Perfil de invasión de un surfactante aniónico en procesos de recobro mejorado
dc.contributor.advisor | Lopera Castro, Sergio Lopera | spa |
dc.contributor.author | Soto Ramirez, Cristian Javier | spa |
dc.contributor.corporatename | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.contributor.researchgroup | Yacimientos de Hidrocarburos | spa |
dc.date.accessioned | 2020-08-12T20:48:35Z | spa |
dc.date.available | 2020-08-12T20:48:35Z | spa |
dc.date.issued | 2019-11-22 | spa |
dc.description.abstract | The retention of surfactant in the porous medium is one of the factors that affect the development of an EOR process because the greater amount of the surfactant remains in the vicinity of the face of the well preventing it from acting in depth, which It represents high costs for the realization of this type of projects. Many authors have developed research where they study the different phenomena and variables that affect retention in the reservoir, but it is not known experimentally how the surfactant acts as it penetrates the porous medium. This work develops a methodology and builds a series of equipment that allows to identify the invasion profile of the surfactant, showing that in greater depth the efficiency of the surfactant decreases. A model is constructed to identify the incremental recovery based on the depth of invasion; this model is only applicable for the conditions and fluid system - porous medium used in this investigation. | spa |
dc.description.abstract | La retención de surfactante en el medio poroso es unos de los factores que afectan el desarrollo de un proceso de recobro debido a que la mayor cantidad del surfactante se queda en las inmediaciones de la cara del pozo impidiendo que este actúe en profundidad, lo que representa altos costos para la realización de este tipo de proyectos. Muchos autores han desarrollado investigaciones en donde estudian los diferentes fenómenos (adsorción, entrampamiento de fase, capilaridad) y variables (temperatura, contenido de arcilla, pH, salinidad, entre otras) que afectan la retención en el medio, sin embargo, no se conoce de forma experimental como actúa el surfactante a medida que penetra en el medio poroso. Este trabajo desarrolla una metodología y construye una serie de equipos que permiten identificar el perfil de invasión del surfactante durante la inyección de este en el medio poroso, mostrando que a mayor profundidad la eficiencia del surfactante disminuye. Adicionalmente, se construyó un modelo que permite identificar el recobro incremental en función de la profundidad de invasión; este modelo solo es aplicable para las condiciones y sistema fluido - medio poroso utilizados en esta investigación | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.project | Plan nacional para el potenciamiento de la tecnología CEOR con gas mejorado químicamente | spa |
dc.description.sponsorship | Colciencias, ANH, Universidad Nacional de Colombia sede Medellín | spa |
dc.format.extent | 87 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | C,. Soto, "Perfil de invasión de un surfactante aniónico en procesos de recobro mejorado" Universidad Nacional de Colombia sede Medellín, 2019. | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78003 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Procesos y Energía | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleos | spa |
dc.relation.references | M. R. Yassin, M. Arabloo, A. Shokrollahi, and A. H. Mohammadi, “Prediction of Surfactant Retention in Porous Media: A Robust Modeling Approach,” J. Dispers. Sci. Technol., vol. 35, no. 10, pp. 1407–1418, 2014. | spa |
dc.relation.references | C. J. Glover, “Surfactant Phase Behavior and Retention in Porous Media,” no. June, 1979 | spa |
dc.relation.references | L. Y. Chang, D. S. P. Lansakara-p, S. H. Jang, U. P. Weerasooriya, and G. A. Pope, “Co-solvent Partitioning and Retention,” no. April, pp. 11–13, 2016 | spa |
dc.relation.references | S. Solairaj, “New Method of Predicting Optimum Surfactant Structure for EOR,” University of Texas at Austin, 2011 | spa |
dc.relation.references | A. Acosta, “La Republica,” El recobro mejorado: la tabla de salvación, 2017. [Online]. Available: https://www.larepublica.co/analisis/amylkar-d-acosta-m-557896/el-recobro-mejorado-la-tabla-de-salvacion-2563661 | spa |
dc.relation.references | Schlumberger, “Schlumberger Glossary,” EOR. [Online]. Available: http://www.glossary.oilfield.slb.com/es/Terms/e/eor.aspx | spa |
dc.relation.references | L. Lake, “Enhanced Oil Recovery,” in Enhanced Oil Recovery, 1989, p. 400 | spa |
dc.relation.references | H. W. Harris, S. California, L. Livermore, and N. Laboratories, “Adsorption of EOR Chemicals Under Laboratory and Reservoir Conditions , Part II : Bacterial Reduction Methods,” no. Ii, pp. 1–15, 2015 | spa |
dc.relation.references | J. S. Unal, S. L. Unal, F. C. Unal, and A. O. Equion, “Adsorción Dinámica de Surfactantes Enfocados a Procesos de Recobro Mejorado,” 2017 | spa |
dc.relation.references | A. M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. A. Hawkes, and S. Gould, “Visualising Surfactant EOR in Core Plugs and Micromodels,” no. August, pp. 11–13, 2015. | spa |
dc.relation.references | A. Tatar, S. Nasery, A. Bahadori, M. Bahadori, A. Najafi-Marghmaleki, and A. Barati-Harooni, “Implementing radial basis function neural network for prediction of surfactant retention in petroleum production and processing industries,” Pet. Sci. Technol., vol. 34, no. 11–12, pp. 992–999, 2016 | spa |
dc.relation.references | A. Kamari, M. Sattari, A. H. Mohammadi, and D. Ramjugernath, “Reliable method for the determination of surfactant retention in porous media during chemical flooding oil recovery,” Fuel, vol. 158, pp. 122–128, 2015 | spa |
dc.relation.references | P. Somasundaran and H. S. Hanna, Physico–Chemical Aspects of Adsorption At Solid/Liquid Interfaces. ACADEMIC PRESS, INC., 1977 | spa |
dc.relation.references | R. B. Grigg and B. Bai, “Sorption of Surfactant Used in CO2 Flooding onto Five Minerals and Three Porous Media,” SPE Int. Symp. Oilf. Chem., pp. 1–12, 2005 | spa |
dc.relation.references | J. Novosad, “Surfactant Retention in Berea Sandstone- Effects of Phase Behavior and Temperature,” Soc. Pet. Eng. J., vol. 22, no. 06, pp. 962–970, 1982 | spa |
dc.relation.references | S. H. Jang et al., “A Systematic Method for Reducing Surfactant Retention to Extremely Low Levels,” SPE Improv. Oil Recover. Conf., no. 2006, 2016 | spa |
dc.relation.references | S. C. Biswas and D. K. Chattoraj, “Kinetics of Adsorption of Cationic Surfactants at Charcoal-Water Interface,” J. Surf. Sci. Technol., vol. 14, no. 1--4, pp. 78–92, 1998 | spa |
dc.relation.references | J. Sheng, Introduction. Modern Chemical Enhanced Oil Recovery. 2011 | spa |
dc.relation.references | P. Gutierrez, Daniel; Trejo, “Teoria de flujo fraccional aplicada a fluidos No-Newtonianos,” Universidad Nacional Autónoma de México, 2013 | spa |
dc.relation.references | M. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications,” Energy and Fuels, vol. 31, no. 8, pp. 7701–7720, 2017 | spa |
dc.relation.references | W. Li et al., Adsorption and retention behaviors of heterogeneous combination flooding system composed of dispersed particle gel and surfactant, vol. 538. Elsevier B.V., 2018 | spa |
dc.relation.references | E. Carrero, “ANÁLISIS DE SENSIBILIDAD GLOBAL EN LA RECUPERACIÓN MEJORADA DE PETRÓLEO POR INYECCIÓN DE ÁLCALI, SURFACTANTE Y POLÍMEROS,” UNIVERSIDAD DEL ZULIA, 2004 | spa |
dc.relation.references | K. Mendoza, “OPTIMIZACIÓN DE LOS COMPONENTES DE UNA FORMULACIÓN ÁLCALI, SURFACTANTE Y POLÍMERO (ASP) CON POTENCIAL EMPLEO EN RECUPERACIÓN MEJORADA DE UN CRUDO DEL OCCIDENTE DEL PAÍS,” Universidad Central de Venezuela, 2010 | spa |
dc.relation.references | J. J. Sheng, Surfactant Flooding. 2010 | spa |
dc.relation.references | G. Hirasaki, D. L. Zhang, and U. Rice, “Surface Chemistry of Oil Recovery From Fractured , Oil-Wet , Carbonate Formations,” Spe, vol. 88365, no. April 2003, pp. 5–8, 2004. | spa |
dc.relation.references | N. S. LABIDI and A. DJEBAILI, “Studies of The Mechanism of Polyvinyl Alcohol Adsorption on The Calcite/Water Interface in The Presence of Sodium Oleate,” J. Miner. Mater. Charact. Eng., vol. 07, no. 02, pp. 147–161, 2015 | spa |
dc.relation.references | M. Tagavifar et al., “Effect of pH on adsorption of anionic surfactants on limestone: Experimental study and surface complexation modeling,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 538, pp. 549–558, 2018 | spa |
dc.relation.references | D. B. Levitt et al., “Adsorption of EOR Chemicals under Laboratory and Reservoir Conditions, Part 1 - Iron Abundance and Oxidation State,” IOR 2015 - 18th Eur. Symp. Improv. Oil Recover., no. April 2015, pp. 14–16, 2015 | spa |
dc.relation.references | M. Ogechukwuka, “Chemical Enhanced Oil Recovery Utilizing Alternative Alkalis,” The University of Texas at Austin, 2013 | spa |
dc.relation.references | A. M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. Hawkes, and C. Whalan, “Visualising surfactant enhanced oil recovery,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 480, pp. 449–461, 2014 | spa |
dc.relation.references | M. Aoudia, M. N. Al-Shibli, L. H. Al-Kasimi, R. Al-Maamari, and A. Al-Bemani, “Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature,” J. Surfactants Deterg., vol. 9, no. 3, pp. 287–293, 2006 | spa |
dc.relation.references | S. Singh, N. Arora, K. Paul, R. Kumar, and R. Kumar, “FTIR and rheological studies of PMMA-based nano-dispersed gel polymer electrolytes incorporated with LiBF 4 and SiO 2,” Ionics (Kiel)., vol. 25, no. 4, pp. 1495–1503, 2019 | spa |
dc.relation.references | M. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, “Interaction of anionic surfactant-nanoparticles for gas - Wettability alteration of sandstone in tight gas-condensate reservoirs,” J. Nat. Gas Sci. Eng., vol. 51, pp. 53–64, 2018 | spa |
dc.relation.references | A. H. C. Chun and A. N. Martin, “Measurement of hydrophile‐lipophile balance of surface‐active agents,” J. Pharm. Sci., vol. 50, no. 9, pp. 732–736, 1961 | spa |
dc.relation.references | J. J. Taber, F. D. Martin, R. S. Seright, and P. Recovery, “EOR Screening Revisited- Part 1: Introduction to Screeningn Criteria and Enhanced Recovery Field Projects,” SPE Reserv. Eng., no. August, pp. 189–198, 1997. | spa |
dc.relation.references | C. A. Paternina, A. K. Londoño, J. A. Botett, M. J. Rondon, R. A. Mercado, and S. F. Muñoz, “Influencia de la salinidad y dureza del agua sobre la adsorción estática de surfactantes extendidos en el medio poroso,” pp. 1–14. | spa |
dc.relation.references | M. Yu, M. A. Mahmoud, and H. A. Nasr-El-Din, “Propagation and Retention of Viscoelastic Surfactants Following Matrix-Acidizing Treatments in Carbonate Cores,” SPE J., vol. 16, no. 04, pp. 993–1001, 2011 | spa |
dc.relation.references | J.-S. Tsau, A. Syahputra, and R. Grigg, “Economic Evaluation of Surfactant Adsorption in CO2 Foam Application,” 2007 | spa |
dc.relation.references | D. Li, M. Shi, W. Demin, Z. Li, and H. Fei, “Chromatographic Separation of Chemicals in Alkaline Surfactant Polymer Flooding in Reservoir Rocks in the Daqing Oilfield,” SPE Oilf. Chem. Symp. Woodlands, no. SPE121598-MS, pp. 1–11, 2009 | spa |
dc.relation.references | S. Solairaj, C. Britton, D. H. Kim, U. Weerasooriya, and G. a Pope, “Measurement and Analysis of Surfactant Retention,” SPE Imroved Oil Recover. Simp., no. 1993, pp. 1–17, 2012 | spa |
dc.relation.references | T. E. Randall and D. B. Bennion, “Laboratory Factors Influencing Slim Tube Test Results,” J. Can. Pet. Technol., vol. 28, no. 4, pp. 60–70, 1989 | spa |
dc.relation.references | I. A. Adel, F. D. Tovar, and D. S. Schechter, “Fast-Slim Tube: A Reliable and Rapid Technique for the Laboratory Determination of MMP in CO<sub>2</sub> - Light Crude Oil Systems,” SPE Improv. Oil Recover. Conf., no. 2012, 2016 | spa |
dc.relation.references | E. M. Mansour, A. M. Al-Sabagh, S. M. Desouky, F. M. Zawawy, and M. Ramzi, “A new estimating method of minimum miscibility pressure as a key parameter in designing CO 2 gas injection process,” Egypt. J. Pet., 2017 | spa |
dc.relation.references | S. Jackson et al., “SPE-169549-MS Increased Oil Recovery by Permeability Modification in High Permeability Contrast Slim Tubes,” no. 1, pp. 1–14, 2014 | spa |
dc.relation.references | K. K. Mohanty, U. Houston, W. H. M. Jr, and T. D. Ma, “Role of Three-Hydrocarbon-Phase Flow in a Gas-Displacement Process,” no. August, pp. 1–8, 1995 | spa |
dc.relation.references | R. Stacey, K. Li, and R. Horne, “Electrical impedance tomography (EIT) Technique for real time saturation minitoring,” SPE J., pp. 1–14, 2006 | spa |
dc.relation.references | J. J. A. Van Weereld, M. A. Player, D. A. L. Collie, A. P. Watkins, and D. Olsen, “Flow Imaging in Core Samples By Electrical Impedance Tomography,” SCA Soc. Core Anal., no. 1, pp. 1–12, 2001 | spa |
dc.relation.references | D. P. Yale and S. W. Meier, “SPE 134313 Large-Scale Laboratory Testing of Petroleum Reservoir Processes,” Proc. SPE ATCE, pp. 1–14, 2010 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | spa |
dc.subject.proposal | Surfactant | eng |
dc.subject.proposal | Surfactante | spa |
dc.subject.proposal | Recobro mejorado | spa |
dc.subject.proposal | enhanced oil recovery | eng |
dc.title | Perfil de invasión de un surfactante aniónico en procesos de recobro mejorado | spa |
dc.title.alternative | Invasion profile of an anionic surfactant in enhanced recovery processes | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1.112.957.887.2019.pdf
- Tamaño:
- 1.33 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Petróleos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: