Método de segmentación de imágenes de la próstata tomadas mediante resonancia magnética mediante técnicas de inteligencia artificial

dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.advisorOspina Arango, Juan David
dc.contributor.authorDuque Miranda, Juan Esteban
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.date.accessioned2022-03-10T15:19:59Z
dc.date.available2022-03-10T15:19:59Z
dc.date.issued2021-12-09
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa segmentación de la próstata en imágenes de resonancia magnética se considera una tarea esencial para la planificación quirúrgica, así como la determinación de los estadios de enfermedades como el cáncer de próstata y la hiperplasia prostática benigna. Sin embargo, la falta de estandarización en los protocolos de adquisición de las imágenes y la heterogeneidad entre individuos hacen que esta sea una tarea difícil. Con el fin de aportar a la solución de este problema, se propone una arquitectura de red convolucional en forma de 3D Unet, que se caracteriza por tener una mayor profundidad, además de tener una fase codificación – decodificación con una compuerta de atención. Esta propuesta a diferencia de otras implementa un bloque residual similar al de la Resnet101 con una normalización por lotes. Además, utiliza una función de pérdida compuesta por el coeficiente de Dice y la entropía cruzada para manejar el problema de desequilibrio de clase. Durante la etapa de inferencia cada imagen es dividida en imágenes más pequeñas y se generan predicciones individuales, finalmente estas se unen para generar una máscara de predicción del mismo tamaño de la imagen de entrada. Para evaluar la arquitectura se utilizaron los datos del PROMISE12. Los resultados muestran desempeño superior o similar a otros métodos propuestos en la literatura. (Texto tomado de la fuente)spa
dc.description.abstractProstate segmentation on magnetic resonance imaging is considered an essential task for surgical planning as well as staging of diseases such as prostate cancer and benign prostatic hyperplasia. However, the lack of standardization in image acquisition protocols and the heterogeneity between individuals make this a difficult task. To contribute to the solution of this problem, a convolutional network architecture in the form of 3D Unet is proposed, which is characterized by having greater depth, in addition to having an encoding-decoding phase with an attention gate. Unlike others, this proposal implements a residual block similar to that of Resnet101 with batch normalization. Furthermore, it uses a loss function composed of the Dice coefficient and the cross-entropy to handle the class imbalance problem. During the inference stage, each image is divided into smaller images and individual predictions are generated, finally these are joined to generate a prediction mask of the same size as the input image To evaluate the architecture, data from PROMISE12 were used. The results show superior or similar performance to other methods proposed in the literature.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería – Ingeniería de Sistemasspa
dc.description.researchareaVisión por computadoraspa
dc.format.extentxi, 29 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81179
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.referencesAldoj, N., Biavati, F., Michallek, F., Stober, S., & Dewey, M. (2020). Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Scientific Reports 2020 10:1, 10(1), 1–17. https://doi.org/10.1038/s41598-020-71080-0spa
dc.relation.referencesAmerican Cancer Society (ACS). (s.f.). Key Statistics for Prostate Cancer. https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html#written_byspa
dc.relation.referencesBravo, L. E., & Muñoz, N. (2018). Epidemiology of cancer in Colombia. Colombia Médica, 49(1), 9–12. https://doi.org/10.25100/CM.V49I1.3877spa
dc.relation.referencesChen, S., Ma, K., & Zheng, Y. (2019). Med3D: Transfer Learning for 3D Medical Image Analysis. https://doi.org/10.48550/arxiv.1904.00625spa
dc.relation.referencesÇiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9901 LNCS, 424–432. https://doi.org/10.48550/arxiv.1606.06650spa
dc.relation.referencesComelli, A., Dahiya, N., Stefano, A., Vernuccio, F., Portoghese, M., Cutaia, G., Bruno, A., Salvaggio, G., & Yezzi, A. (2021). Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging. Applied Sciences 2021, Vol. 11, Page 782, 11(2), 782. https://doi.org/10.3390/APP11020782spa
dc.relation.referencesBoor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6(1), 50–62. https://doi.org/10.1016/0021-9045(72)90080-9spa
dc.relation.referencesGhavami, N., Hu, Y., Gibson, E., Bonmati, E., Emberton, M., Moore, C. M., & Barratt, D. C. (2019). Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration. Medical Image Analysis, 58, 101558. https://doi.org/10.1016/J.MEDIA.2019.101558spa
dc.relation.referencesGuo, Y., Gao, Y., & Shen, D. (2016). Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching. IEEE Transactions on Medical Imaging, 35(4), 1077–1089. https://doi.org/10.1109/TMI.2015.2508280spa
dc.relation.referencesHe, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/10.48550/arxiv.1512.03385spa
dc.relation.referencesIsensee, F., Jäger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2020). Automated Design of Deep Learning Methods for Biomedical Image Segmentation. Nature Methods, 18(2), 203–211. https://doi.org/10.1038/s41592-020-01008-zspa
dc.relation.referencesJia, H., Song, Y., Huang, H., Cai, W., & Xia, Y. (2019). HD-Net: Hybrid Discriminative Network for Prostate Segmentation in MR Images. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11765 LNCS, 110–118. https://doi.org/10.1007/978-3-030-32245-8_13spa
dc.relation.referencesJia, H., Xia, Y., Song, Y., Zhang, D., Huang, H., Zhang, Y., & Cai, W. (2019). 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images. IEEE Transactions on Medical Imaging, 39(2), 447–457. https://doi.org/10.1109/TMI.2019.2928056spa
dc.relation.referencesKhan, Z., Yahya, N., Alsaih, K., Al-Hiyali, M. I., & Meriaudeau, F. (2021). Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review. IEEE Access, 9, 97878–97905. https://doi.org/10.1109/ACCESS.2021.3090825spa
dc.relation.referencesKlein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M., & Pluim, J. P. W. (2008). Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics, 35(4), 1407–1417. https://doi.org/10.1118/1.2842076spa
dc.relation.referencesLarsen, C. T., Eugenio Iglesias, J., & van Leemput, K. (2014). N3 bias field correction explained as a Bayesian modeling method. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8677, 1–12. https://doi.org/10.1007/978-3-319-12289-2_1spa
dc.relation.referencesLitjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., Vincent, G., Guillard, G., Birbeck, N., Zhang, J., Strand, R., Malmberg, F., Ou, Y., Davatzikos, C., Kirschner, M., Jung, F., Yuan, J., Qiu, W., Gao, Q., … Madabhushi, A. (2014). Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 18(2), 359–373. https://doi.org/10.1016/J.MEDIA.2013.12.002spa
dc.relation.referencesMahapatra, D., & Buhmann, J. M. (2014). Prostate MRI segmentation using learned semantic knowledge and graph cuts. IEEE Transactions on Biomedical Engineering, 61(3), 756–764. https://doi.org/10.1109/TBME.2013.2289306spa
dc.relation.referencesMilletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, 565–571. https://doi.org/10.48550/arxiv.1606.04797spa
dc.relation.referencesMONAI. (s.f.) Retrieved March 7, 2022, from https://monai.io/spa
dc.relation.referencesOktay, O., Schlemper, J., Folgoc, L. le, Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N. Y., Kainz, B., Glocker, B., & Rueckert, D. (2018). Attention U-Net: Learning Where to Look for the Pancreas. https://doi.org/10.48550/arxiv.1804.03999spa
dc.relation.referencesPasquier, D., Lacornerie, T., Vermandel, M., Rousseau, J., Lartigau, E., & Betrouni, N. (2007). Automatic Segmentation of Pelvic Structures From Magnetic Resonance Images for Prostate Cancer Radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 68(2), 592–600. https://doi.org/10.1016/J.IJROBP.2007.02.005spa
dc.relation.referencesQin, X. (2019). Transfer Learning with Edge Attention for Prostate MRI Segmentation. https://doi.org/10.48550/arXiv.1912.09847spa
dc.relation.referencesQian, Y. (2021). ProsegNet: A new network of prostate segmentation based on MR images. IEEE Access, 9, 106293–106302. https://doi.org/10.1109/ACCESS.2021.3096665spa
dc.relation.referencesQiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., & Fenster, A. (2014). Dual optimization based prostate zonal segmentation in 3D MR images. Medical Image Analysis, 18(4), 660–673. https://doi.org/10.1016/J.MEDIA.2014.02.009spa
dc.relation.referencesRonneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.48550/arxiv.1505.04597spa
dc.relation.referencesRundo, L., Militello, C., Russo, G., Garufi, A., Vitabile, S., Gilardi, M. C., & Mauri, G. (2017). Automated Prostate Gland Segmentation Based on an Unsupervised Fuzzy C-Means Clustering Technique Using Multispectral T1w and T2w MR Imaging. Information 2017, Vol. 8, Page 49, 8(2), 49. https://doi.org/10.3390/INFO8020049spa
dc.relation.referencesShelhamer, E., Long, J., & Darrell, T. (2014). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651. https://doi.org/10.1109/TPAMI.2016.2572683spa
dc.relation.referencesThe Global Cancer Observatory (GCO). (2021). Colombia. https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdfspa
dc.relation.referencesToth, R., & Madabhushi, A. (2012). Multifeature landmark-free active appearance models: application to prostate MRI segmentation. IEEE Transactions on Medical Imaging, 31(8), 1638–1650. https://doi.org/10.1109/TMI.2012.2201498spa
dc.relation.referencesTustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908spa
dc.relation.referencesWorld Cancer Research Fund & American Cancer Society. (2018). Diet, nutrition, physical activity and prostate cancer. https://www.wcrf.org/wp-content/uploads/2021/02/prostate-cancer-report.pdfspa
dc.relation.referencesYu, F., Koltun, V., & Funkhouser, T. (2017). Dilated Residual Networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, 636–644. https://doi.org/10.48550/arxiv.1705.09914spa
dc.relation.referencesYu, L., Yang, X., Chen, H., Qin, J., & Heng, P. A. (2017). Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d MR images. 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 66–72.spa
dc.relation.referencesZhou, W., Tao, X., Wei, Z., & Lin, L. (2020). Automatic segmentation of 3D prostate MR images with iterative localization refinement. Digital Signal Processing, 98, 102649. https://doi.org/10.1016/J.DSP.2019.102649spa
dc.relation.referencesZhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11045 LNCS, 3–11. https://doi.org/10.48550/arxiv.1807.10165spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembInteligencia artificial
dc.subject.lembArtificial intelligence
dc.subject.lembTecnología médica
dc.subject.lembMedical technology
dc.subject.proposalSegmentación de la próstataspa
dc.subject.proposalProstate segmentationeng
dc.subject.proposalmagnetic resonanceeng
dc.subject.proposalUneteng
dc.subject.proposalattention gateeng
dc.subject.proposalResneteng
dc.subject.proposalResonancia magnéticaspa
dc.subject.proposalCompuerta de atenciónspa
dc.titleMétodo de segmentación de imágenes de la próstata tomadas mediante resonancia magnética mediante técnicas de inteligencia artificialspa
dc.title.translatedSegmentation of the prostate in magnetic resonance images using artificial intelligence techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020445136.2021.pdf
Tamaño:
1.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: