Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
dc.contributor.advisor | Simbaqueba, Axel Danny | |
dc.contributor.advisor | Plazas, María Cristina | |
dc.contributor.author | Carrillo Chacón, Karen Marcela | |
dc.date.accessioned | 2023-08-01T20:25:07Z | |
dc.date.available | 2023-08-01T20:25:07Z | |
dc.date.issued | 2023-07-31 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La impresión 3D de bolus en radioterapia es una nueva tecnología que se desea implementar en el Instituto Nacional de Cancerología, permitiéndole al paciente un mejor tratamiento contra el cáncer. El objetivo de este estudio consistió en describir y evaluar la implementación del bolus impreso 3D en el entorno clínico, para ello se evaluaron las propiedades dosimétricas mediante el estudio de los porcentajes de dosis en profundidad y los porcentajes laterales de dosis de los materiales ABS y PLA en diversos porcentajes de impresión, 20\%, 40\% y 60\%. Esta caracterización se realizó para la radioterapia externa con un haz fotones, electrones y braquiterapia de alta tasa de dosis con una fuente de Iridio-192. A partir de los resultados obtenidos se puede concluir que para el caso de fotones el porcentaje de impresión más similar a la parafina para ABS, es del 60\% mientras que para PLA es del 40\%. Para el caso de electrones tanto para ABS como para PLA, se recomienda un porcentaje de impresión mayor al 80\% y finalmente para el caso de la braquiterapia de alta tasa de dosis con Iridio 192, se recomienda un porcentaje de impresión del 60\% tanto para ABS como para PLA. (Texto tomado de la fuente) | spa |
dc.description.abstract | The 3D printing of bolus in radiotherapy is a new technology that wants to be implemented in the National Institute of Cancerology, allowing the patient a better treatment against cancer. The objective of this study was to describe and evaluate the implementation of the 3D printed bolus in the clinical environment, for which the dosimetric properties were evaluated by studying the depth dose percentages and the lateral dose percentages of ABS and PLA materials. in various printing percentages, 20\%, 40\% and 60\%. This characterization was performed for external beam radiotherapy with a photon-electron beam and high-dose-rate brachytherapy with an Iridium-192 source. From the results obtained, it can be concluded that in the case of photons, the printing percentage most similar to paraffin for ABS is 60\% while for PLA it is 40\%. In the case of electrons, both for ABS and PLA, an impression percentage greater than 80\% is recommended and finally, in the case of high dose rate brachytherapy with Iridium 192, an impression percentage of 60\% is recommended. for both ABS and PLA. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Física Médica | spa |
dc.description.methods | Para el desarrollo del proyecto se utilizó la impresora 3D ZORTRAX M300 PLUS ( Ver figura 2-7) que posee la capacidad de imprimir en 3D modelos grandes, con un área de impresión de 30 x 30 x 30 cm3. Funciona con la tecnología LPD (Deposición de plástico de capa), que consiste en depositar material fundido capa por capa en la plataforma de construcción, siendo esta versión de modelado de deposición fundida (FDM), que garantiza resultados de la más alta calidad y bajo mantenimiento. Zortrax M300 Plus imprime en 3D con filamentos avanzados y de tipo flexible tales como, Z-ABS, Z-PLA, Z-GLASS, Z-ESD, Z-PLA Pro, ZASA Pro, entre otros. | spa |
dc.description.researcharea | Radioterapia | spa |
dc.format.extent | xx, 80 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84403 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
dc.relation.references | U. N. S. C. on the Effects of Atomic Radiation et al., “Sources, effects and risks of ionizing radiation,” 1988. | spa |
dc.relation.references | X. G. Xu, B. Bednarz, and H. Paganetti, “A review of dosimetry studies on external beam radiation treatment with respect to second cancer induction,” Physics in Medicine& Biology, vol. 53, no. 13, p. R193, 2008. | spa |
dc.relation.references | V. Vyas, L. Palmer, R. Mudge, R. Jiang, A. Fleck, B. Schaly, E. Osei, and P. Charland, “On bolus for megavoltage photon and electron radiation therapy,” Medical Dosimetry, vol. 38, no. 3, pp. 268–273, 2013 | spa |
dc.relation.references | A. Wambersie, “Icru report 44: Tissue substitutes in radiation dosimetry and measurement,” Bethesda (US): International Commission on Radiation Units and measurements, 1989 | spa |
dc.relation.references | S.-W. Kim, H.-J. Shin, C. S. Kay, and S. H. Son, “A customized bolus produced using a 3-dimensional printer for radiotherapy,” PloS one, vol. 9, no. 10, p. e110746, 2014. | spa |
dc.relation.references | M. F. Bieniosek, B. J. Lee, and C. S. Levin, “Characterization of custom 3d printed multimodality imaging phantoms,” Medical physics, vol. 42, no. 10, pp. 5913–5918, 2015. | spa |
dc.relation.references | Y. Choi, Y. J. Jang, K. B. Kim, J. Bahng, and S. H. Choi, “Characterization of tissue equivalent materials using 3d printing for patient-specific dqa in radiation therapy,” Applied Sciences, vol. 12, no. 19, p. 9768, 2022 | spa |
dc.relation.references | M. Chen, “Fabrication and application of 3d printed bolus for optimizing radiotherapy in superficial tumor,” Clin Surg, vol. 6, no. 12, pp. 1–7, 2021 | spa |
dc.relation.references | R. Bellis, A. Rembielak, E. A. Barnes, M. Paudel, and A. Ravi, “Additive manufacturing (3d printing) in superficial brachytherapy,” Journal of contemporary brachytherapy, vol. 13, no. 4, pp. 468–482, 2021 | spa |
dc.relation.references | A. O. Dwairej, H. Y. A. Mhanna, and H. F. Akhdar, “Improved methods for dosimetry of high-dose rate bra-chytherapy (hdr-bt), | spa |
dc.relation.references | G. Bieleda, A. Marach, M. Boehlke, G. Zwierzchowski, and J. Malicki, “3d-printed surface applicators for brachytherapy: a phantom study,” Journal of Contemporary Brachytherapy, vol. 13, no. 5, pp. 549–562, 2021. | spa |
dc.relation.references | J. Villegas-Talavera, W. L. Dajer-Fadel, C. Ibarra-P ́erez, R. Borrego-Borrego, O. Flores- Calderón, and F. J. González-Ruiz, “Hernia paraesofágica tipo iv gigante: presentación de un caso y revisión de la literatura,” Rev Med Hosp Gen Mex, vol. 75, no. 1, pp. 37–40, 2012 | spa |
dc.relation.references | G. Murcia, J. Vásquez, C. Plazas, J. Torres, A. Mejía, and O. Mattos, “Caracterización de un nuevo material para uso como tejido sustituto en radioterapia,” Rev. colomb. cancerol, pp. 15–21, 2002 | spa |
dc.relation.references | S. Burleson, J. Baker, A. T. Hsia, and Z. Xu, “Use of 3d printers to create a patient specific 3d bolus for external beam therapy,” Journal of applied clinical medical physics, vol. 16, no. 3, pp. 166–178, 2015 | spa |
dc.relation.references | B. D. Harris, S. Nilsson, and C. M. Poole, “A feasibility study for using abs plastic and a low-cost 3d printer for patient-specific brachytherapy mould design,” Australasian physical & engineering sciences in medicine, vol. 38, pp. 399–412, 2015. | spa |
dc.relation.references | Y. Zhao, K. Moran, M. Yewondwossen, J. Allan, S. Clarke, M. Rajaraman, D. Wilke, P. Joseph, and J. L. Robar, “Clinical applications of 3-dimensional printing in radiation therapy,” Medical dosimetry, vol. 42, no. 2, pp. 150–155, 2017 | spa |
dc.relation.references | D. S. Chang, F. D. Lasley, I. J. Das, M. S. Mendonca, J. R. Dynlacht, et al., “Basic radiotherapy physics and biology,” tech. rep., Springer, 2014. | spa |
dc.relation.references | A. Brosed and P. Ruiz, “Fundamentos de física médica, volumen 2 radiodiagnóstico: bases físicas, equipos y control de calidad,” 2012 | spa |
dc.relation.references | F. M. Khan and J. P. Gibbons, Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014 | spa |
dc.relation.references | S. E. de Física Médica, “Fundamentos de física médica. 1er volumen-medida de la radiación,” 2012 | spa |
dc.relation.references | H. E. Johns and J. R. Cunningham, “The physics of radiology,” 1983. | spa |
dc.relation.references | A. B. Serreta and M. L. Arroyo, “Fundamentos de física médica, volumen 3: Radioterapia externa,” Bases físicas, equipos, determinación de la dosis absorbida y programa de garantía de calidad, 2012. | spa |
dc.relation.references | P. Mayles, A. Nahum, and J.-C. Rosenwald, Handbook of radiotherapy physics: theory and practice. CRC Press, 2007. | spa |
dc.relation.references | R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kj ̈all, T. Mackie, H. Palmans, K. Rosser, J. Seuntjens, et al., “A new formalism for reference dosimetry of small and nonstandard fields,” Medical physics, vol. 35, no. 11, pp. 5179–5186, 2008. | spa |
dc.relation.references | P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of ionizing radiation dosimetry. John Wiley & Sons, 2017. | spa |
dc.relation.references | F. H. Attix, Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008 | spa |
dc.relation.references | E. B. PODGORSAK, Radiation Oncology Physics: A Handbook for Teachers and Students. Technical editor, 2005. | spa |
dc.relation.references | SEFM, Procedimientos recomendados para la dosimetría de fotones y electrones de energías comprendidas entre 1 MeV y 50 MeV en radioterapia de haces externos. SEFM Publishing, 1984 | spa |
dc.relation.references | D. Wilkinson, Ionization chambers and counters. University Press, 1950. | spa |
dc.relation.references | J. Medin, P. Andreo, E. Grusell, O. Mattsson, A. Montelius, and M. Roos, “Ionization chamber dosimetry of proton beams using cylindrical and plane parallel chambers. nw versus nk ion chamber calibrations,” Physics in Medicine & Biology, vol. 40, no. 7, p. 1161, 1995 | spa |
dc.relation.references | F. J. G. Cifuentes, J. E. A. Soriano, J. L. T. Enríquez, and S. G. Pareja, “Detectores de radiación y dosimetría,” | spa |
dc.relation.references | M. d. P. Sánchez Pedrajas et al., “Influencia de la humedad relativa en las medidas de haces de radiación realizadas mediante cámaras de ionización abiertas al aire,” 2022 | spa |
dc.relation.references | K. W. C. Peláez and S. P. Ceballos, “Absolute dosimetry for high energy photons,” TECCIENCIA, vol. 6, no. 12, pp. 25–32, 2012. | spa |
dc.relation.references | G. Bruggmoser, R. Saum, A. Schmachtenberg, F. Schmid, and E. Sch ̈ule, “Determi- nation of the recombination correction factor ks for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams,” Physics in Me- dicine & Biology, vol. 52, no. 2, p. N35, 2006 | spa |
dc.relation.references | M. S. Huq, M.-S. Hwang, T. P. Teo, S. Y. Jang, D. E. Heron, and R. J. Lalonde, “A dosimetric evaluation of the iaea-aapm trs 483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with iaea trs-398, aapm tg 51, and tg 51 addendum protocols,” Medical physics, vol. 45, no. 9, pp. 4257–4273, 2018 | spa |
dc.relation.references | A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L. J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, et al., “Report of aapm task group 235 radiochromic film dosimetry: an update to tg-55,” Medical physics, vol. 47, no. 12, pp. 5986–6025, 2020 | spa |
dc.relation.references | I. J. Das, Radiochromic film: role and applications in radiation dosimetry. CRC Press, 2017 | spa |
dc.relation.references | M. J. Butson, K. Peter, T. Cheung, and P. Metcalfe, “Radiochromic film for medical radiation dosimetry,” Materials Science and Engineering: R: Reports, vol. 41, no. 3-5, pp. 61–120, 2003 | spa |
dc.relation.references | R. Ricotti, D. Ciardo, F. Pansini, A. Bazani, S. Comi, R. Spoto, S. Noris, F. Cattani, G. Baroni, R. Orecchia, et al., “Dosimetric characterization of 3d printed bolus at diffe- rent infill percentage for external photon beam radiotherapy,” Physica Medica, vol. 39, pp. 25–32, 2017 | spa |
dc.relation.references | X. Wang, X. Wang, Z. Xiang, Y. Zeng, F. Liu, B. Shao, T. He, J. Ma, S. Yu, and L. Liu, “The clinical application of 3d-printed boluses in superficial tumor radiotherapy,” Frontiers in Oncology, vol. 11, p. 698773, 2021 | spa |
dc.relation.references | Z. S.A, “Realiable, renowned and revolutionary 3d printing solutions,” pp. 12–14, 2020 | spa |
dc.relation.references | Voluntarios, “Blender 3.3 manual de referencia,” 2022 | spa |
dc.relation.references | Z. S.A, “Z-suite user manual, enter an environment of professional 3d printing,” 2016 | spa |
dc.relation.references | V. S. Corporation, “Vidar advantage series user’s guide,” 2010 | spa |
dc.relation.references | T. D. C. PTW, “Detectors for ionizing radiation,” 2022 | spa |
dc.relation.references | T. D. C. PTW, “Service manual, unidos webline,” 2020 | spa |
dc.relation.references | P. J. Biggs, C. C. Ling, J. A. Purdy, and J. van de Geijn, “Aapm code of practice for radiotherapy accelerators: report of aapm radiation therapy task group no. 45,” Medical Physics, vol. 21, p. 1093, 1994. | spa |
dc.relation.references | R. Sruti, M. Islam, M. Rana, M. Bhuiyan, K. Khan, M. Newaz, and M. Ahmed, “Mea- surement of percentage depth dose of a linear accelerator for 6 mv and 10 mv photon energies,” Nuclear Science and applications, vol. 24, no. 1, 2015 | spa |
dc.relation.references | L. Tremethick, Characterisation of dosimetry in electron radiotherapy under different bolus applications. PhD thesis, RMIT University, 2012 | spa |
dc.relation.references | J. E. Turner, Atoms, radiation, and radiation protection. John Wiley & Sons, 2008. | spa |
dc.relation.references | H.-G. Menzel, “International commission on radiation units and measurements,” Jour- nal of the ICRU, vol. 14, no. 2, pp. 1–2, 2014 | spa |
dc.relation.references | C. Møller, “Zur theorie des durchgangs schneller elektronen durch materie,” Annalen der Physik, vol. 406, no. 5, pp. 531–585, 1932. | spa |
dc.relation.references | A. R. T. Committee, F. M. Khan, et al., Clinical electron-beam dosimetry. American Institute of Physics for the American Association of Physicists in . . . , 1991 | spa |
dc.relation.references | A. Brahme and H. Svensson, “Specification of electron beam quality from the central- axis depth absorbed-dose distribution,” Medical physics, vol. 3, no. 2, pp. 95–102, 1976 | spa |
dc.relation.references | A. Brahme and H. Svensson, “Electron beam quality parameters and absorbed dose distributions from therapy accelerators,” High Energy Electrons in Radiation Therapy, pp. 12–19, 1980 | spa |
dc.relation.references | A. Brahme and H. Svensson, “Radiation beam characteristics of a 22 mev microtron,” Acta radiologica: oncology, radiation, physics, biology, vol. 18, no. 3, pp. 244–272, 1979 | spa |
dc.relation.references | K. R. Hogstrom and P. R. Almond, “Review of electron beam therapy physics,” Physics in Medicine & Biology, vol. 51, no. 13, p. R455, 2006 | spa |
dc.relation.references | J. A. Meyer, J. R. Palta, and K. R. Hogstrom, “Demonstration of relatively new electron dosimetry measurement techniques on the mevatron 80,” Medical physics, vol. 11, no. 5, pp. 670–677, 1984. | spa |
dc.relation.references | L. Mattsson, K. Johansson, and H. Svensson, “Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams,” Acta Radiologica: Oncology, vol. 20, no. 6, pp. 385–399, 1981 | spa |
dc.relation.references | D. Rogers and A. Bielajew, “Differences in electron depth-dose curves calculated with egs and etran and improved energy-range relationships,” Medical physics, vol. 13, no. 5, pp. 687–694, 1986 | spa |
dc.relation.references | B. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup region using fixed- separation plane-parallel ionization chambers,” Medical physics, vol. 17, no. 1, pp. 17–26, 1990 | spa |
dc.relation.references | A. Przeslak, “Medical electrical equipment: Dosimeters with ionization chambers as used in radiotherapy: International electrotechnical commission publication 731, geneva, 1982. paperback; 140 pp. francs 130.00,” 1983 | spa |
dc.relation.references | A. Dusautoy, M. Roos, H. Svensson, and P. Andreo, “Review of data and methods recommended in the international code of practice for dosimetry iaea technical reports series no. 381, the use of plane parallel ionization chambers in high energy electron and photon beams. final report of the co-ordinated research project on dose determination with plane parallel ionization chambers in therapeutic electron and photon beams,” 2000 | spa |
dc.relation.references | A. Brosed, “Fundamentos de f ́ısica m ́edica, volumen 5: Braquiterapia,” Braquiterapia: bases f ́ısicas, equipos y control de calidad, 2012. | spa |
dc.relation.references | F. M. Calva Barrera, “Validaci ́on de braquiterapia superficial de alta tasa de dosis para c ́ancer de piel con aplicadores leipzig y valencia,” | spa |
dc.relation.references | M. B. Podgorsak, Radiation parameters of High Dose rate iridium-192 sources. The University of Wisconsin-Madison, 1993. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.decs | Impresión Tridimensional | spa |
dc.subject.decs | Printing, Three-Dimensional | eng |
dc.subject.decs | Quimioterapia por Pulso | spa |
dc.subject.decs | Pulse Therapy, Drug | eng |
dc.subject.lemb | CANCER-RADIOTERAPIA | spa |
dc.subject.lemb | Cancer-radiotherapy | eng |
dc.subject.proposal | PLA | |
dc.subject.proposal | ABS | |
dc.subject.proposal | Impresión 3D | spa |
dc.subject.proposal | PDD | |
dc.subject.proposal | Perfiles de dosis | spa |
dc.subject.proposal | Bolus | |
dc.subject.proposal | Electrones | spa |
dc.subject.proposal | Braquiterapia | spa |
dc.subject.proposal | Fotones | spa |
dc.subject.proposal | 3D printing | eng |
dc.subject.proposal | Dose profiles | eng |
dc.subject.proposal | Electrons | eng |
dc.subject.proposal | Brachytherapy | eng |
dc.subject.proposal | Photons | eng |
dc.title | Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia | spa |
dc.title.translated | Study of the dosimetric characterization of 3D printed bolus for external radiotherapy and brachytherapy | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1098752105.2023.pdf
- Tamaño:
- 7.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis maestría en Física Médica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: