Variaciones de las islas de calor y su relación con el arbolado urbano en Bogotá usando imágenes satelitales y análisis espaciales

dc.contributor.advisorRodríguez Eraso, Nelly
dc.contributor.authorQuintana Linares, Angélica María
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2025-09-11T21:43:12Z
dc.date.available2025-09-11T21:43:12Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, mapasspa
dc.description.abstractEl fenómeno de islas de calor urbanas representa uno de los mayores desafíos para la planificación sostenible de ciudades, afectando el bienestar humano y la eficiencia energética en entornos urbanos. La vegetación urbana emerge como una solución basada en la naturaleza con potencial para mitigar estos efectos térmicos adversos. Esta investigación analiza las variaciones espacio-temporales de las islas de calor y su relación con el arbolado urbano en Bogotá (Colombia), usando metodologías que combinan teledetección y análisis espaciales. Se evaluaron los patrones de temperatura superficial terrestre (LST) durante 2014-2024 usando imágenes LANDSAT 8 y temperatura del aire nocturna (TA) para 2023-2024 con información de 24 estaciones meteorológicas. Para establecer las relaciones entre la intensidad de la isla de calor y la distribución y configuración del arbolado urbano, se emplearon métricas del paisaje e índices de autocorrelación espacial. Finalmente, la intensidad de enfriamiento se evaluó a partir del método de amortiguamiento mediante anillos de 30 m desde el borde del arbolado. Se desarrollaron códigos en JavaScript (Google Earth Engine) para el procesamiento de imágenes satelitales y en Python para el análisis de datos meteorológicos y la interpolación espacial. Los resultados indican un incremento de áreas con alta temperatura del 8% (27% en 2014 a 35% en 2024), concentradas principalmente en el suroccidente de la ciudad en las localidades de Antonio Nariño, Barrios Unidos, Bosa, Engativá, Fontibón, Kennedy, Los Mártires, Puente Aranda, Rafael Uribe Uribe y Tunjuelito, y patrones de agrupamiento de LST estadísticamente significativos (I de Moran > 0,96). Los parches arbóreos (≥ 900m²) señalaron una intensidad de enfriamiento de 1,76°C (LST) y 0,11°C (TA) con un alcance de 210m y 120m respectivamente. Las variables de forma del parche (I=-0,1342) y área núcleo del parche (I=-0,1197) presentaron las correlaciones más fuertes con la reducción térmica. Se identificó que los parches de arbolado de tamaño intermedio (2633-4244 m²) parecen tener la mejor combinación de intensidad de enfriamiento (2,11°C) y alcance alto (300m) para LST, mientras que los parches en zonas ya frescas muestran mejor desempeño térmico (2,2°C) que aquellos en zonas calientes (0,5°C). El análisis mediante Random Forest reveló un potencial de enfriamiento de hasta 8°C en zonas críticas como Kennedy, aunque la mayoría de las intervenciones arbóreas lograrían efectos moderados (1-2.5°C). Para la planificación urbana espacial, es fundamental priorizar la creación de corredores verdes estratégicos en las localidades occidentales que fragmenten la continuidad espacial de los clústeres térmicos, integrando criterios de composición y configuración espacial, priorizando especies con mayor capacidad de sombreado y evapotranspiración. Estos hallazgos proporcionan evidencia científica sobre la contribución del arbolado urbano a la mitigación de islas de calor, ofreciendo criterios para la planificación urbana sostenible (Texto tomado de la fuente).spa
dc.description.abstractThis research analyzes the spatiotemporal variations of heat islands and their relationship with urban trees in Bogotá (Colombia), using methodologies that combine remote sensing and spatial analysis. Land Surface Temperature (LST) patterns during 2014-2024 were evaluated using LANDSAT 8 images and nighttime air temperature (TA) for 2023-2024 from 24 meteorological stations. JavaScript (Google Earth Engine) codes were developed for satellite image processing and Python scripts for meteorological data analysis and spatial interpolation. Results reveal an 8% increase in high-temperature areas (27% in 2014 to 35% in 2024), mainly concentrated in the southwestern part of the city in localities such as Antonio Nariño, Barrios Unidos, Bosa, Engativá, Fontibón, Kennedy, Los Mártires, Puente Aranda, Rafael Uribe Uribe, and Tunjuelito. Spatial autocorrelation analysis confirmed statistically significant clustering patterns (Moran's I > 0.96). Tree patches (≥900m²) generate a cooling intensity of 1.76°C (LST) and 0.11°C (TA) with ranges of 210m and 120m respectively. Patch shape (I=-0.1342) and core area (I=-0.1197) showed the strongest correlations with thermal reduction. Medium-sized patches (2633-4244m²) offer the best combination of cooling intensity (2.11°C) and high range (300m) for LST, while patches in already cool areas show better thermal performance (2.2°C) than those in hot areas (0.5°C). Random Forest analysis revealed cooling potential of up to 8°C in critical areas like Kennedy, although most tree interventions would achieve moderate effects (1-2.5°C). For urban spatial planning, it is essential to prioritize strategic green corridors in western localities that fragment the spatial continuity of thermal clusters, integrating composition criteria and spatial configuration, prioritizing species with greater shading and evapotranspiration capacity. These findings provide scientific evidence on the contribution of urban trees to heat island mitigation, offering criteria for sustainable urban planning.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Geomática
dc.description.methodsLa metodología comprende tres fases, las cuales corresponden al cumplimiento de cada uno de los objetivos planteados: 1) Estimar la temperatura superficial terrestre diurna a partir del uso de imágenes satelitales LANDSAT 8 (en condición de fenómeno del niño), para identificar los patrones espaciales y las tendencias de la isla de calor urbana; 2) Espacializar la temperatura nocturna del aire a partir de datos provenientes de estaciones meteorológicas e identificar patrones espaciales de la isla de calor urbana y 3) Establecer la correlación entre la intensidad de la isla de calor y la distribución y configuración espacial del arbolado urbano.
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturales
dc.description.sponsorshipEsta entidad es responsable de coordinar, programas y proyectos distritales de base científica y tecnológica, para la solución de problemas y desafíos de la ciudad y la región así como la divulgación y apropiación social del conocimiento relacionado con ciencia, tecnología e innovación. Fue creada por medio del Decreto Distrital 273 de 2020 y concebida como una entidad pública de naturaleza especial, descentralizada adscrita al sector de educación distrital y cuenta con autonomía financiera, administrativa y jurídica.
dc.format.extent130 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88730
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomática
dc.relation.referencesAbotaleb, M., Makarovskikh, T., Yonar, A., Badr, A., Mishra, P., Williams, A. J., & Yonar, H. (2022). State of the art in wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model: Wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model. MAUSAM, 73(1), 129-138. https://doi.org/10.54302/mausam.v73i1.598
dc.relation.referencesAbotaleb, M., Makarovskikh, T., Yonar, A., Badr, A., Mishra, P., Williams, A. J., & Yonar, H. (2022). State of the art in wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model: Wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model. MAUSAM, 73(1), 129-138. https://doi.org/10.54302/mausam.v73i1.598
dc.relation.referencesAddas, A., Goldblatt, R., & Rubinyi, S. (2020). Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus. Land, 9(6), 191. https://doi.org/10.3390/land9060191
dc.relation.referencesAkın, A., Çilek, A., & Middel, A. (2023). Modelling tree canopy cover and evaluating the driving factors based on remotely sensed data and machine learning. Urban Forestry & Urban Greening, 86, 128035. https://doi.org/10.1016/j.ufug.2023.128035
dc.relation.referencesAlmeida, C. R. D., Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10), 105. https://doi.org/10.3390/environments8100105
dc.relation.referencesAnanyeva, O., & Emmanuel, R. (2023). Street trees and Urban Heat Island in Glasgow: Mitigation through the ‘Avenues Programme’. Urban Forestry and Urban Greening, 86, 128041. https://doi.org/10.1016/j.ufug.2023.128041
dc.relation.referencesÁngel, L., Ramírez, A., & Domínguez, E. (2010). ISLA DE CALOR Y CAMBIOS ESPACIO-TEMPORALES DE LA TEMPERATURA EN LA CIUDAD DE BOGOTÁ. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(131), 173-183. https://doi.org/10.18257/raccefyn.34(131).2010.2410
dc.relation.referencesAnselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
dc.relation.referencesAragón, J. A., Rodríguez, E. D., Varon, G. A., & Sánchez, G. A. (2020). Análisis de islas de calor por medio de imágenes satelitales y sistemas de información geográficos en el área urbana de la Sabana de Bogotá. Geographicalia, 72, 39-64. https://doi.org/10.26754/ojs_geoph/geoph.2020724571
dc.relation.referencesÁrboles por Localidad—ArbLoc—Cifras e Indicadores de Medio Ambiente en Bogotá. (2023, diciembre 19). https://oab.ambientebogota.gov.co/arboles-por-localidad/
dc.relation.referencesAssaf, G., & Assaad, R. H. (2024). Modeling the impact of land use/land cover (LULC) factors on diurnal and nocturnal Urban Heat Island (UHI) intensities using spatial regression models. Urban Climate, 55, 101971. https://doi.org/10.1016/j.uclim.2024.101971
dc.relation.referencesBerndt, C., Rabiei, E., & Haberlandt, U. (2014). Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. Journal of Hydrology, 508, 88-101. https://doi.org/10.1016/j.jhydrol.2013.10.028
dc.relation.referencesBishop, C. (2006). Pattern recognition and machine learning (Information science and statistics) (Vol. 16). Springer. http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.2819119
dc.relation.referencesBowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006
dc.relation.referencesBowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006
dc.relation.referencesBrokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1-11. https://doi.org/10.1016/j.atmosenv.2016.11.066
dc.relation.referencesBueno-Bartholomei, C. L., & Labaki, L. C. (2003). How much does the change of species of trees affect their solar radiation attenuation. International Conference on Urban Climate, 5, 267-270.
dc.relation.referencesCalle-Cárdenas, A., Cárdenas-Agudelo, M. F., & Bedoya-Montoya, C. M. (2025, enero). SERVICIOS ECOSISTÉMICOS DEL ARBOLADO URBANO. Seminario Internacional de Investigación en Urbanismo. Seminario Internacional de Investigación en Urbanismo. https://doi.org/10.5821/siiu.12812
dc.relation.referencesCamarero, J. J. (2006). Técnicas de análisis espacial de patrones de superficies y detección de fronteras aplicadas en ecología forestal.
dc.relation.referencesCano, D., Cacciuttolo, C., Haller, A., Rosario, C., Guerra, J. C., & De Oliveira, G. G. (2024). Spatio-temporal tendencies of urban land surface temperature on the Andean piedmont under climate change: A case study of Metropolitan Lima, Peru (1986–2024). Remote Sensing Applications: Society and Environment, 36, 101378. https://doi.org/10.1016/j.rsase.2024.101378
dc.relation.referencesCelemín, J. P. (2009). Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, estructura y aplicación. Rev. Univ. geogr. [online], 18(1), 11-31.
dc.relation.referencesChakraborty, T., Lee, X., Ermida, S., & Zhan, W. (2021). On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sensing of Environment, 265, 112682. https://doi.org/10.1016/j.rse.2021.112682
dc.relation.referencesChang, Y., Xiao, J., Li, X., Middel, A., Zhang, Y., Gu, Z., Wu, Y., & He, S. (2021). Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data. Remote Sensing of Environment, 263, 112544. https://doi.org/10.1016/j.rse.2021.112544
dc.relation.referencesCharles, T. D. S., Lopes, T. R., Duarte, S. N., Nascimento, J. G., Ricardo, H. D. C., & Pacheco, A. B. (2022). Estimating average annual rainfall by ordinary kriging and TRMM precipitation products in midwestern Brazil. Journal of South American Earth Sciences, 118, 103937. https://doi.org/10.1016/j.jsames.2022.103937
dc.relation.referencesChen, A., Yao, L., Sun, R., & Chen, L. (2014). How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecological Indicators, 45, 424-433. https://doi.org/10.1016/j.ecolind.2014.05.002
dc.relation.referencesCheval, S., Amihăesei, V.-A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., Micu, D. M., Mihulet, E., Ontel, I., Paraschiv, M.-G., & Tudose, N. C. (2024). A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603. https://doi.org/10.1016/j.crm.2024.100603
dc.relation.referencesCui, P., Xv, D., Tang, J., Lu, J., & Wu, Y. (2024). Assessing the effects of urban green spaces metrics and spatial structure on LST and carbon sinks in Harbin, a cold region city in China. Sustainable Cities and Society, 113, 105659. https://doi.org/10.1016/j.scs.2024.105659
dc.relation.referencesD’agostino, R. B., Belanger, A., & D’agostino, R. B. (1990). A Suggestion for Using Powerful and Informative Tests of Normality. The American Statistician, 44(4), 316-321. https://doi.org/10.1080/00031305.1990.10475751
dc.relation.referencesDel Toro Pérez, A. F., Julio Galvis, L. L., Payares Ramos, P. L., & Villadiego Martinez, H. A. (2023). Islas de calor urbano en el municipio de Santa Cruz de Lorica, Colombia, entre los años 2001, 2007 y 2021, caso de aplicación con imágenes satelitales ASTER. Revista Environment & Technology, 4(1), 87-101. https://doi.org/10.56205/ret.4-1.5
dc.relation.referencesDeng, X., Yu, W., Shi, J., Huang, Y., Li, D., He, X., Zhou, W., & Xie, Z. (2024). Characteristics of surface urban heat islands in global cities of different scales: Trends and drivers. Sustainable Cities and Society, 107, 105483. https://doi.org/10.1016/j.scs.2024.105483
dc.relation.referencesDíaz-Chávez, L., Melendez-Surmay, R., & Arregocés, H. A. (2024). Urban heat island intensity in coastal cities of northern Colombia using Landsat data and WRF/UCM model. Case Studies in Chemical and Environmental Engineering, 9, 100617. https://doi.org/10.1016/j.cscee.2024.100617
dc.relation.referencesDiem, P. K., Nguyen, C. T., Diem, N. K., Diep, N. T. H., Thao, P. T. B., Hong, T. G., & Phan, T. N. (2024). Remote sensing for urban heat island research: Progress, current issues, and perspectives. Remote Sensing Applications: Society and Environment, 33, 101081. https://doi.org/10.1016/j.rsase.2023.101081
dc.relation.referencesDing, L., Xiao, X., & Wang, H. (2025). Temporal and spatial variations of urban surface temperature and correlation study of influencing factors. Scientific Reports, 15(1), 914. https://doi.org/10.1038/s41598-025-85146-4
dc.relation.referencesDu, H., Ai, J., Cai, Y., Jiang, H., & Liu, P. (2019). Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China. Sustainability, 11(10), 2890. https://doi.org/10.3390/su11102890
dc.relation.referencesEarth Resources Observation and Science (EROS) Center. (2020, noviembre 27). USGS EROS Archive—Landsat Archives—Landsat 8-9 Operational Land Imager and Thermal Infrared Sensor Collection 2 Level-1 Data | U.S. Geological Survey. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-9-operational-land-imager-and
dc.relation.referencesEttinger, A. K., Bratman, G. N., Carey, M., Hebert, R., Hill, O., Kett, H., Levin, P., Murphy-Williams, M., & Wyse, L. (2024). Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Scientific Reports, 14(1), 3266. https://doi.org/10.1038/s41598-024-51921-y
dc.relation.referencesF. Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres‐Neto, P., Reineking, B., Schröder, B., M. Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609-628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
dc.relation.referencesFan, C., & Wang, Z. (2020). Spatiotemporal Characterization of Land Cover Impacts on Urban Warming: A Spatial Autocorrelation Approach. Remote Sensing, 12(10), 1631. https://doi.org/10.3390/rs12101631
dc.relation.referencesFan, H., Yu, Z., Yang, G., Liu, T. Y., Liu, T. Y., Hung, C. H., & Vejre, H. (2019). How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agricultural and Forest Meteorology, 265, 338-348. https://doi.org/10.1016/j.agrformet.2018.11.027
dc.relation.referencesFetene, A. (2025). Remote sensing analysis of urban heat island dynamics in Bahir Dar and Hawassa, Ethiopia: The role of vegetation, urbanization, and climate. Environmental Challenges.
dc.relation.referencesFlores, S., Van Mechelen, C., Vallejo, J. P., & Van Meerbeek, K. (2022). Trends and status of urban green and urban green research in Latin America. Landscape and Urban Planning, 227, 104536. https://doi.org/10.1016/j.landurbplan.2022.104536
dc.relation.referencesFortin, M.-J., & Dale, M. R. T. (2014). Spatial analysis – a guide for ecologists. Cambridge University Press.
dc.relation.referencesFrancis, J., Disney, M., & Law, S. (2023). Monitoring canopy quality and improving equitable outcomes of urban tree planting using LiDAR and machine learning. Urban Forestry & Urban Greening, 89, 128115. https://doi.org/10.1016/j.ufug.2023.128115
dc.relation.referencesFuenzalida, M., Buzai, G. D., Moreno Jiménez, A., & García de León, A. (2015). Geografía, Geotecnología y Análisis Espacial: Tendencias, métodos y aplicaciones (Vol. 1). EDITORIAL TRIANGULO.
dc.relation.referencesFuenzalida, M., & Cobs, V. (2013). La perspectiva del análisis espacial en la herramienta sig: Una revisión desde la geografía hacia las ciencias sociales. Persona y Sociedad, 27(3), 33. https://doi.org/10.53689/pys.v27i3.48
dc.relation.referencesGao, J., Wu, L., Lin, G., Zou, J., Yan, B., Liu, K., He, S., & Bo, X. (2025). Multi-task multi-view and iterative error-correcting random forest for acute toxicity prediction. Expert Systems with Applications, 274, 126972. https://doi.org/10.1016/j.eswa.2025.126972
dc.relation.referencesGao, Y., Zhang, N., Chen, Y., Luo, L., Ao, X., & Li, W. (2024). Urban heat island characteristics of Yangtze river delta in a heatwave month of 2017. Meteorology and Atmospheric Physics, 136(5), 30. https://doi.org/10.1007/s00703-024-01027-x
dc.relation.referencesGao, Y., Zhao, J., & Han, L. (2024). Quantitative comparison of seasonal and diurnal characteristics for urban heat using meteorological monitoring data. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-024-06172-9
dc.relation.referencesGaravito, J. (2020). El Clime de Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(170), 361-372.
dc.relation.referencesGarcía, D. H. (2022). Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: A Study of Andalusian Cities in Spain. Earth Systems and Environment, 6(1), 199-219. https://doi.org/10.1007/s41748-021-00268-9
dc.relation.referencesGarnier-Villarreal, M. (2022). Introducción al análisis geoestadístico de datos en geociencias: Teoría y aplicación. Revista Geológica de América Central, 67, 1-22. https://doi.org/10.15517/rgac.v67i0.51474
dc.relation.referencesGarzón, J., Molina, I., Velasco, J., & Calabia, A. (2021). A Remote Sensing Approach for Surface Urban Heat Island Modeling in a Tropical Colombian City Using Regression Analysis and Machine Learning Algorithms. Remote Sensing, 13(21), 4256. https://doi.org/10.3390/rs13214256
dc.relation.referencesGarzón, J., Molina Sánchez, I., & Jiménez Cleves, G. (2024). Evaluación del fenómeno de la isla de calor urbano en Cartago, Colombia: Tendencias de factores ambientales en los últimos 20 años. 1-11. https://doi.org/10.26507/paper.3712
dc.relation.referencesGemitzi, A., Dalampakis, P., & Falalakis, G. (2021). Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 96, 102283. https://doi.org/10.1016/j.jag.2020.102283
dc.relation.referencesGeng, X., Zhang, D., Li, C., Yuan, Y., Yu, Z., & Wang, X. (2023). Impacts of climatic zones on urban heat island: Spatiotemporal variations, trends, and drivers in China from 2001–2020. Sustainable Cities and Society, 89, 104303. https://doi.org/10.1016/j.scs.2022.104303
dc.relation.referencesGetis, A. (2008). A History of the Concept of Spatial Autocorrelation: A Geographer’s Perspective. Geographical Analysis, 40(3), 297-309. https://doi.org/10.1111/j.1538-4632.2008.00727.x
dc.relation.referencesGetis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
dc.relation.referencesGiraldo Henao, R. (2002). Introducción a la Geoestadística – Teoría y Aplicación. Departamento de Estadística - Universidad Nacional de Colombia.
dc.relation.referencesGolden, J. S., Carlson, J., Kaloush, K. E., & Phelan, P. (2007). A comparative study of the thermal and radiative impacts of photovoltaic canopies on pavement surface temperatures. Solar Energy, 81(7), 872-883. https://doi.org/10.1016/j.solener.2006.11.007
dc.relation.referencesGómez, Lady, & Castañeda, C. (2013). Estudio del Crecimiento Urbano con respecto al Efecto Isla de Calor para establecer Lineamientos de Gestión Energético Ambiental en Bogotá. Eleventh Latin American and Caribbean for Engieneering and Technology, 1-10.
dc.relation.referencesGoodspeed, R., Sengupta, R., Kyttä, M., & Pettit, C. (Eds.). (2023). Intelligence for Future Cities: Planning Through Big Data and Urban Analytics. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-31746-0
dc.relation.referencesGuo, A., He, T., Yue, W., Xiao, W., Yang, J., Zhang, M., & Li, M. (2023). Contribution of urban trees in reducing land surface temperature: Evidence from china’s major cities. International Journal of Applied Earth Observation and Geoinformation, 125, 103570. https://doi.org/10.1016/j.jag.2023.103570
dc.relation.referencesGuo, B., Yang, F., Wu, H., Zhang, R., Zang, W., Wei, C., Jiang, G., Meng, C., Zhao, H., Zhen, X., Zhang, D., & Zhang, H. (2021). How the variations of terrain factors affect the optimal interpolation methods for multiple types of climatic elements? Earth Science Informatics, 14(2), 1021-1032. https://doi.org/10.1007/s12145-021-00609-2
dc.relation.referencesGuo, J., Fan, L., Feng, P., Sun, X., & Xue, S. (2025). Response of vegetation evapotranspiration to landscape pattern changes in an arid region: A case study of the Loess Plateau, China. CATENA, 252, 108878. https://doi.org/10.1016/j.catena.2025.108878
dc.relation.referencesHaining, R. P., Kerry, R., & Oliver, M. A. (2010). Geography, Spatial Data Analysis, and Geostatistics: An Overview. 地理学、空间数据分析及地统计学:综述. Geographical Analysis, 42(1), 7-31. https://doi.org/10.1111/j.1538-4632.2009.00780.x
dc.relation.referencesHamed Fahmy, A., Amin Abdelfatah, M., & El-Fiky, G. (2023). Investigating land use land cover changes and their effects on land surface temperature and urban heat islands in Sharqiyah Governorate, Egypt. Egyptian Journal of Remote Sensing and Space Science, 26(2), 293-306. https://doi.org/10.1016/j.ejrs.2023.04.001
dc.relation.referencesHan, D., An, H., Cai, H., Wang, F., Xu, X., Qiao, Z., Jia, K., Sun, Z., & An, Y. (2023). How do 2D/3D urban landscapes impact diurnal land surface temperature: Insights from block scale and machine learning algorithms. Sustainable Cities and Society, 99, 104933. https://doi.org/10.1016/j.scs.2023.104933
dc.relation.referencesHan, D., Cai, H., Wang, F., Wang, M., Xu, X., Qiao, Z., An, H., Liu, Y., Jia, K., Sun, Z., & Wang, S. (2024). Understanding the role of urban features in land surface temperature at the block scale: A diurnal cycle perspective. Sustainable Cities and Society, 111, 105588. https://doi.org/10.1016/j.scs.2024.105588
dc.relation.referencesHe, C., Zhang, Y., Gong, D., & Ji, X. (2023). A review of surrogate-assisted evolutionary algorithms for expensive optimization problems. Expert Systems with Applications, 217, 119495. https://doi.org/10.1016/j.eswa.2022.119495
dc.relation.referencesHe, T., Hu, Y., Guo, A., Chen, Y., Yang, J., Li, M., & Zhang, M. (2024). Quantifying the impact of urban trees on land surface temperature in global cities. ISPRS Journal of Photogrammetry and Remote Sensing, 210, 69-79. https://doi.org/10.1016/j.isprsjprs.2024.03.007
dc.relation.referencesHeaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 4(3), 296-305. https://doi.org/10.1007/s40572-017-0150-3
dc.relation.referencesHengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283-1298. https://doi.org/10.1016/j.cageo.2005.11.008
dc.relation.referencesHou, N., Zhang, X., Zhang, W., Wei, Y., Jia, K., Yao, Y., Jiang, B., & Cheng, J. (2020). Estimation of Surface Downward Shortwave Radiation over China from Himawari-8 AHI Data Based on Random Forest. Remote Sensing, 12(1), 181. https://doi.org/10.3390/rs12010181
dc.relation.referencesHoward, M., Hathaway, J. M., Tirpak, R. A., Lisenbee, W. A., & Sims, S. (2022). Quantifying urban tree canopy interception in the southeastern United States. Urban Forestry & Urban Greening, 77, 127741. https://doi.org/10.1016/j.ufug.2022.127741
dc.relation.referencesHuang, F., Zhan, W., Wang, Z. H., Voogt, J., Hu, L., Quan, J., Liu, C., Zhang, N., & Lai, J. (2020). Satellite identification of atmospheric-surface-subsurface urban heat islands under clear sky. Remote Sensing of Environment, 250(July), 112039. https://doi.org/10.1016/j.rse.2020.112039
dc.relation.referencesHumacata, L. M. (2014). Aportes metodológicos del análisis espacial con Sistemas de Información Geográfica a la clasificación espacial en Geografía. Revista del Departamento de Ciencias Sociales Universidad Nacional de Luján, 3, 118-147.
dc.relation.referencesInstituto Distrital de Gestión de Riesgos y Cambio Climático. (2025). Informacion Hidrometeorologica—SIRE. Instituto Distrital de Gestión de Riesgos y Cambio Climático. https://www.sire.gov.co/web/sab/informacion-hidrometeorologica
dc.relation.referencesJabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023). Urban heat islands: A review of contributing factors, effects and data. IOP Conference Series: Earth and Environmental Science, 1129(1). https://doi.org/10.1088/1755-1315/1129/1/012038
dc.relation.referencesJamarkattel, U., Lamichhane, B. R., Gautam, S., K.C., N., Sherchan, B., & Horanont, T. (2025). Analyzing Urban Heat Islands in Pokhara Metropolitan City-Nepal through Remote Sensing Techniques. Remote Sensing Applications: Society and Environment, 37, 101479. https://doi.org/10.1016/j.rsase.2025.101479
dc.relation.referencesJaniesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2
dc.relation.referencesJardín Botánico de Bogotá. (2023, diciembre 12). Datos Abiertos Bogotá—Arbolado Urbano. Bogotá D.C. https://datosabiertos.bogota.gov.co/dataset/censo-arbolado-urbano
dc.relation.referencesJato-Espino, D., Lierow, S., & Rodríguez-Sánchez, M.-Á. (2025). Using classification algorithms to model nighttime Surface Urban Heat Island (SUHI), with an emphasis on the role of urban trees. Building and Environment, 270, 112572. https://doi.org/10.1016/j.buildenv.2025.112572
dc.relation.referencesJin, J., Chen, W. Y., Jia, B., & Wang, C. (2024). Cooling effect of urban greenery: A bibliometric analysis. Urban Forestry & Urban Greening, 99, 128453. https://doi.org/10.1016/j.ufug.2024.128453
dc.relation.referencesJohnson, Z. C., Johnson, B. G., Briggs, M. A., Snyder, C. D., Hitt, N. P., & Devine, W. D. (2021). Heed the data gap: Guidelines for using incomplete datasets in annual stream temperature analyses. Ecological Indicators, 122, 107229. https://doi.org/10.1016/j.ecolind.2020.107229
dc.relation.referencesKafy, A.-A., Saha, M., Faisal, A.-A.-, Rahaman, Z. A., Rahman, M. T., Liu, D., Fattah, Md. A., Al Rakib, A., AlDousari, A. E., Rahaman, S. N., Hasan, M. Z., & Ahasan, M. A. K. (2022). Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms. Building and Environment, 217, 109066. https://doi.org/10.1016/j.buildenv.2022.109066
dc.relation.referencesKamaraj, N. P., Shekhar, S., Sivashankari, V., Balasubramani, K., & Prasad, K. A. (2021). Detecting heat-inducing urban built-up surface material with multi remote sensing datasets using reflectance and emission spectroscopy. Remote Sensing of Environment, 264, 112591. https://doi.org/10.1016/j.rse.2021.112591
dc.relation.referencesKasniza Jumari, N. A. S., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., Sherif, M., & Elshafie, A. (2023). Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8), e18424. https://doi.org/10.1016/j.heliyon.2023.e18424
dc.relation.referencesKemarau, R. A., & Eboy, O. V. (2021). The influence of El Niño Southern Oscillation on urban heat island formation at tropical city: Case of Kuching City, Sarawak. https://ejournal.ukm.my/gmjss/article/view/49933
dc.relation.referencesKim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renewable and Sustainable Energy Reviews, 148, 111256. https://doi.org/10.1016/j.rser.2021.111256
dc.relation.referencesKuznetsova, I. N., Semutnikova, E. G., Lezina, E. A., Zakharova, P. V., Tkacheva, Yu. V., Varentsov, M. I., Tarasova, M. A., Rivin, G. S., & Khrykina, E. A. (2024). Characteristics of the Moscow Heat Island and Quality of Its Simulation with the COSMO-Ru1-MSK Model Based on the Mosecomonitoring Observations. Russian Meteorology and Hydrology, 49(9), 795-810. https://doi.org/10.3103/S106837392409005X
dc.relation.referencesLee, H., Holst, J., & Mayer, H. (2013). Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Advances in Meteorology, 2013, 1-13. https://doi.org/10.1155/2013/312572
dc.relation.referencesLi, F., Yigitcanlar, T., Nepal, M., Nguyen, K., & Dur, F. (2023). Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustainable Cities and Society, 96, 104653. https://doi.org/10.1016/j.scs.2023.104653
dc.relation.referencesLi, K., Chen, Y., & Gao, S. (2022). Uncertainty of city-based urban heat island intensity across 1112 global cities: Background reference and cloud coverage. Remote Sensing of Environment, 271(September 2021), 112898. https://doi.org/10.1016/j.rse.2022.112898
dc.relation.referencesLi, X., Li, X., Ma, H., Zhou, J., Ge, F., Zhang, W., Yan, Y., & Zhou, Y. (2025). Revisiting urban heat island effects in China: Multi-satellite evidence from the ESA-CCI land surface temperature product. Sustainable Cities and Society, 123, 106281. https://doi.org/10.1016/j.scs.2025.106281
dc.relation.referencesLi, Y., Cao, M., Yan, S., Meng, H., Wang, Q., Li, S., Zhang, T., Zhang, Z., Liang, L., & Zhang, W. (2025). Assessing the contribution of urban green space landscape patterns to ozone concentration variations. Environmental Research, 275, 121434. https://doi.org/10.1016/j.envres.2025.121434
dc.relation.referencesLi, Y., Svenning, J.-C., Zhou, W., Zhu, K., Abrams, J. F., Lenton, T. M., Ripple, W. J., Yu, Z., Teng, S. N., Dunn, R. R., & Xu, C. (2024). Green spaces provide substantial but unequal urban cooling globally. Nature Communications, 15(1), 7108. https://doi.org/10.1038/s41467-024-51355-0
dc.relation.referencesLi, Y., Yang, T., Zhao, G., Ma, C., Yan, Y., Xu, Y., Wang, L., & Wang, L. (2024). A systematic review of studies involving canopy layer urban heat island: Monitoring and associated factors. Ecological Indicators, 158, 111424. https://doi.org/10.1016/j.ecolind.2023.111424
dc.relation.referencesLi, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008
dc.relation.referencesLillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote sensing and image interpretation (Seventh edition). Wiley.
dc.relation.referencesLin, W., Yu, T., Chang, X., Wu, W., & Zhang, Y. (2015). Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66-75. https://doi.org/10.1016/j.landurbplan.2014.10.012
dc.relation.referencesLin, Z., Xu, H., Han, L., Zhang, H., Peng, J., & Yao, X. (2024). Day and night: Impact of 2D/3D urban features on land surface temperature and their spatiotemporal non-stationary relationships in urban building spaces. Sustainable Cities and Society, 108, 105507. https://doi.org/10.1016/j.scs.2024.105507
dc.relation.referencesLiu, H., Huang, B., Zhan, Q., Gao, S., Li, R., & Fan, Z. (2021). The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustainable Cities and Society, 71, 102987. https://doi.org/10.1016/j.scs.2021.102987
dc.relation.referencesLiu, L., Lin, Y., Liu, J., Wang, L., Wang, D., Shui, T., Chen, X., & Wu, Q. (2017). Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Building and Environment, 117, 191-207. https://doi.org/10.1016/j.buildenv.2017.03.013
dc.relation.referencesLiu, W., Zhao, H., Sun, S., Xu, X., Huang, T., & Zhu, J. (2022). Green Space Cooling Effect and Contribution to Mitigate Heat Island Effect of Surrounding Communities in Beijing Metropolitan Area. Frontiers in Public Health, 10, 870403. https://doi.org/10.3389/fpubh.2022.870403
dc.relation.referencesLiu, Z., Li, J., Wu, Y., Qin, C., & Liu, Y. (2025). Temporal trend of the frequency and maximum durations of surface urban heat islands over global cities. Sustainable Cities and Society, 120, 106141. https://doi.org/10.1016/j.scs.2025.106141
dc.relation.referencesLogan, T. M., Zaitchik, B., Guikema, S., & Nisbet, A. (2020). Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sensing of Environment, 247(June 2019), 111861. https://doi.org/10.1016/j.rse.2020.111861
dc.relation.referencesLombana González, L., Bernal Suárez, N. R., & Barrios Moreno, J. S. (2018). Guía Para El Procesamiento De Series De Tiempo De Precipitación Y Temperatura: Estimación De Cambios Y Homogenización Procesamiento De Datos En Excel, Apss, Tsw Y AnclimDetalles (22.a ed.). https://editorial.udistrital.edu.co/detalle.php?id=1095&f=6
dc.relation.referencesLopes, H. S., Vidal, D. G., Cherif, N., Silva, L., & Remoaldo, P. C. (2025). Green infrastructure and its influence on urban heat island, heat risk, and air pollution: A case study of Porto (Portugal). Journal of Environmental Management, 376, 124446. https://doi.org/10.1016/j.jenvman.2025.124446
dc.relation.referencesLorenzo-Sáez, E., Lerma-Arce, V., Coll-Aliaga, E., & Oliver-Villanueva, J.-V. (2021). Contribution of green urban areas to the achievement of SDGs. Case study in Valencia (Spain). Ecological Indicators, 131, 108246. https://doi.org/10.1016/j.ecolind.2021.108246
dc.relation.referencesMahesh, B. (2020). Machine Learning Algorithms—A Review. International Journal of Science and Research (IJSR), 9(1), 381-386. https://doi.org/10.21275/ART20203995
dc.relation.referencesManapragada, N. V. S. K., Mandelmilch, M., Roitberg, E., Kizel, F., & Natanian, J. (2025). Remote Sensing for Environmentally Responsive Urban Built Environment: A Review of Tools, Methods and Gaps. Remote Sensing Applications: Society and Environment, 101529. https://doi.org/10.1016/j.rsase.2025.101529
dc.relation.referencesMartilli, A. (2020). Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Climate.
dc.relation.referencesMayorga Henao, J. M., & Lopez, D. F. (2021). Relación entre calidad de vida y distribución del arbolado urbano en Bogotá: Una perspectiva desde la justicia ambiental urbana. Revista de Direito da Cidade, 13(4). https://doi.org/10.12957/rdc.2021.40272
dc.relation.referencesMcGarigal, K., Cushman, S., & Ene, E. (2023). FRAGSTATS v4: Programa de análisis de patrones espaciales para mapas categóricos. (Versión 4) [Software]. https://www.fragstats.org
dc.relation.referencesMiller, H. J. (2004). Tobler’s First Law and Spatial Analysis. Annals of the Association of American Geographers, 94(2), 284-289. https://doi.org/10.1111/j.1467-8306.2004.09402005.x
dc.relation.referencesMolina-Gómez, N. I., Varon-Bravo, L. M., Sierra-Parada, R., & López-Jiménez, P. A. (2022). Urban growth and heat islands: A case study in micro-territories for urban sustainability. Urban Ecosystems, 25(5), 1379-1397. https://doi.org/10.1007/s11252-022-01232-9
dc.relation.referencesMontorio, R., Pérez-Cabello, F., Borini Alves, D., & García-Martín, A. (2020). Unitemporal approach to fire severity mapping using multispectral synthetic databases and Random Forests. Remote Sensing of Environment, 249, 112025. https://doi.org/10.1016/j.rse.2020.112025
dc.relation.referencesMoran, P. (1948). The Interpretation of Statistical Maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243-251.
dc.relation.referencesMoreno, R., Zamora, R., Moreno-García, N., & Galán, C. (2023). Effects of composition and structure variables of urban trees in the reduction of heat islands; case study, Temuco city, Chile. Building and Environment, 135639. https://doi.org/10.1016/j.buildenv.2023.110859
dc.relation.referencesMoss, J. L., Doick, K. J., Smith, S., & Shahrestani, M. (2019). Influence of evaporative cooling by urban forests on cooling demand in cities. Urban Forestry & Urban Greening, 37, 65-73. https://doi.org/10.1016/j.ufug.2018.07.023
dc.relation.referencesMunyati, C., & Sinthumule, N. I. (2021). Comparative suitability of ordinary kriging and Inverse Distance Weighted interpolation for indicating intactness gradients on threatened savannah woodland and forest stands. Environmental and Sustainability Indicators, 12, 100151. https://doi.org/10.1016/j.indic.2021.100151
dc.relation.referencesNakata-Osaki, C. M., Souza, L. C. L., & Rodrigues, D. S. (2017). Tool for Heat Island Simulation (THIS) and simulation of different urban scenarios. CUPUM 2017 - 15th International Conference on Computers in Urban Planning and Urban Management, 1-14.
dc.relation.referencesNjoku, E. A., Akpan, P. E., Effiong, A. E., & Babatunde, I. O. (2023). The effects of station density in geostatistical prediction of air temperatures in Sweden: A comparison of two interpolation techniques. Resources, Environment and Sustainability, 11, 100092. https://doi.org/10.1016/j.resenv.2022.100092
dc.relation.referencesNOAA, N. O. and A. A. –. (2024). Cold & Warm Episodes by Season, Warm and cold periods based on a threshold of +/- 0.5oC for the Oceanic Niño Index (ONI). National Weather Service – Climate Prediction Center. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
dc.relation.referencesOke, T. R. (1982). The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980). Quarterly Journal, Royal Meteorological Society, 108(455), 1-24.
dc.relation.referencesOrganización Meteorológica Mundial. (2017). Directrices de la Organización Meteorológica Mundial sobre el cálculo de las normales climáticas.
dc.relation.referencesOrkomi, A. A., & Ameri, M. (2024). Investigating the intensity of urban heat island and the impacts of local climate using verified WRF data: A case study of Rasht, Northern Iran. Sustainable Cities and Society, 106, 105405. https://doi.org/10.1016/j.scs.2024.105405
dc.relation.referencesOukawa, G. Y., Krecl, P., & Targino, A. C. (2022). Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Science of The Total Environment, 815, 152836. https://doi.org/10.1016/j.scitotenv.2021.152836
dc.relation.referencesPeeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., Gebbers, R., & Ben-Gal, A. (2015). Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Computers and Electronics in Agriculture, 111, 140-150. https://doi.org/10.1016/j.compag.2014.12.011
dc.relation.referencesPineda, M. C. (Ed.). (2011). Actas I Congreso Internacional en Ordenamiento Territorial y Tecnologías de la Información Geográfica: Ciudad de Tegucigalpa, Honduras del 11 al 16 de octubre de 2010. Congreso Internacional en Ordenamiento Territorial y Tecnologías de la Información Geográfica, Alcalá de Henares. Universidad de Alcalá de Henares.
dc.relation.referencesRahman, M. A., Stratopoulos, L. M. F., Moser-Reischl, A., Zölch, T., Häberle, K.-H., Rötzer, T., Pretzsch, H., & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606
dc.relation.referencesRamírez-Aguilar, E. A., & Lucas Souza, L. C. (2019). Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Climate, 29, 100497. https://doi.org/10.1016/j.uclim.2019.100497
dc.relation.referencesRees, G., Hebryn-Baidy, L., & Belenok, V. (2024). Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine. Remote Sensing, 16(9), 1637. https://doi.org/10.3390/rs16091637
dc.relation.referencesRochner, M. L., Moriarty, K. J., & Weatherbee, S. (2025). Dendrochronological analyses of tree growth and climate response across an urban-rural gradient, Louisville, Kentucky. Urban Forestry & Urban Greening, 104, 128592. https://doi.org/10.1016/j.ufug.2024.128592
dc.relation.referencesRoy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite Remote Sensing: Sensors, Applications and Techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 465-472. https://doi.org/10.1007/s40010-017-0428-8
dc.relation.referencesSantamouris, M. (2014). Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682-703. https://doi.org/10.1016/j.solener.2012.07.003
dc.relation.referencesSantana, L. M. (2007). Landsat ETM+ image applications to extract information for environmental planning in a Colombian city. International Journal of Remote Sensing, 28(19), 4225-4242. https://doi.org/10.1080/01431160701244856
dc.relation.referencesSarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
dc.relation.referencesSchonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal: Promoting Communications on Statistics and Stata, 20(1), 3-29. https://doi.org/10.1177/1536867X20909688
dc.relation.referencesScolio, M., Kremer, P., Zhang, Y., & Shakya, K. M. (2024). Spatial-temporal modeling of the relationship between surface temperature and air temperature in metropolitan urban systems. Urban Climate, 55, 101921. https://doi.org/10.1016/j.uclim.2024.101921
dc.relation.referencesSecretaría Distrital de Ambiente. (2024). INFORME MENSUAL DE LA RED DE MONITOREO DE CALIDAD DEL AIRE DE BOGOTÁ – RMCAB (pp. 71-113). Secretaría Distrital de Ambiente. http://rmcab.ambientebogota.gov.co/Pagesfiles/28062024_%20Informe%20Anual%20Calidad%20del%20Aire%202023%20Ajustado%20.pdf
dc.relation.referencesSerrano Vincenti, S., Zuleta, D., Moscoso, V., Jácome, P., Palacios, E., & Villacís, M. (2012). Análisis estadístico de datos meteorológicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. La Granja, 16(2), 23. https://doi.org/10.17163/lgr.n16.2012.03
dc.relation.referencesShakarami, K., & Rahim Rahnama, M. (2023). Spatial analysis of the impacts of the urban form on the energy consumption of Karaj over the Covid-19 era (2019–2022). Energy and Buildings, 298, 113568. https://doi.org/10.1016/j.enbuild.2023.113568
dc.relation.referencesShi, H., Xian, G., Auch, R., Gallo, K., & Zhou, Q. (2021). Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land, 10(8), 867. https://doi.org/10.3390/land10080867
dc.relation.referencesShi, T., Yang, Y., & Qi, P. (2024). Study on the Impact of Urban Morphologies on Urban Canopy Heat Islands Based on Relocated Meteorological Stations. Remote Sensing, 16(9), 1500. https://doi.org/10.3390/rs16091500
dc.relation.referencesShi, Y., & Zhao, S. (2022). Discover the desirable landscape structure for mitigating urban heat: The urban-rural gradient approach for an ancient Chinese city. Cities, 127, 103737. https://doi.org/10.1016/j.cities.2022.103737
dc.relation.referencesSiabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 1-22. https://doi.org/10.15446/rcdg.v28n1.76919
dc.relation.referencesSiabato, W., & Yidego, C. (2004). Geoestadistica y medio ambiente. XI Congreso de Métodos Cuantitativos, SIG y Teledetección, España.
dc.relation.referencesSiddiqui, A., Kushwaha, G., Nikam, B., Srivastav, S. K., Shelar, A., & Kumar, P. (2021). Analysing the day/night seasonal and annual changes and trends in land surface temperature and surface urban heat island intensity (SUHII) for Indian cities. Sustainable Cities and Society, 75, 103374. https://doi.org/10.1016/j.scs.2021.103374
dc.relation.referencesSilva, B. B. D., Braga, A. C., Braga, C. C., Oliveira, L. M. M. D., Montenegro, S. M. G. L., & Barbosa Junior, B. (2016). Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 3-8. https://doi.org/10.1590/1807-1929/agriambi.v20n1p3-8
dc.relation.referencesSingh, N., Singh, S., & Mall, R. K. (2020). Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. En Urban Ecology: Emerging Patterns and Social-Ecological Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-820730-7.00017-3
dc.relation.referencesSivakumar, M. V. K. S., Roy, P. S., Harmsen, K., & Saha, S. K. (2004). Principles of remote sensing. Satellite remote sensing and GIS applications in agricultural meteorology. World Meteorological Organisation.
dc.relation.referencesSohrabinia, M., Zawar-Reza, P., & Rack, W. (2015). Spatio-temporal analysis of the relationship between LST from MODIS and air temperature in New Zealand. Theoretical and Applied Climatology, 119(3-4), 567-583. https://doi.org/10.1007/s00704-014-1106-2
dc.relation.referencesSoltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Frontiers of Architectural Research, 6(4), 529-538. https://doi.org/10.1016/j.foar.2017.08.001
dc.relation.referencesSoto-Estrada, E. (2019). Estimation of the urban heat island in medellin, Colombia. Revista Internacional de Contaminacion Ambiental, 35(2), 421-434. https://doi.org/10.20937/RICA.2019.35.02.13
dc.relation.referencesSrivastava, R. M. (2013). Geostatistics: A toolkit for data analysis, spatial prediction and risk management in the coal industry. International Journal of Coal Geology, 112, 2-13. https://doi.org/10.1016/j.coal.2013.01.011
dc.relation.referencesTarihi, G., & Tarihi, K. (2017). Basic Kriging Methods in Geostatistics. Journal of Agricultural Sciences, 27(1), 10-20.
dc.relation.referencesTiwari, A., Kumar, P., Kalaiarasan, G., & Ottosen, T.-B. (2021). The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation. Environmental Pollution, 274, 115898. https://doi.org/10.1016/j.envpol.2020.115898
dc.relation.referencesTrujillo Uribe, S. (2014). Estimación De Temperatura Superficial En El Valle De Aburrá Mediante Técnicas De Percepción Remota.
dc.relation.referencesUN-Habitat. (2022). Envisaging the Future of Cities. United Nations Human Settlements Programme (UN-Habitat).
dc.relation.referencesVeerkamp, C. J., Schipper, A. M., Hedlund, K., Lazarova, T., Nordin, A., & Hanson, H. I. (2021). A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosystem Services, 52, 101367. https://doi.org/10.1016/j.ecoser.2021.101367
dc.relation.referencesVenter, Z. S., Krog, N. H., & Barton, D. N. (2020). Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Science of the Total Environment, 709, 136193. https://doi.org/10.1016/j.scitotenv.2019.136193
dc.relation.referencesVillamil-Almeida, H., Blanco-Mantilla, K., Salah-García, O., & García-Sánchez, C. (2020). Characterization of the urban heat island at Bucaramanga, Colombia, using real­time temperature monitoring. Revista Facultad de Ingeniería, Universidad de Antioquia, 97.
dc.relation.referencesWang, C., Wang, Z., & Yang, J. (2018). Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Future, 6(8), 1066-1081. https://doi.org/10.1029/2018EF000891
dc.relation.referencesWang, J., & Ouyang, W. (2017). Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification. Journal of Environmental Management, 187, 239-252. https://doi.org/10.1016/j.jenvman.2016.11.059
dc.relation.referencesWang, M., Wang, X., Luan, Q., & Xu, X. (2025). A new perspective to assess urban heat islands by incorporating both canopy and boundary layer air temperature from the view of satellite remote sensing. Sustainable Cities and Society, 106315. https://doi.org/10.1016/j.scs.2025.106315
dc.relation.referencesWang, Q., Wang, X., Zhou, Y., Liu, D., & Wang, H. (2022). The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustainable Cities and Society, 79, 103722. https://doi.org/10.1016/j.scs.2022.103722
dc.relation.referencesWang, X., Dallimer, M., Scott, C. E., Shi, W., & Gao, J. (2021). Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Science of The Total Environment, 770, 145211. https://doi.org/10.1016/j.scitotenv.2021.145211
dc.relation.referencesWang, Y., Lv, W., Wang, M., Chen, X., & Li, Y. (2023). Application of improved Moran’s I in the evaluation of urban spatial development. Spatial Statistics, 54, 100736. https://doi.org/10.1016/j.spasta.2023.100736
dc.relation.referencesWeng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005
dc.relation.referencesWoodman, R. J., & Mangoni, A. A. (2023). A comprehensive review of machine learning algorithms and their application in geriatric medicine: Present and future. Aging Clinical and Experimental Research, 35(11), 2363-2397. https://doi.org/10.1007/s40520-023-02552-2
dc.relation.referencesXiang, Y., Zheng, B., Bedra, K. B., Ouyang, Q., Liu, J., & Zheng, J. (2023). Spatial and seasonal differences between near surface air temperature and land surface temperature for Urban Heat Island effect assessment. Urban Climate, 52, 101745. https://doi.org/10.1016/j.uclim.2023.101745
dc.relation.referencesXiao, Y., & Gong, P. (2022). Removing spatial autocorrelation in urban scaling analysis. Cities, 124, 103600. https://doi.org/10.1016/j.cities.2022.103600
dc.relation.referencesYang, I., & Acharya, T. D. (2015). Exploring Landsat 8. International Journal of IT, Engineering and Applied Sciences Research, 4(4), 4-10.
dc.relation.referencesYin, C., He, B., Quan, X., & Liao, Z. (2016). Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data. International Journal of Remote Sensing, 37(3), 615-632. https://doi.org/10.1080/01431161.2015.1131867
dc.relation.referencesZargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643. https://doi.org/10.1038/s41598-023-50757-2
dc.relation.referencesZhang, W., Du, P., Fu, P., Zhang, P., Tang, P., Zheng, H., Meng, Y., & Li, E. (2022). Attention-Aware Dynamic Self-Aggregation Network for Satellite Image Time Series Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17. https://doi.org/10.1109/TGRS.2021.3120914
dc.relation.referencesZhao, K., Ning, Z., Xu, C., Zhao, X., & Huang, X. (2024). How do driving factors affect the diurnal variation of land surface temperature across different urban functional blocks? A case study of Xi’an, China. Sustainable Cities and Society, 114, 105738. https://doi.org/10.1016/j.scs.2024.105738
dc.relation.referencesZhou, D., Sun, S., Li, Y., Zhang, L., & Huang, L. (2023). A multi-perspective study of atmospheric urban heat island effect in China based on national meteorological observations: Facts and uncertainties. Science of The Total Environment, 854, 158638. https://doi.org/10.1016/j.scitotenv.2022.158638
dc.relation.referencesZhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. (2018). Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11(1), 48. https://doi.org/10.3390/rs11010048
dc.relation.referencesZhou, D., Xiao, J., Frolking, S., Zhang, L., & Zhou, G. (2022). Urbanization Contributes Little to Global Warming but Substantially Intensifies Local and Regional Land Surface Warming. Earth’s Future, 10(5), e2021EF002401. https://doi.org/10.1029/2021EF002401
dc.relation.referencesZiaul, S., & Pal, S. (2021). Simulating urban heat island for predicting its spatial pattern in meso level town of India. Urban Climate, 38, 100892. https://doi.org/10.1016/j.uclim.2021.100892
dc.relation.referencesZou, K., Yu, X., Wong, M. S., Qin, K., Zhu, R., & Li, S. (2024). Exploring the spatiotemporal evolution patterns of Urban Heat Island with a network-based approach. Sustainable Cities and Society, 117, 105926. https://doi.org/10.1016/j.scs.2024.105926
dc.relation.referencesZuluaga, S., Londoño, F., Parra, E., Arango, L., & Salazar, J. (2023). El impacto de la arborización como estrategia de mitigación de la isla de calor urbana en el Caribe colombiano. Arquitectura y Urbanismo, XLIV(2), 32-39.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc550 - Ciencias de la tierra
dc.subject.lembARBOLES FORESTALESspa
dc.subject.lembForest treeseng
dc.subject.lembESTRATEGIAS PARA EL DESARROLLOspa
dc.subject.lembDevelopment strategieseng
dc.subject.lembDESARROLLO SOSTENIBLEspa
dc.subject.lembSustainable developmenteng
dc.subject.lembUSO DE LA TIERRA-PLANIFICACIONspa
dc.subject.lembLand use - Planningeng
dc.subject.lembCONSUMO DE ENERGIAspa
dc.subject.lembEnergy consumptioneng
dc.subject.lembRENDIMIENTO ENERGETICOspa
dc.subject.lembEnergy efficiencyeng
dc.subject.lembECOLOGIA VEGETALspa
dc.subject.lembBotany - ecologyeng
dc.subject.lembCLIMATOLOGIAspa
dc.subject.lembClimatologyeng
dc.subject.lembTELEDETECCION-EQUIPOS Y ACCESORIOSspa
dc.subject.lembRemote sensing-equipment and supplieseng
dc.subject.lembFLUJO CALORIFICO TERRESTREspa
dc.subject.lembTerrestrial heat floweng
dc.subject.lembTEMPERATURA ATMOSFERICAspa
dc.subject.lembAtmospheric temperatureeng
dc.subject.proposalIsla de calor urbanaspa
dc.subject.proposalArbolado urbanospa
dc.subject.proposalTeledetecciónspa
dc.subject.proposalAnálisis espacialspa
dc.subject.proposalTemperatura superficial terrestrespa
dc.subject.proposalIntensidad de enfriamientospa
dc.subject.proposalPlanificación urbanaspa
dc.subject.proposalUrban heat islandeng
dc.subject.proposalUrban treeseng
dc.subject.proposalRemote sensingeng
dc.subject.proposalSpatial analysiseng
dc.subject.proposalLand surface temperatureeng
dc.subject.proposalCooling intensityeng
dc.subject.proposalUrban planningeng
dc.titleVariaciones de las islas de calor y su relación con el arbolado urbano en Bogotá usando imágenes satelitales y análisis espacialesspa
dc.title.translatedVariations in urban heat islands and their relationship with urban trees in Bogotá using satellite images and spatial analysiseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameAgencia Distrital para la Educación Superior, la Ciencia y la Tecnología (ATENEA)

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Variaciones de las islas de calor y arbolado urbano_Tesis.pdf
Tamaño:
4.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: