakraborty, T., Lee, X., Ermida, S., & Zhan, W. (2021). On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sensing of Environment, 265, 112682. https://doi.org/10.1016/j.rse.2021.112682 | |
dc.relation.references | Chang, Y., Xiao, J., Li, X., Middel, A., Zhang, Y., Gu, Z., Wu, Y., & He, S. (2021). Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data. Remote Sensing of Environment, 263, 112544. https://doi.org/10.1016/j.rse.2021.112544 | |
dc.relation.references | Charles, T. D. S., Lopes, T. R., Duarte, S. N., Nascimento, J. G., Ricardo, H. D. C., & Pacheco, A. B. (2022). Estimating average annual rainfall by ordinary kriging and TRMM precipitation products in midwestern Brazil. Journal of South American Earth Sciences, 118, 103937. https://doi.org/10.1016/j.jsames.2022.103937 | |
dc.relation.references | Chen, A., Yao, L., Sun, R., & Chen, L. (2014). How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecological Indicators, 45, 424-433. https://doi.org/10.1016/j.ecolind.2014.05.002 | |
dc.relation.references | Cheval, S., Amihăesei, V.-A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., Micu, D. M., Mihulet, E., Ontel, I., Paraschiv, M.-G., & Tudose, N. C. (2024). A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603. https://doi.org/10.1016/j.crm.2024.100603 | |
dc.relation.references | Cui, P., Xv, D., Tang, J., Lu, J., & Wu, Y. (2024). Assessing the effects of urban green spaces metrics and spatial structure on LST and carbon sinks in Harbin, a cold region city in China. Sustainable Cities and Society, 113, 105659. https://doi.org/10.1016/j.scs.2024.105659 | |
dc.relation.references | D’agostino, R. B., Belanger, A., & D’agostino, R. B. (1990). A Suggestion for Using Powerful and Informative Tests of Normality. The American Statistician, 44(4), 316-321. https://doi.org/10.1080/00031305.1990.10475751 | |
dc.relation.references | Del Toro Pérez, A. F., Julio Galvis, L. L., Payares Ramos, P. L., & Villadiego Martinez, H. A. (2023). Islas de calor urbano en el municipio de Santa Cruz de Lorica, Colombia, entre los años 2001, 2007 y 2021, caso de aplicación con imágenes satelitales ASTER. Revista Environment & Technology, 4(1), 87-101. https://doi.org/10.56205/ret.4-1.5 | |
dc.relation.references | Deng, X., Yu, W., Shi, J., Huang, Y., Li, D., He, X., Zhou, W., & Xie, Z. (2024). Characteristics of surface urban heat islands in global cities of different scales: Trends and drivers. Sustainable Cities and Society, 107, 105483. https://doi.org/10.1016/j.scs.2024.105483 | |
dc.relation.references | Díaz-Chávez, L., Melendez-Surmay, R., & Arregocés, H. A. (2024). Urban heat island intensity in coastal cities of northern Colombia using Landsat data and WRF/UCM model. Case Studies in Chemical and Environmental Engineering, 9, 100617. https://doi.org/10.1016/j.cscee.2024.100617 | |
dc.relation.references | Diem, P. K., Nguyen, C. T., Diem, N. K., Diep, N. T. H., Thao, P. T. B., Hong, T. G., & Phan, T. N. (2024). Remote sensing for urban heat island research: Progress, current issues, and perspectives. Remote Sensing Applications: Society and Environment, 33, 101081. https://doi.org/10.1016/j.rsase.2023.101081 | |
dc.relation.references | Ding, L., Xiao, X., & Wang, H. (2025). Temporal and spatial variations of urban surface temperature and correlation study of influencing factors. Scientific Reports, 15(1), 914. https://doi.org/10.1038/s41598-025-85146-4 | |
dc.relation.references | Du, H., Ai, J., Cai, Y., Jiang, H., & Liu, P. (2019). Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China. Sustainability, 11(10), 2890. https://doi.org/10.3390/su11102890 | |
dc.relation.references | Earth Resources Observation and Science (EROS) Center. (2020, noviembre 27). USGS EROS Archive—Landsat Archives—Landsat 8-9 Operational Land Imager and Thermal Infrared Sensor Collection 2 Level-1 Data | U.S. Geological Survey. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-9-operational-land-imager-and | |
dc.relation.references | Ettinger, A. K., Bratman, G. N., Carey, M., Hebert, R., Hill, O., Kett, H., Levin, P., Murphy-Williams, M., & Wyse, L. (2024). Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Scientific Reports, 14(1), 3266. https://doi.org/10.1038/s41598-024-51921-y | |
dc.relation.references | F. Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres‐Neto, P., Reineking, B., Schröder, B., M. Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609-628. https://doi.org/10.1111/j.2007.0906-7590.05171.x | |
dc.relation.references | Fan, C., & Wang, Z. (2020). Spatiotemporal Characterization of Land Cover Impacts on Urban Warming: A Spatial Autocorrelation Approach. Remote Sensing, 12(10), 1631. https://doi.org/10.3390/rs12101631 | |
dc.relation.references | Fan, H., Yu, Z., Yang, G., Liu, T. Y., Liu, T. Y., Hung, C. H., & Vejre, H. (2019). How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agricultural and Forest Meteorology, 265, 338-348. https://doi.org/10.1016/j.agrformet.2018.11.027 | |
dc.relation.references | Fetene, A. (2025). Remote sensing analysis of urban heat island dynamics in Bahir Dar and Hawassa, Ethiopia: The role of vegetation, urbanization, and climate. Environmental Challenges. | |
dc.relation.references | Flores, S., Van Mechelen, C., Vallejo, J. P., & Van Meerbeek, K. (2022). Trends and status of urban green and urban green research in Latin America. Landscape and Urban Planning, 227, 104536. https://doi.org/10.1016/j.landurbplan.2022.104536 | |
dc.relation.references | Fortin, M.-J., & Dale, M. R. T. (2014). Spatial analysis – a guide for ecologists. Cambridge University Press. | |
dc.relation.references | Francis, J., Disney, M., & Law, S. (2023). Monitoring canopy quality and improving equitable outcomes of urban tree planting using LiDAR and machine learning. Urban Forestry & Urban Greening, 89, 128115. https://doi.org/10.1016/j.ufug.2023.128115 | |
dc.relation.references | Fuenzalida, M., Buzai, G. D., Moreno Jiménez, A., & García de León, A. (2015). Geografía, Geotecnología y Análisis Espacial: Tendencias, métodos y aplicaciones (Vol. 1). EDITORIAL TRIANGULO. | |
dc.relation.references | Fuenzalida, M., & Cobs, V. (2013). La perspectiva del análisis espacial en la herramienta sig: Una revisión desde la geografía hacia las ciencias sociales. Persona y Sociedad, 27(3), 33. https://doi.org/10.53689/pys.v27i3.48 | |
dc.relation.references | Gao, J., Wu, L., Lin, G., Zou, J., Yan, B., Liu, K., He, S., & Bo, X. (2025). Multi-task multi-view and iterative error-correcting random forest for acute toxicity prediction. Expert Systems with Applications, 274, 126972. https://doi.org/10.1016/j.eswa.2025.126972 | |
dc.relation.references | Gao, Y., Zhang, N., Chen, Y., Luo, L., Ao, X., & Li, W. (2024). Urban heat island characteristics of Yangtze river delta in a heatwave month of 2017. Meteorology and Atmospheric Physics, 136(5), 30. https://doi.org/10.1007/s00703-024-01027-x | |
dc.relation.references | Gao, Y., Zhao, J., & Han, L. (2024). Quantitative comparison of seasonal and diurnal characteristics for urban heat using meteorological monitoring data. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-024-06172-9 | |
dc.relation.references | Garavito, J. (2020). El Clime de Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(170), 361-372. | |
dc.relation.references | García, D. H. (2022). Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: A Study of Andalusian Cities in Spain. Earth Systems and Environment, 6(1), 199-219. https://doi.org/10.1007/s41748-021-00268-9 | |
dc.relation.references | Garnier-Villarreal, M. (2022). Introducción al análisis geoestadístico de datos en geociencias: Teoría y aplicación. Revista Geológica de América Central, 67, 1-22. https://doi.org/10.15517/rgac.v67i0.51474 | |
dc.relation.references | Garzón, J., Molina, I., Velasco, J., & Calabia, A. (2021). A Remote Sensing Approach for Surface Urban Heat Island Modeling in a Tropical Colombian City Using Regression Analysis and Machine Learning Algorithms. Remote Sensing, 13(21), 4256. https://doi.org/10.3390/rs13214256 | |
dc.relation.references | Garzón, J., Molina Sánchez, I., & Jiménez Cleves, G. (2024). Evaluación del fenómeno de la isla de calor urbano en Cartago, Colombia: Tendencias de factores ambientales en los últimos 20 años. 1-11. https://doi.org/10.26507/paper.3712 | |
dc.relation.references | Gemitzi, A., Dalampakis, P., & Falalakis, G. (2021). Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 96, 102283. https://doi.org/10.1016/j.jag.2020.102283 | |
dc.relation.references | Geng, X., Zhang, D., Li, C., Yuan, Y., Yu, Z., & Wang, X. (2023). Impacts of climatic zones on urban heat island: Spatiotemporal variations, trends, and drivers in China from 2001–2020. Sustainable Cities and Society, 89, 104303. https://doi.org/10.1016/j.scs.2022.104303 | |
dc.relation.references | Getis, A. (2008). A History of the Concept of Spatial Autocorrelation: A Geographer’s Perspective. Geographical Analysis, 40(3), 297-309. https://doi.org/10.1111/j.1538-4632.2008.00727.x | |
dc.relation.references | Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x | |
dc.relation.references | Giraldo Henao, R. (2002). Introducción a la Geoestadística – Teoría y Aplicación. Departamento de Estadística - Universidad Nacional de Colombia. | |
dc.relation.references | Golden, J. S., Carlson, J., Kaloush, K. E., & Phelan, P. (2007). A comparative study of the thermal and radiative impacts of photovoltaic canopies on pavement surface temperatures. Solar Energy, 81(7), 872-883. https://doi.org/10.1016/j.solener.2006.11.007 | |
dc.relation.references | Gómez, Lady, & Castañeda, C. (2013). Estudio del Crecimiento Urbano con respecto al Efecto Isla de Calor para establecer Lineamientos de Gestión Energético Ambiental en Bogotá. Eleventh Latin American and Caribbean for Engieneering and Technology, 1-10. | |
dc.relation.references | Goodspeed, R., Sengupta, R., Kyttä, M., & Pettit, C. (Eds.). (2023). Intelligence for Future Cities: Planning Through Big Data and Urban Analytics. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-31746-0 | |
dc.relation.references | Guo, A., He, T., Yue, W., Xiao, W., Yang, J., Zhang, M., & Li, M. (2023). Contribution of urban trees in reducing land surface temperature: Evidence from china’s major cities. International Journal of Applied Earth Observation and Geoinformation, 125, 103570. https://doi.org/10.1016/j.jag.2023.103570 | |
dc.relation.references | Guo, B., Yang, F., Wu, H., Zhang, R., Zang, W., Wei, C., Jiang, G., Meng, C., Zhao, H., Zhen, X., Zhang, D., & Zhang, H. (2021). How the variations of terrain factors affect the optimal interpolation methods for multiple types of climatic elements? Earth Science Informatics, 14(2), 1021-1032. https://doi.org/10.1007/s12145-021-00609-2 | |
dc.relation.references | Guo, J., Fan, L., Feng, P., Sun, X., & Xue, S. (2025). Response of vegetation evapotranspiration to landscape pattern changes in an arid region: A case study of the Loess Plateau, China. CATENA, 252, 108878. https://doi.org/10.1016/j.catena.2025.108878 | |
dc.relation.references | Haining, R. P., Kerry, R., & Oliver, M. A. (2010). Geography, Spatial Data Analysis, and Geostatistics: An Overview. 地理学、空间数据分析及地统计学:综述. Geographical Analysis, 42(1), 7-31. https://doi.org/10.1111/j.1538-4632.2009.00780.x | |
dc.relation.references | Hamed Fahmy, A., Amin Abdelfatah, M., & El-Fiky, G. (2023). Investigating land use land cover changes and their effects on land surface temperature and urban heat islands in Sharqiyah Governorate, Egypt. Egyptian Journal of Remote Sensing and Space Science, 26(2), 293-306. https://doi.org/10.1016/j.ejrs.2023.04.001 | |
dc.relation.references | Han, D., An, H., Cai, H., Wang, F., Xu, X., Qiao, Z., Jia, K., Sun, Z., & An, Y. (2023). How do 2D/3D urban landscapes impact diurnal land surface temperature: Insights from block scale and machine learning algorithms. Sustainable Cities and Society, 99, 104933. https://doi.org/10.1016/j.scs.2023.104933 | |
dc.relation.references | Han, D., Cai, H., Wang, F., Wang, M., Xu, X., Qiao, Z., An, H., Liu, Y., Jia, K., Sun, Z., & Wang, S. (2024). Understanding the role of urban features in land surface temperature at the block scale: A diurnal cycle perspective. Sustainable Cities and Society, 111, 105588. https://doi.org/10.1016/j.scs.2024.105588 | |
dc.relation.references | He, C., Zhang, Y., Gong, D., & Ji, X. (2023). A review of surrogate-assisted evolutionary algorithms for expensive optimization problems. Expert Systems with Applications, 217, 119495. https://doi.org/10.1016/j.eswa.2022.119495 | |
dc.relation.references | He, T., Hu, Y., Guo, A., Chen, Y., Yang, J., Li, M., & Zhang, M. (2024). Quantifying the impact of urban trees on land surface temperature in global cities. ISPRS Journal of Photogrammetry and Remote Sensing, 210, 69-79. https://doi.org/10.1016/j.isprsjprs.2024.03.007 | |
dc.relation.references | Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 4(3), 296-305. https://doi.org/10.1007/s40572-017-0150-3 | |
dc.relation.references | Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283-1298. https://doi.org/10.1016/j.cageo.2005.11.008 | |
dc.relation.references | Hou, N., Zhang, X., Zhang, W., Wei, Y., Jia, K., Yao, Y., Jiang, B., & Cheng, J. (2020). Estimation of Surface Downward Shortwave Radiation over China from Himawari-8 AHI Data Based on Random Forest. Remote Sensing, 12(1), 181. https://doi.org/10.3390/rs12010181 | |
dc.relation.references | Howard, M., Hathaway, J. M., Tirpak, R. A., Lisenbee, W. A., & Sims, S. (2022). Quantifying urban tree canopy interception in the southeastern United States. Urban Forestry & Urban Greening, 77, 127741. https://doi.org/10.1016/j.ufug.2022.127741 | |
dc.relation.references | Huang, F., Zhan, W., Wang, Z. H., Voogt, J., Hu, L., Quan, J., Liu, C., Zhang, N., & Lai, J. (2020). Satellite identification of atmospheric-surface-subsurface urban heat islands under clear sky. Remote Sensing of Environment, 250(July), 112039. https://doi.org/10.1016/j.rse.2020.112039 | |
dc.relation.references | Humacata, L. M. (2014). Aportes metodológicos del análisis espacial con Sistemas de Información Geográfica a la clasificación espacial en Geografía. Revista del Departamento de Ciencias Sociales Universidad Nacional de Luján, 3, 118-147. | |
dc.relation.references | Instituto Distrital de Gestión de Riesgos y Cambio Climático. (2025). Informacion Hidrometeorologica—SIRE. Instituto Distrital de Gestión de Riesgos y Cambio Climático. https://www.sire.gov.co/web/sab/informacion-hidrometeorologica | |
dc.relation.references | Jabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023). Urban heat islands: A review of contributing factors, effects and data. IOP Conference Series: Earth and Environmental Science, 1129(1). https://doi.org/10.1088/1755-1315/1129/1/012038 | |
dc.relation.references | Jamarkattel, U., Lamichhane, B. R., Gautam, S., K.C., N., Sherchan, B., & Horanont, T. (2025). Analyzing Urban Heat Islands in Pokhara Metropolitan City-Nepal through Remote Sensing Techniques. Remote Sensing Applications: Society and Environment, 37, 101479. https://doi.org/10.1016/j.rsase.2025.101479 | |
dc.relation.references | Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2 | |
dc.relation.references | Jardín Botánico de Bogotá. (2023, diciembre 12). Datos Abiertos Bogotá—Arbolado Urbano. Bogotá D.C. https://datosabiertos.bogota.gov.co/dataset/censo-arbolado-urbano | |
dc.relation.references | Jato-Espino, D., Lierow, S., & Rodríguez-Sánchez, M.-Á. (2025). Using classification algorithms to model nighttime Surface Urban Heat Island (SUHI), with an emphasis on the role of urban trees. Building and Environment, 270, 112572. https://doi.org/10.1016/j.buildenv.2025.112572 | |
dc.relation.references | Jin, J., Chen, W. Y., Jia, B., & Wang, C. (2024). Cooling effect of urban greenery: A bibliometric analysis. Urban Forestry & Urban Greening, 99, 128453. https://doi.org/10.1016/j.ufug.2024.128453 | |
dc.relation.references | Johnson, Z. C., Johnson, B. G., Briggs, M. A., Snyder, C. D., Hitt, N. P., & Devine, W. D. (2021). Heed the data gap: Guidelines for using incomplete datasets in annual stream temperature analyses. Ecological Indicators, 122, 107229. https://doi.org/10.1016/j.ecolind.2020.107229 | |
dc.relation.references | Kafy, A.-A., Saha, M., Faisal, A.-A.-, Rahaman, Z. A., Rahman, M. T., Liu, D., Fattah, Md. A., Al Rakib, A., AlDousari, A. E., Rahaman, S. N., Hasan, M. Z., & Ahasan, M. A. K. (2022). Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms. Building and Environment, 217, 109066. https://doi.org/10.1016/j.buildenv.2022.109066 | |
dc.relation.references | Kamaraj, N. P., Shekhar, S., Sivashankari, V., Balasubramani, K., & Prasad, K. A. (2021). Detecting heat-inducing urban built-up surface material with multi remote sensing datasets using reflectance and emission spectroscopy. Remote Sensing of Environment, 264, 112591. https://doi.org/10.1016/j.rse.2021.112591 | |
dc.relation.references | Kasniza Jumari, N. A. S., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., Sherif, M., & Elshafie, A. (2023). Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8), e18424. https://doi.org/10.1016/j.heliyon.2023.e18424 | |
dc.relation.references | Kemarau, R. A., & Eboy, O. V. (2021). The influence of El Niño Southern Oscillation on urban heat island formation at tropical city: Case of Kuching City, Sarawak. https://ejournal.ukm.my/gmjss/article/view/49933 | |
dc.relation.references | Kim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renewable and Sustainable Energy Reviews, 148, 111256. https://doi.org/10.1016/j.rser.2021.111256 | |
dc.relation.references | Kuznetsova, I. N., Semutnikova, E. G., Lezina, E. A., Zakharova, P. V., Tkacheva, Yu. V., Varentsov, M. I., Tarasova, M. A., Rivin, G. S., & Khrykina, E. A. (2024). Characteristics of the Moscow Heat Island and Quality of Its Simulation with the COSMO-Ru1-MSK Model Based on the Mosecomonitoring Observations. Russian Meteorology and Hydrology, 49(9), 795-810. https://doi.org/10.3103/S106837392409005X | |
dc.relation.references | Lee, H., Holst, J., & Mayer, H. (2013). Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Advances in Meteorology, 2013, 1-13. https://doi.org/10.1155/2013/312572 | |
dc.relation.references | Li, F., Yigitcanlar, T., Nepal, M., Nguyen, K., & Dur, F. (2023). Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustainable Cities and Society, 96, 104653. https://doi.org/10.1016/j.scs.2023.104653 | |
dc.relation.references | Li, K., Chen, Y., & Gao, S. (2022). Uncertainty of city-based urban heat island intensity across 1112 global cities: Background reference and cloud coverage. Remote Sensing of Environment, 271(September 2021), 112898. https://doi.org/10.1016/j.rse.2022.112898 | |
dc.relation.references | Li, X., Li, X., Ma, H., Zhou, J., Ge, F., Zhang, W., Yan, Y., & Zhou, Y. (2025). Revisiting urban heat island effects in China: Multi-satellite evidence from the ESA-CCI land surface temperature product. Sustainable Cities and Society, 123, 106281. https://doi.org/10.1016/j.scs.2025.106281 | |
dc.relation.references | Li, Y., Cao, M., Yan, S., Meng, H., Wang, Q., Li, S., Zhang, T., Zhang, Z., Liang, L., & Zhang, W. (2025). Assessing the contribution of urban green space landscape patterns to ozone concentration variations. Environmental Research, 275, 121434. https://doi.org/10.1016/j.envres.2025.121434 | |
dc.relation.references | Li, Y., Svenning, J.-C., Zhou, W., Zhu, K., Abrams, J. F., Lenton, T. M., Ripple, W. J., Yu, Z., Teng, S. N., Dunn, R. R., & Xu, C. (2024). Green spaces provide substantial but unequal urban cooling globally. Nature Communications, 15(1), 7108. https://doi.org/10.1038/s41467-024-51355-0 | |
dc.relation.references | Li, Y., Yang, T., Zhao, G., Ma, C., Yan, Y., Xu, Y., Wang, L., & Wang, L. (2024). A systematic review of studies involving canopy layer urban heat island: Monitoring and associated factors. Ecological Indicators, 158, 111424. https://doi.org/10.1016/j.ecolind.2023.111424 | |
dc.relation.references | Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008 | |
dc.relation.references | Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote sensing and image interpretation (Seventh edition). Wiley. | |
dc.relation.references | Lin, W., Yu, T., Chang, X., Wu, W., & Zhang, Y. (2015). Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66-75. https://doi.org/10.1016/j.landurbplan.2014.10.012 | |
dc.relation.references | Lin, Z., Xu, H., Han, L., Zhang, H., Peng, J., & Yao, X. (2024). Day and night: Impact of 2D/3D urban features on land surface temperature and their spatiotemporal non-stationary relationships in urban building spaces. Sustainable Cities and Society, 108, 105507. https://doi.org/10.1016/j.scs.2024.105507 | |
dc.relation.references | Liu, H., Huang, B., Zhan, Q., Gao, S., Li, R., & Fan, Z. (2021). The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustainable Cities and Society, 71, 102987. https://doi.org/10.1016/j.scs.2021.102987 | |
dc.relation.references | Liu, L., Lin, Y., Liu, J., Wang, L., Wang, D., Shui, T., Chen, X., & Wu, Q. (2017). Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Building and Environment, 117, 191-207. https://doi.org/10.1016/j.buildenv.2017.03.013 | |
dc.relation.references | Liu, W., Zhao, H., Sun, S., Xu, X., Huang, T., & Zhu, J. (2022). Green Space Cooling Effect and Contribution to Mitigate Heat Island Effect of Surrounding Communities in Beijing Metropolitan Area. Frontiers in Public Health, 10, 870403. https://doi.org/10.3389/fpubh.2022.870403 | |
dc.relation.references | Liu, Z., Li, J., Wu, Y., Qin, C., & Liu, Y. (2025). Temporal trend of the frequency and maximum durations of surface urban heat islands over global cities. Sustainable Cities and Society, 120, 106141. https://doi.org/10.1016/j.scs.2025.106141 | |
dc.relation.references | Logan, T. M., Zaitchik, B., Guikema, S., & Nisbet, A. (2020). Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sensing of Environment, 247(June 2019), 111861. https://doi.org/10.1016/j.rse.2020.111861 | |
dc.relation.references | Lombana González, L., Bernal Suárez, N. R., & Barrios Moreno, J. S. (2018). Guía Para El Procesamiento De Series De Tiempo De Precipitación Y Temperatura: Estimación De Cambios Y Homogenización Procesamiento De Datos En Excel, Apss, Tsw Y AnclimDetalles (22.a ed.). https://editorial.udistrital.edu.co/detalle.php?id=1095&f=6 | |
dc.relation.references | Lopes, H. S., Vidal, D. G., Cherif, N., Silva, L., & Remoaldo, P. C. (2025). Green infrastructure and its influence on urban heat island, heat risk, and air pollution: A case study of Porto (Portugal). Journal of Environmental Management, 376, 124446. https://doi.org/10.1016/j.jenvman.2025.124446 | |
dc.relation.references | Lorenzo-Sáez, E., Lerma-Arce, V., Coll-Aliaga, E., & Oliver-Villanueva, J.-V. (2021). Contribution of green urban areas to the achievement of SDGs. Case study in Valencia (Spain). Ecological Indicators, 131, 108246. https://doi.org/10.1016/j.ecolind.2021.108246 | |
dc.relation.references | Mahesh, B. (2020). Machine Learning Algorithms—A Review. International Journal of Science and Research (IJSR), 9(1), 381-386. https://doi.org/10.21275/ART20203995 | |
dc.relation.references | Manapragada, N. V. S. K., Mandelmilch, M., Roitberg, E., Kizel, F., & Natanian, J. (2025). Remote Sensing for Environmentally Responsive Urban Built Environment: A Review of Tools, Methods and Gaps. Remote Sensing Applications: Society and Environment, 101529. https://doi.org/10.1016/j.rsase.2025.101529 | |
dc.relation.references | Martilli, A. (2020). Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Climate. | |
dc.relation.references | Mayorga Henao, J. M., & Lopez, D. F. (2021). Relación entre calidad de vida y distribución del arbolado urbano en Bogotá: Una perspectiva desde la justicia ambiental urbana. Revista de Direito da Cidade, 13(4). https://doi.org/10.12957/rdc.2021.40272 | |
dc.relation.references | McGarigal, K., Cushman, S., & Ene, E. (2023). FRAGSTATS v4: Programa de análisis de patrones espaciales para mapas categóricos. (Versión 4) [Software]. https://www.fragstats.org | |
dc.relation.references | Miller, H. J. (2004). Tobler’s First Law and Spatial Analysis. Annals of the Association of American Geographers, 94(2), 284-289. https://doi.org/10.1111/j.1467-8306.2004.09402005.x | |
dc.relation.references | Molina-Gómez, N. I., Varon-Bravo, L. M., Sierra-Parada, R., & López-Jiménez, P. A. (2022). Urban growth and heat islands: A case study in micro-territories for urban sustainability. Urban Ecosystems, 25(5), 1379-1397. https://doi.org/10.1007/s11252-022-01232-9 | |
dc.relation.references | Montorio, R., Pérez-Cabello, F., Borini Alves, D., & García-Martín, A. (2020). Unitemporal approach to fire severity mapping using multispectral synthetic databases and Random Forests. Remote Sensing of Environment, 249, 112025. https://doi.org/10.1016/j.rse.2020.112025 | |
dc.relation.references | Moran, P. (1948). The Interpretation of Statistical Maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243-251. | |
dc.relation.references | Moreno, R., Zamora, R., Moreno-García, N., & Galán, C. (2023). Effects of composition and structure variables of urban trees in the reduction of heat islands; case study, Temuco city, Chile. Building and Environment, 135639. https://doi.org/10.1016/j.buildenv.2023.110859 | |
dc.relation.references | Moss, J. L., Doick, K. J., Smith, S., & Shahrestani, M. (2019). Influence of evaporative cooling by urban forests on cooling demand in cities. Urban Forestry & Urban Greening, 37, 65-73. https://doi.org/10.1016/j.ufug.2018.07.023 | |
dc.relation.references | Munyati, C., & Sinthumule, N. I. (2021). Comparative suitability of ordinary kriging and Inverse Distance Weighted interpolation for indicating intactness gradients on threatened savannah woodland and forest stands. Environmental and Sustainability Indicators, 12, 100151. https://doi.org/10.1016/j.indic.2021.100151 | |
dc.relation.references | Nakata-Osaki, C. M., Souza, L. C. L., & Rodrigues, D. S. (2017). Tool for Heat Island Simulation (THIS) and simulation of different urban scenarios. CUPUM 2017 - 15th International Conference on Computers in Urban Planning and Urban Management, 1-14. | |
dc.relation.references | Njoku, E. A., Akpan, P. E., Effiong, A. E., & Babatunde, I. O. (2023). The effects of station density in geostatistical prediction of air temperatures in Sweden: A comparison of two interpolation techniques. Resources, Environment and Sustainability, 11, 100092. https://doi.org/10.1016/j.resenv.2022.100092 | |
dc.relation.references | NOAA, N. O. and A. A. –. (2024). Cold & Warm Episodes by Season, Warm and cold periods based on a threshold of +/- 0.5oC for the Oceanic Niño Index (ONI). National Weather Service – Climate Prediction Center. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php | |
dc.relation.references | Oke, T. R. (1982). The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980). Quarterly Journal, Royal Meteorological Society, 108(455), 1-24. | |
dc.relation.references | Organización Meteorológica Mundial. (2017). Directrices de la Organización Meteorológica Mundial sobre el cálculo de las normales climáticas. | |
dc.relation.references | Orkomi, A. A., & Ameri, M. (2024). Investigating the intensity of urban heat island and the impacts of local climate using verified WRF data: A case study of Rasht, Northern Iran. Sustainable Cities and Society, 106, 105405. https://doi.org/10.1016/j.scs.2024.105405 | |
dc.relation.references | Oukawa, G. Y., Krecl, P., & Targino, A. C. (2022). Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Science of The Total Environment, 815, 152836. https://doi.org/10.1016/j.scitotenv.2021.152836 | |
dc.relation.references | Peeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., Gebbers, R., & Ben-Gal, A. (2015). Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Computers and Electronics in Agriculture, 111, 140-150. https://doi.org/10.1016/j.compag.2014.12.011 | |
dc.relation.references | Pineda, M. C. (Ed.). (2011). Actas I Congreso Internacional en Ordenamiento Territorial y Tecnologías de la Información Geográfica: Ciudad de Tegucigalpa, Honduras del 11 al 16 de octubre de 2010. Congreso Internacional en Ordenamiento Territorial y Tecnologías de la Información Geográfica, Alcalá de Henares. Universidad de Alcalá de Henares. | |
dc.relation.references | Rahman, M. A., Stratopoulos, L. M. F., Moser-Reischl, A., Zölch, T., Häberle, K.-H., Rötzer, T., Pretzsch, H., & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 | |
dc.relation.references | Ramírez-Aguilar, E. A., & Lucas Souza, L. C. (2019). Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Climate, 29, 100497. https://doi.org/10.1016/j.uclim.2019.100497 | |
dc.relation.references | Rees, G., Hebryn-Baidy, L., & Belenok, V. (2024). Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine. Remote Sensing, 16(9), 1637. https://doi.org/10.3390/rs16091637 | |
dc.relation.references | Rochner, M. L., Moriarty, K. J., & Weatherbee, S. (2025). Dendrochronological analyses of tree growth and climate response across an urban-rural gradient, Louisville, Kentucky. Urban Forestry & Urban Greening, 104, 128592. https://doi.org/10.1016/j.ufug.2024.128592 | |
dc.relation.references | Roy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite Remote Sensing: Sensors, Applications and Techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 465-472. https://doi.org/10.1007/s40010-017-0428-8 | |
dc.relation.references | Santamouris, M. (2014). Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682-703. https://doi.org/10.1016/j.solener.2012.07.003 | |
dc.relation.references | Santana, L. M. (2007). Landsat ETM+ image applications to extract information for environmental planning in a Colombian city. International Journal of Remote Sensing, 28(19), 4225-4242. https://doi.org/10.1080/01431160701244856 | |
dc.relation.references | Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x | |
dc.relation.references | Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal: Promoting Communications on Statistics and Stata, 20(1), 3-29. https://doi.org/10.1177/1536867X20909688 | |
dc.relation.references | Scolio, M., Kremer, P., Zhang, Y., & Shakya, K. M. (2024). Spatial-temporal modeling of the relationship between surface temperature and air temperature in metropolitan urban systems. Urban Climate, 55, 101921. https://doi.org/10.1016/j.uclim.2024.101921 | |
dc.relation.references | Secretaría Distrital de Ambiente. (2024). INFORME MENSUAL DE LA RED DE MONITOREO DE CALIDAD DEL AIRE DE BOGOTÁ – RMCAB (pp. 71-113). Secretaría Distrital de Ambiente. http://rmcab.ambientebogota.gov.co/Pagesfiles/28062024_%20Informe%20Anual%20Calidad%20del%20Aire%202023%20Ajustado%20.pdf | |
dc.relation.references | Serrano Vincenti, S., Zuleta, D., Moscoso, V., Jácome, P., Palacios, E., & Villacís, M. (2012). Análisis estadístico de datos meteorológicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. La Granja, 16(2), 23. https://doi.org/10.17163/lgr.n16.2012.03 | |
dc.relation.references | Shakarami, K., & Rahim Rahnama, M. (2023). Spatial analysis of the impacts of the urban form on the energy consumption of Karaj over the Covid-19 era (2019–2022). Energy and Buildings, 298, 113568. https://doi.org/10.1016/j.enbuild.2023.113568 | |
dc.relation.references | Shi, H., Xian, G., Auch, R., Gallo, K., & Zhou, Q. (2021). Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land, 10(8), 867. https://doi.org/10.3390/land10080867 | |
dc.relation.references | Shi, T., Yang, Y., & Qi, P. (2024). Study on the Impact of Urban Morphologies on Urban Canopy Heat Islands Based on Relocated Meteorological Stations. Remote Sensing, 16(9), 1500. https://doi.org/10.3390/rs16091500 | |
dc.relation.references | Shi, Y., & Zhao, S. (2022). Discover the desirable landscape structure for mitigating urban heat: The urban-rural gradient approach for an ancient Chinese city. Cities, 127, 103737. https://doi.org/10.1016/j.cities.2022.103737 | |
dc.relation.references | Siabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 1-22. https://doi.org/10.15446/rcdg.v28n1.76919 | |
dc.relation.references | Siabato, W., & Yidego, C. (2004). Geoestadistica y medio ambiente. XI Congreso de Métodos Cuantitativos, SIG y Teledetección, España. | |
dc.relation.references | Siddiqui, A., Kushwaha, G., Nikam, B., Srivastav, S. K., Shelar, A., & Kumar, P. (2021). Analysing the day/night seasonal and annual changes and trends in land surface temperature and surface urban heat island intensity (SUHII) for Indian cities. Sustainable Cities and Society, 75, 103374. https://doi.org/10.1016/j.scs.2021.103374 | |
dc.relation.references | Silva, B. B. D., Braga, A. C., Braga, C. C., Oliveira, L. M. M. D., Montenegro, S. M. G. L., & Barbosa Junior, B. (2016). Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 3-8. https://doi.org/10.1590/1807-1929/agriambi.v20n1p3-8 | |
dc.relation.references | Singh, N., Singh, S., & Mall, R. K. (2020). Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. En Urban Ecology: Emerging Patterns and Social-Ecological Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-820730-7.00017-3 | |
dc.relation.references | Sivakumar, M. V. K. S., Roy, P. S., Harmsen, K., & Saha, S. K. (2004). Principles of remote sensing. Satellite remote sensing and GIS applications in agricultural meteorology. World Meteorological Organisation. | |
dc.relation.references | Sohrabinia, M., Zawar-Reza, P., & Rack, W. (2015). Spatio-temporal analysis of the relationship between LST from MODIS and air temperature in New Zealand. Theoretical and Applied Climatology, 119(3-4), 567-583. https://doi.org/10.1007/s00704-014-1106-2 | |
dc.relation.references | Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Frontiers of Architectural Research, 6(4), 529-538. https://doi.org/10.1016/j.foar.2017.08.001 | |
dc.relation.references | Soto-Estrada, E. (2019). Estimation of the urban heat island in medellin, Colombia. Revista Internacional de Contaminacion Ambiental, 35(2), 421-434. https://doi.org/10.20937/RICA.2019.35.02.13 | |
dc.relation.references | Srivastava, R. M. (2013). Geostatistics: A toolkit for data analysis, spatial prediction and risk management in the coal industry. International Journal of Coal Geology, 112, 2-13. https://doi.org/10.1016/j.coal.2013.01.011 | |
dc.relation.references | Tarihi, G., & Tarihi, K. (2017). Basic Kriging Methods in Geostatistics. Journal of Agricultural Sciences, 27(1), 10-20. | |
dc.relation.references | Tiwari, A., Kumar, P., Kalaiarasan, G., & Ottosen, T.-B. (2021). The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation. Environmental Pollution, 274, 115898. https://doi.org/10.1016/j.envpol.2020.115898 | |
dc.relation.references | Trujillo Uribe, S. (2014). Estimación De Temperatura Superficial En El Valle De Aburrá Mediante Técnicas De Percepción Remota. | |
dc.relation.references | UN-Habitat. (2022). Envisaging the Future of Cities. United Nations Human Settlements Programme (UN-Habitat). | |
dc.relation.references | Veerkamp, C. J., Schipper, A. M., Hedlund, K., Lazarova, T., Nordin, A., & Hanson, H. I. (2021). A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosystem Services, 52, 101367. https://doi.org/10.1016/j.ecoser.2021.101367 | |
dc.relation.references | Venter, Z. S., Krog, N. H., & Barton, D. N. (2020). Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Science of the Total Environment, 709, 136193. https://doi.org/10.1016/j.scitotenv.2019.136193 | |
dc.relation.references | Villamil-Almeida, H., Blanco-Mantilla, K., Salah-García, O., & García-Sánchez, C. (2020). Characterization of the urban heat island at Bucaramanga, Colombia, using realtime temperature monitoring. Revista Facultad de Ingeniería, Universidad de Antioquia, 97. | |
dc.relation.references | Wang, C., Wang, Z., & Yang, J. (2018). Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Future, 6(8), 1066-1081. https://doi.org/10.1029/2018EF000891 | |
dc.relation.references | Wang, J., & Ouyang, W. (2017). Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification. Journal of Environmental Management, 187, 239-252. https://doi.org/10.1016/j.jenvman.2016.11.059 | |
dc.relation.references | Wang, M., Wang, X., Luan, Q., & Xu, X. (2025). A new perspective to assess urban heat islands by incorporating both canopy and boundary layer air temperature from the view of satellite remote sensing. Sustainable Cities and Society, 106315. https://doi.org/10.1016/j.scs.2025.106315 | |
dc.relation.references | Wang, Q., Wang, X., Zhou, Y., Liu, D., & Wang, H. (2022). The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustainable Cities and Society, 79, 103722. https://doi.org/10.1016/j.scs.2022.103722 | |
dc.relation.references | Wang, X., Dallimer, M., Scott, C. E., Shi, W., & Gao, J. (2021). Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Science of The Total Environment, 770, 145211. https://doi.org/10.1016/j.scitotenv.2021.145211 | |
dc.relation.references | Wang, Y., Lv, W., Wang, M., Chen, X., & Li, Y. (2023). Application of improved Moran’s I in the evaluation of urban spatial development. Spatial Statistics, 54, 100736. https://doi.org/10.1016/j.spasta.2023.100736 | |
dc.relation.references | Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005 | |
dc.relation.references | Woodman, R. J., & Mangoni, A. A. (2023). A comprehensive review of machine learning algorithms and their application in geriatric medicine: Present and future. Aging Clinical and Experimental Research, 35(11), 2363-2397. https://doi.org/10.1007/s40520-023-02552-2 | |
dc.relation.references | Xiang, Y., Zheng, B., Bedra, K. B., Ouyang, Q., Liu, J., & Zheng, J. (2023). Spatial and seasonal differences between near surface air temperature and land surface temperature for Urban Heat Island effect assessment. Urban Climate, 52, 101745. https://doi.org/10.1016/j.uclim.2023.101745 | |
dc.relation.references | Xiao, Y., & Gong, P. (2022). Removing spatial autocorrelation in urban scaling analysis. Cities, 124, 103600. https://doi.org/10.1016/j.cities.2022.103600 | |
dc.relation.references | Yang, I., & Acharya, T. D. (2015). Exploring Landsat 8. International Journal of IT, Engineering and Applied Sciences Research, 4(4), 4-10. | |
dc.relation.references | Yin, C., He, B., Quan, X., & Liao, Z. (2016). Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data. International Journal of Remote Sensing, 37(3), 615-632. https://doi.org/10.1080/01431161.2015.1131867 | |
dc.relation.references | Zargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643. https://doi.org/10.1038/s41598-023-50757-2 | |
dc.relation.references | Zhang, W., Du, P., Fu, P., Zhang, P., Tang, P., Zheng, H., Meng, Y., & Li, E. (2022). Attention-Aware Dynamic Self-Aggregation Network for Satellite Image Time Series Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17. https://doi.org/10.1109/TGRS.2021.3120914 | |
dc.relation.references | Zhao, K., Ning, Z., Xu, C., Zhao, X., & Huang, X. (2024). How do driving factors affect the diurnal variation of land surface temperature across different urban functional blocks? A case study of Xi’an, China. Sustainable Cities and Society, 114, 105738. https://doi.org/10.1016/j.scs.2024.105738 | |
dc.relation.references | Zhou, D., Sun, S., Li, Y., Zhang, L., & Huang, L. (2023). A multi-perspective study of atmospheric urban heat island effect in China based on national meteorological observations: Facts and uncertainties. Science of The Total Environment, 854, 158638. https://doi.org/10.1016/j.scitotenv.2022.158638 | |
dc.relation.references | Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. (2018). Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11(1), 48. https://doi.org/10.3390/rs11010048 | |
dc.relation.references | Zhou, D., Xiao, J., Frolking, S., Zhang, L., & Zhou, G. (2022). Urbanization Contributes Little to Global Warming but Substantially Intensifies Local and Regional Land Surface Warming. Earth’s Future, 10(5), e2021EF002401. https://doi.org/10.1029/2021EF002401 | |
dc.relation.references | Ziaul, S., & Pal, S. (2021). Simulating urban heat island for predicting its spatial pattern in meso level town of India. Urban Climate, 38, 100892. https://doi.org/10.1016/j.uclim.2021.100892 | |
dc.relation.references | Zou, K., Yu, X., Wong, M. S., Qin, K., Zhu, R., & Li, S. (2024). Exploring the spatiotemporal evolution patterns of Urban Heat Island with a network-based approach. Sustainable Cities and Society, 117, 105926. https://doi.org/10.1016/j.scs.2024.105926 | |
dc.relation.references | Zuluaga, S., Londoño, F., Parra, E., Arango, L., & Salazar, J. (2023). El impacto de la arborización como estrategia de mitigación de la isla de calor urbana en el Caribe colombiano. Arquitectura y Urbanismo, XLIV(2), 32-39. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | |
dc.subject.ddc | 550 - Ciencias de la tierra | |
dc.subject.lemb | ARBOLES FORESTALES | spa |
dc.subject.lemb | Forest trees | eng |
dc.subject.lemb | ESTRATEGIAS PARA EL DESARROLLO | spa |
dc.subject.lemb | Development strategies | eng |
dc.subject.lemb | DESARROLLO SOSTENIBLE | spa |
dc.subject.lemb | Sustainable development | eng |
dc.subject.lemb | USO DE LA TIERRA-PLANIFICACION | spa |
dc.subject.lemb | Land use - Planning | eng |
dc.subject.lemb | CONSUMO DE ENERGIA | spa |
dc.subject.lemb | Energy consumption | eng |
dc.subject.lemb | RENDIMIENTO ENERGETICO | spa |
dc.subject.lemb | Energy efficiency | eng |
dc.subject.lemb | ECOLOGIA VEGETAL | spa |
dc.subject.lemb | Botany - ecology | eng |
dc.subject.lemb | CLIMATOLOGIA | spa |
dc.subject.lemb | Climatology | eng |
dc.subject.lemb | TELEDETECCION-EQUIPOS Y ACCESORIOS | spa |
dc.subject.lemb | Remote sensing-equipment and supplies | eng |
dc.subject.lemb | FLUJO CALORIFICO TERRESTRE | spa |
dc.subject.lemb | Terrestrial heat flow | eng |
dc.subject.lemb | TEMPERATURA ATMOSFERICA | spa |
dc.subject.lemb | Atmospheric temperature | eng |
dc.subject.proposal | Isla de calor urbana | spa |
dc.subject.proposal | Arbolado urbano | spa |
dc.subject.proposal | Teledetección | spa |
dc.subject.proposal | Análisis espacial | spa |
dc.subject.proposal | Temperatura superficial terrestre | spa |
dc.subject.proposal | Intensidad de enfriamiento | spa |
dc.subject.proposal | Planificación urbana | spa |
dc.subject.proposal | Urban heat island | eng |
dc.subject.proposal | Urban trees | eng |
dc.subject.proposal | Remote sensing | eng |
dc.subject.proposal | Spatial analysis | eng |
dc.subject.proposal | Land surface temperature | eng |
dc.subject.proposal | Cooling intensity | eng |
dc.subject.proposal | Urban planning | eng |
dc.title | Variaciones de las islas de calor y su relación con el arbolado urbano en Bogotá usando imágenes satelitales y análisis espaciales | spa |
dc.title.translated | Variations in urban heat islands and their relationship with urban trees in Bogotá using satellite images and spatial analysis | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.fundername | Agencia Distrital para la Educación Superior, la Ciencia y la Tecnología (ATENEA) |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Variaciones de las islas de calor y arbolado urbano_Tesis.pdf
- Tamaño:
- 4.02 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Geomática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: