Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia

dc.contributor.advisorSimbaqueba, Axel Danny
dc.contributor.advisorPlazas, María Cristina
dc.contributor.authorCarrillo Chacón, Karen Marcela
dc.date.accessioned2023-08-01T20:25:07Z
dc.date.available2023-08-01T20:25:07Z
dc.date.issued2023-07-31
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa impresión 3D de bolus en radioterapia es una nueva tecnología que se desea implementar en el Instituto Nacional de Cancerología, permitiéndole al paciente un mejor tratamiento contra el cáncer. El objetivo de este estudio consistió en describir y evaluar la implementación del bolus impreso 3D en el entorno clínico, para ello se evaluaron las propiedades dosimétricas mediante el estudio de los porcentajes de dosis en profundidad y los porcentajes laterales de dosis de los materiales ABS y PLA en diversos porcentajes de impresión, 20\%, 40\% y 60\%. Esta caracterización se realizó para la radioterapia externa con un haz fotones, electrones y braquiterapia de alta tasa de dosis con una fuente de Iridio-192. A partir de los resultados obtenidos se puede concluir que para el caso de fotones el porcentaje de impresión más similar a la parafina para ABS, es del 60\% mientras que para PLA es del 40\%. Para el caso de electrones tanto para ABS como para PLA, se recomienda un porcentaje de impresión mayor al 80\% y finalmente para el caso de la braquiterapia de alta tasa de dosis con Iridio 192, se recomienda un porcentaje de impresión del 60\% tanto para ABS como para PLA. (Texto tomado de la fuente)spa
dc.description.abstractThe 3D printing of bolus in radiotherapy is a new technology that wants to be implemented in the National Institute of Cancerology, allowing the patient a better treatment against cancer. The objective of this study was to describe and evaluate the implementation of the 3D printed bolus in the clinical environment, for which the dosimetric properties were evaluated by studying the depth dose percentages and the lateral dose percentages of ABS and PLA materials. in various printing percentages, 20\%, 40\% and 60\%. This characterization was performed for external beam radiotherapy with a photon-electron beam and high-dose-rate brachytherapy with an Iridium-192 source. From the results obtained, it can be concluded that in the case of photons, the printing percentage most similar to paraffin for ABS is 60\% while for PLA it is 40\%. In the case of electrons, both for ABS and PLA, an impression percentage greater than 80\% is recommended and finally, in the case of high dose rate brachytherapy with Iridium 192, an impression percentage of 60\% is recommended. for both ABS and PLA.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.methodsPara el desarrollo del proyecto se utilizó la impresora 3D ZORTRAX M300 PLUS ( Ver figura 2-7) que posee la capacidad de imprimir en 3D modelos grandes, con un área de impresión de 30 x 30 x 30 cm3. Funciona con la tecnología LPD (Deposición de plástico de capa), que consiste en depositar material fundido capa por capa en la plataforma de construcción, siendo esta versión de modelado de deposición fundida (FDM), que garantiza resultados de la más alta calidad y bajo mantenimiento. Zortrax M300 Plus imprime en 3D con filamentos avanzados y de tipo flexible tales como, Z-ABS, Z-PLA, Z-GLASS, Z-ESD, Z-PLA Pro, ZASA Pro, entre otros.spa
dc.description.researchareaRadioterapiaspa
dc.format.extentxx, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84403
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesU. N. S. C. on the Effects of Atomic Radiation et al., “Sources, effects and risks of ionizing radiation,” 1988.spa
dc.relation.referencesX. G. Xu, B. Bednarz, and H. Paganetti, “A review of dosimetry studies on external beam radiation treatment with respect to second cancer induction,” Physics in Medicine& Biology, vol. 53, no. 13, p. R193, 2008.spa
dc.relation.referencesV. Vyas, L. Palmer, R. Mudge, R. Jiang, A. Fleck, B. Schaly, E. Osei, and P. Charland, “On bolus for megavoltage photon and electron radiation therapy,” Medical Dosimetry, vol. 38, no. 3, pp. 268–273, 2013spa
dc.relation.referencesA. Wambersie, “Icru report 44: Tissue substitutes in radiation dosimetry and measurement,” Bethesda (US): International Commission on Radiation Units and measurements, 1989spa
dc.relation.referencesS.-W. Kim, H.-J. Shin, C. S. Kay, and S. H. Son, “A customized bolus produced using a 3-dimensional printer for radiotherapy,” PloS one, vol. 9, no. 10, p. e110746, 2014.spa
dc.relation.referencesM. F. Bieniosek, B. J. Lee, and C. S. Levin, “Characterization of custom 3d printed multimodality imaging phantoms,” Medical physics, vol. 42, no. 10, pp. 5913–5918, 2015.spa
dc.relation.referencesY. Choi, Y. J. Jang, K. B. Kim, J. Bahng, and S. H. Choi, “Characterization of tissue equivalent materials using 3d printing for patient-specific dqa in radiation therapy,” Applied Sciences, vol. 12, no. 19, p. 9768, 2022spa
dc.relation.referencesM. Chen, “Fabrication and application of 3d printed bolus for optimizing radiotherapy in superficial tumor,” Clin Surg, vol. 6, no. 12, pp. 1–7, 2021spa
dc.relation.referencesR. Bellis, A. Rembielak, E. A. Barnes, M. Paudel, and A. Ravi, “Additive manufacturing (3d printing) in superficial brachytherapy,” Journal of contemporary brachytherapy, vol. 13, no. 4, pp. 468–482, 2021spa
dc.relation.referencesA. O. Dwairej, H. Y. A. Mhanna, and H. F. Akhdar, “Improved methods for dosimetry of high-dose rate bra-chytherapy (hdr-bt),spa
dc.relation.referencesG. Bieleda, A. Marach, M. Boehlke, G. Zwierzchowski, and J. Malicki, “3d-printed surface applicators for brachytherapy: a phantom study,” Journal of Contemporary Brachytherapy, vol. 13, no. 5, pp. 549–562, 2021.spa
dc.relation.referencesJ. Villegas-Talavera, W. L. Dajer-Fadel, C. Ibarra-P ́erez, R. Borrego-Borrego, O. Flores- Calderón, and F. J. González-Ruiz, “Hernia paraesofágica tipo iv gigante: presentación de un caso y revisión de la literatura,” Rev Med Hosp Gen Mex, vol. 75, no. 1, pp. 37–40, 2012spa
dc.relation.referencesG. Murcia, J. Vásquez, C. Plazas, J. Torres, A. Mejía, and O. Mattos, “Caracterización de un nuevo material para uso como tejido sustituto en radioterapia,” Rev. colomb. cancerol, pp. 15–21, 2002spa
dc.relation.referencesS. Burleson, J. Baker, A. T. Hsia, and Z. Xu, “Use of 3d printers to create a patient specific 3d bolus for external beam therapy,” Journal of applied clinical medical physics, vol. 16, no. 3, pp. 166–178, 2015spa
dc.relation.referencesB. D. Harris, S. Nilsson, and C. M. Poole, “A feasibility study for using abs plastic and a low-cost 3d printer for patient-specific brachytherapy mould design,” Australasian physical & engineering sciences in medicine, vol. 38, pp. 399–412, 2015.spa
dc.relation.referencesY. Zhao, K. Moran, M. Yewondwossen, J. Allan, S. Clarke, M. Rajaraman, D. Wilke, P. Joseph, and J. L. Robar, “Clinical applications of 3-dimensional printing in radiation therapy,” Medical dosimetry, vol. 42, no. 2, pp. 150–155, 2017spa
dc.relation.referencesD. S. Chang, F. D. Lasley, I. J. Das, M. S. Mendonca, J. R. Dynlacht, et al., “Basic radiotherapy physics and biology,” tech. rep., Springer, 2014.spa
dc.relation.referencesA. Brosed and P. Ruiz, “Fundamentos de física médica, volumen 2 radiodiagnóstico: bases físicas, equipos y control de calidad,” 2012spa
dc.relation.referencesF. M. Khan and J. P. Gibbons, Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014spa
dc.relation.referencesS. E. de Física Médica, “Fundamentos de física médica. 1er volumen-medida de la radiación,” 2012spa
dc.relation.referencesH. E. Johns and J. R. Cunningham, “The physics of radiology,” 1983.spa
dc.relation.referencesA. B. Serreta and M. L. Arroyo, “Fundamentos de física médica, volumen 3: Radioterapia externa,” Bases físicas, equipos, determinación de la dosis absorbida y programa de garantía de calidad, 2012.spa
dc.relation.referencesP. Mayles, A. Nahum, and J.-C. Rosenwald, Handbook of radiotherapy physics: theory and practice. CRC Press, 2007.spa
dc.relation.referencesR. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kj ̈all, T. Mackie, H. Palmans, K. Rosser, J. Seuntjens, et al., “A new formalism for reference dosimetry of small and nonstandard fields,” Medical physics, vol. 35, no. 11, pp. 5179–5186, 2008.spa
dc.relation.referencesP. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of ionizing radiation dosimetry. John Wiley & Sons, 2017.spa
dc.relation.referencesF. H. Attix, Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008spa
dc.relation.referencesE. B. PODGORSAK, Radiation Oncology Physics: A Handbook for Teachers and Students. Technical editor, 2005.spa
dc.relation.referencesSEFM, Procedimientos recomendados para la dosimetría de fotones y electrones de energías comprendidas entre 1 MeV y 50 MeV en radioterapia de haces externos. SEFM Publishing, 1984spa
dc.relation.referencesD. Wilkinson, Ionization chambers and counters. University Press, 1950.spa
dc.relation.referencesJ. Medin, P. Andreo, E. Grusell, O. Mattsson, A. Montelius, and M. Roos, “Ionization chamber dosimetry of proton beams using cylindrical and plane parallel chambers. nw versus nk ion chamber calibrations,” Physics in Medicine & Biology, vol. 40, no. 7, p. 1161, 1995spa
dc.relation.referencesF. J. G. Cifuentes, J. E. A. Soriano, J. L. T. Enríquez, and S. G. Pareja, “Detectores de radiación y dosimetría,”spa
dc.relation.referencesM. d. P. Sánchez Pedrajas et al., “Influencia de la humedad relativa en las medidas de haces de radiación realizadas mediante cámaras de ionización abiertas al aire,” 2022spa
dc.relation.referencesK. W. C. Peláez and S. P. Ceballos, “Absolute dosimetry for high energy photons,” TECCIENCIA, vol. 6, no. 12, pp. 25–32, 2012.spa
dc.relation.referencesG. Bruggmoser, R. Saum, A. Schmachtenberg, F. Schmid, and E. Sch ̈ule, “Determi- nation of the recombination correction factor ks for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams,” Physics in Me- dicine & Biology, vol. 52, no. 2, p. N35, 2006spa
dc.relation.referencesM. S. Huq, M.-S. Hwang, T. P. Teo, S. Y. Jang, D. E. Heron, and R. J. Lalonde, “A dosimetric evaluation of the iaea-aapm trs 483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with iaea trs-398, aapm tg 51, and tg 51 addendum protocols,” Medical physics, vol. 45, no. 9, pp. 4257–4273, 2018spa
dc.relation.referencesA. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L. J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, et al., “Report of aapm task group 235 radiochromic film dosimetry: an update to tg-55,” Medical physics, vol. 47, no. 12, pp. 5986–6025, 2020spa
dc.relation.referencesI. J. Das, Radiochromic film: role and applications in radiation dosimetry. CRC Press, 2017spa
dc.relation.referencesM. J. Butson, K. Peter, T. Cheung, and P. Metcalfe, “Radiochromic film for medical radiation dosimetry,” Materials Science and Engineering: R: Reports, vol. 41, no. 3-5, pp. 61–120, 2003spa
dc.relation.referencesR. Ricotti, D. Ciardo, F. Pansini, A. Bazani, S. Comi, R. Spoto, S. Noris, F. Cattani, G. Baroni, R. Orecchia, et al., “Dosimetric characterization of 3d printed bolus at diffe- rent infill percentage for external photon beam radiotherapy,” Physica Medica, vol. 39, pp. 25–32, 2017spa
dc.relation.referencesX. Wang, X. Wang, Z. Xiang, Y. Zeng, F. Liu, B. Shao, T. He, J. Ma, S. Yu, and L. Liu, “The clinical application of 3d-printed boluses in superficial tumor radiotherapy,” Frontiers in Oncology, vol. 11, p. 698773, 2021spa
dc.relation.referencesZ. S.A, “Realiable, renowned and revolutionary 3d printing solutions,” pp. 12–14, 2020spa
dc.relation.referencesVoluntarios, “Blender 3.3 manual de referencia,” 2022spa
dc.relation.referencesZ. S.A, “Z-suite user manual, enter an environment of professional 3d printing,” 2016spa
dc.relation.referencesV. S. Corporation, “Vidar advantage series user’s guide,” 2010spa
dc.relation.referencesT. D. C. PTW, “Detectors for ionizing radiation,” 2022spa
dc.relation.referencesT. D. C. PTW, “Service manual, unidos webline,” 2020spa
dc.relation.referencesP. J. Biggs, C. C. Ling, J. A. Purdy, and J. van de Geijn, “Aapm code of practice for radiotherapy accelerators: report of aapm radiation therapy task group no. 45,” Medical Physics, vol. 21, p. 1093, 1994.spa
dc.relation.referencesR. Sruti, M. Islam, M. Rana, M. Bhuiyan, K. Khan, M. Newaz, and M. Ahmed, “Mea- surement of percentage depth dose of a linear accelerator for 6 mv and 10 mv photon energies,” Nuclear Science and applications, vol. 24, no. 1, 2015spa
dc.relation.referencesL. Tremethick, Characterisation of dosimetry in electron radiotherapy under different bolus applications. PhD thesis, RMIT University, 2012spa
dc.relation.referencesJ. E. Turner, Atoms, radiation, and radiation protection. John Wiley & Sons, 2008.spa
dc.relation.referencesH.-G. Menzel, “International commission on radiation units and measurements,” Jour- nal of the ICRU, vol. 14, no. 2, pp. 1–2, 2014spa
dc.relation.referencesC. Møller, “Zur theorie des durchgangs schneller elektronen durch materie,” Annalen der Physik, vol. 406, no. 5, pp. 531–585, 1932.spa
dc.relation.referencesA. R. T. Committee, F. M. Khan, et al., Clinical electron-beam dosimetry. American Institute of Physics for the American Association of Physicists in . . . , 1991spa
dc.relation.referencesA. Brahme and H. Svensson, “Specification of electron beam quality from the central- axis depth absorbed-dose distribution,” Medical physics, vol. 3, no. 2, pp. 95–102, 1976spa
dc.relation.referencesA. Brahme and H. Svensson, “Electron beam quality parameters and absorbed dose distributions from therapy accelerators,” High Energy Electrons in Radiation Therapy, pp. 12–19, 1980spa
dc.relation.referencesA. Brahme and H. Svensson, “Radiation beam characteristics of a 22 mev microtron,” Acta radiologica: oncology, radiation, physics, biology, vol. 18, no. 3, pp. 244–272, 1979spa
dc.relation.referencesK. R. Hogstrom and P. R. Almond, “Review of electron beam therapy physics,” Physics in Medicine & Biology, vol. 51, no. 13, p. R455, 2006spa
dc.relation.referencesJ. A. Meyer, J. R. Palta, and K. R. Hogstrom, “Demonstration of relatively new electron dosimetry measurement techniques on the mevatron 80,” Medical physics, vol. 11, no. 5, pp. 670–677, 1984.spa
dc.relation.referencesL. Mattsson, K. Johansson, and H. Svensson, “Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams,” Acta Radiologica: Oncology, vol. 20, no. 6, pp. 385–399, 1981spa
dc.relation.referencesD. Rogers and A. Bielajew, “Differences in electron depth-dose curves calculated with egs and etran and improved energy-range relationships,” Medical physics, vol. 13, no. 5, pp. 687–694, 1986spa
dc.relation.referencesB. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup region using fixed- separation plane-parallel ionization chambers,” Medical physics, vol. 17, no. 1, pp. 17–26, 1990spa
dc.relation.referencesA. Przeslak, “Medical electrical equipment: Dosimeters with ionization chambers as used in radiotherapy: International electrotechnical commission publication 731, geneva, 1982. paperback; 140 pp. francs 130.00,” 1983spa
dc.relation.referencesA. Dusautoy, M. Roos, H. Svensson, and P. Andreo, “Review of data and methods recommended in the international code of practice for dosimetry iaea technical reports series no. 381, the use of plane parallel ionization chambers in high energy electron and photon beams. final report of the co-ordinated research project on dose determination with plane parallel ionization chambers in therapeutic electron and photon beams,” 2000spa
dc.relation.referencesA. Brosed, “Fundamentos de f ́ısica m ́edica, volumen 5: Braquiterapia,” Braquiterapia: bases f ́ısicas, equipos y control de calidad, 2012.spa
dc.relation.referencesF. M. Calva Barrera, “Validaci ́on de braquiterapia superficial de alta tasa de dosis para c ́ancer de piel con aplicadores leipzig y valencia,”spa
dc.relation.referencesM. B. Podgorsak, Radiation parameters of High Dose rate iridium-192 sources. The University of Wisconsin-Madison, 1993.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsImpresión Tridimensionalspa
dc.subject.decsPrinting, Three-Dimensionaleng
dc.subject.decsQuimioterapia por Pulsospa
dc.subject.decsPulse Therapy, Drugeng
dc.subject.lembCANCER-RADIOTERAPIAspa
dc.subject.lembCancer-radiotherapyeng
dc.subject.proposalPLA
dc.subject.proposalABS
dc.subject.proposalImpresión 3Dspa
dc.subject.proposalPDD
dc.subject.proposalPerfiles de dosisspa
dc.subject.proposalBolus
dc.subject.proposalElectronesspa
dc.subject.proposalBraquiterapiaspa
dc.subject.proposalFotonesspa
dc.subject.proposal3D printingeng
dc.subject.proposalDose profileseng
dc.subject.proposalElectronseng
dc.subject.proposalBrachytherapyeng
dc.subject.proposalPhotonseng
dc.titleEstudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapiaspa
dc.title.translatedStudy of the dosimetric characterization of 3D printed bolus for external radiotherapy and brachytherapyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098752105.2023.pdf
Tamaño:
7.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: