Perfil de invasión de un surfactante aniónico en procesos de recobro mejorado

dc.contributor.advisorLopera Castro, Sergio Loperaspa
dc.contributor.authorSoto Ramirez, Cristian Javierspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupYacimientos de Hidrocarburosspa
dc.date.accessioned2020-08-12T20:48:35Zspa
dc.date.available2020-08-12T20:48:35Zspa
dc.date.issued2019-11-22spa
dc.description.abstractThe retention of surfactant in the porous medium is one of the factors that affect the development of an EOR process because the greater amount of the surfactant remains in the vicinity of the face of the well preventing it from acting in depth, which It represents high costs for the realization of this type of projects. Many authors have developed research where they study the different phenomena and variables that affect retention in the reservoir, but it is not known experimentally how the surfactant acts as it penetrates the porous medium. This work develops a methodology and builds a series of equipment that allows to identify the invasion profile of the surfactant, showing that in greater depth the efficiency of the surfactant decreases. A model is constructed to identify the incremental recovery based on the depth of invasion; this model is only applicable for the conditions and fluid system - porous medium used in this investigation.spa
dc.description.abstractLa retención de surfactante en el medio poroso es unos de los factores que afectan el desarrollo de un proceso de recobro debido a que la mayor cantidad del surfactante se queda en las inmediaciones de la cara del pozo impidiendo que este actúe en profundidad, lo que representa altos costos para la realización de este tipo de proyectos. Muchos autores han desarrollado investigaciones en donde estudian los diferentes fenómenos (adsorción, entrampamiento de fase, capilaridad) y variables (temperatura, contenido de arcilla, pH, salinidad, entre otras) que afectan la retención en el medio, sin embargo, no se conoce de forma experimental como actúa el surfactante a medida que penetra en el medio poroso. Este trabajo desarrolla una metodología y construye una serie de equipos que permiten identificar el perfil de invasión del surfactante durante la inyección de este en el medio poroso, mostrando que a mayor profundidad la eficiencia del surfactante disminuye. Adicionalmente, se construyó un modelo que permite identificar el recobro incremental en función de la profundidad de invasión; este modelo solo es aplicable para las condiciones y sistema fluido - medio poroso utilizados en esta investigaciónspa
dc.description.degreelevelMaestríaspa
dc.description.projectPlan nacional para el potenciamiento de la tecnología CEOR con gas mejorado químicamentespa
dc.description.sponsorshipColciencias, ANH, Universidad Nacional de Colombia sede Medellínspa
dc.format.extent87spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationC,. Soto, "Perfil de invasión de un surfactante aniónico en procesos de recobro mejorado" Universidad Nacional de Colombia sede Medellín, 2019.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78003
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleosspa
dc.relation.referencesM. R. Yassin, M. Arabloo, A. Shokrollahi, and A. H. Mohammadi, “Prediction of Surfactant Retention in Porous Media: A Robust Modeling Approach,” J. Dispers. Sci. Technol., vol. 35, no. 10, pp. 1407–1418, 2014.spa
dc.relation.referencesC. J. Glover, “Surfactant Phase Behavior and Retention in Porous Media,” no. June, 1979spa
dc.relation.referencesL. Y. Chang, D. S. P. Lansakara-p, S. H. Jang, U. P. Weerasooriya, and G. A. Pope, “Co-solvent Partitioning and Retention,” no. April, pp. 11–13, 2016spa
dc.relation.referencesS. Solairaj, “New Method of Predicting Optimum Surfactant Structure for EOR,” University of Texas at Austin, 2011spa
dc.relation.referencesA. Acosta, “La Republica,” El recobro mejorado: la tabla de salvación, 2017. [Online]. Available: https://www.larepublica.co/analisis/amylkar-d-acosta-m-557896/el-recobro-mejorado-la-tabla-de-salvacion-2563661spa
dc.relation.referencesSchlumberger, “Schlumberger Glossary,” EOR. [Online]. Available: http://www.glossary.oilfield.slb.com/es/Terms/e/eor.aspxspa
dc.relation.referencesL. Lake, “Enhanced Oil Recovery,” in Enhanced Oil Recovery, 1989, p. 400spa
dc.relation.referencesH. W. Harris, S. California, L. Livermore, and N. Laboratories, “Adsorption of EOR Chemicals Under Laboratory and Reservoir Conditions , Part II : Bacterial Reduction Methods,” no. Ii, pp. 1–15, 2015spa
dc.relation.referencesJ. S. Unal, S. L. Unal, F. C. Unal, and A. O. Equion, “Adsorción Dinámica de Surfactantes Enfocados a Procesos de Recobro Mejorado,” 2017spa
dc.relation.referencesA. M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. A. Hawkes, and S. Gould, “Visualising Surfactant EOR in Core Plugs and Micromodels,” no. August, pp. 11–13, 2015.spa
dc.relation.referencesA. Tatar, S. Nasery, A. Bahadori, M. Bahadori, A. Najafi-Marghmaleki, and A. Barati-Harooni, “Implementing radial basis function neural network for prediction of surfactant retention in petroleum production and processing industries,” Pet. Sci. Technol., vol. 34, no. 11–12, pp. 992–999, 2016spa
dc.relation.referencesA. Kamari, M. Sattari, A. H. Mohammadi, and D. Ramjugernath, “Reliable method for the determination of surfactant retention in porous media during chemical flooding oil recovery,” Fuel, vol. 158, pp. 122–128, 2015spa
dc.relation.referencesP. Somasundaran and H. S. Hanna, Physico–Chemical Aspects of Adsorption At Solid/Liquid Interfaces. ACADEMIC PRESS, INC., 1977spa
dc.relation.referencesR. B. Grigg and B. Bai, “Sorption of Surfactant Used in CO2 Flooding onto Five Minerals and Three Porous Media,” SPE Int. Symp. Oilf. Chem., pp. 1–12, 2005spa
dc.relation.referencesJ. Novosad, “Surfactant Retention in Berea Sandstone- Effects of Phase Behavior and Temperature,” Soc. Pet. Eng. J., vol. 22, no. 06, pp. 962–970, 1982spa
dc.relation.referencesS. H. Jang et al., “A Systematic Method for Reducing Surfactant Retention to Extremely Low Levels,” SPE Improv. Oil Recover. Conf., no. 2006, 2016spa
dc.relation.referencesS. C. Biswas and D. K. Chattoraj, “Kinetics of Adsorption of Cationic Surfactants at Charcoal-Water Interface,” J. Surf. Sci. Technol., vol. 14, no. 1--4, pp. 78–92, 1998spa
dc.relation.referencesJ. Sheng, Introduction. Modern Chemical Enhanced Oil Recovery. 2011spa
dc.relation.referencesP. Gutierrez, Daniel; Trejo, “Teoria de flujo fraccional aplicada a fluidos No-Newtonianos,” Universidad Nacional Autónoma de México, 2013spa
dc.relation.referencesM. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications,” Energy and Fuels, vol. 31, no. 8, pp. 7701–7720, 2017spa
dc.relation.referencesW. Li et al., Adsorption and retention behaviors of heterogeneous combination flooding system composed of dispersed particle gel and surfactant, vol. 538. Elsevier B.V., 2018spa
dc.relation.referencesE. Carrero, “ANÁLISIS DE SENSIBILIDAD GLOBAL EN LA RECUPERACIÓN MEJORADA DE PETRÓLEO POR INYECCIÓN DE ÁLCALI, SURFACTANTE Y POLÍMEROS,” UNIVERSIDAD DEL ZULIA, 2004spa
dc.relation.referencesK. Mendoza, “OPTIMIZACIÓN DE LOS COMPONENTES DE UNA FORMULACIÓN ÁLCALI, SURFACTANTE Y POLÍMERO (ASP) CON POTENCIAL EMPLEO EN RECUPERACIÓN MEJORADA DE UN CRUDO DEL OCCIDENTE DEL PAÍS,” Universidad Central de Venezuela, 2010spa
dc.relation.referencesJ. J. Sheng, Surfactant Flooding. 2010spa
dc.relation.referencesG. Hirasaki, D. L. Zhang, and U. Rice, “Surface Chemistry of Oil Recovery From Fractured , Oil-Wet , Carbonate Formations,” Spe, vol. 88365, no. April 2003, pp. 5–8, 2004.spa
dc.relation.referencesN. S. LABIDI and A. DJEBAILI, “Studies of The Mechanism of Polyvinyl Alcohol Adsorption on The Calcite/Water Interface in The Presence of Sodium Oleate,” J. Miner. Mater. Charact. Eng., vol. 07, no. 02, pp. 147–161, 2015spa
dc.relation.referencesM. Tagavifar et al., “Effect of pH on adsorption of anionic surfactants on limestone: Experimental study and surface complexation modeling,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 538, pp. 549–558, 2018spa
dc.relation.referencesD. B. Levitt et al., “Adsorption of EOR Chemicals under Laboratory and Reservoir Conditions, Part 1 - Iron Abundance and Oxidation State,” IOR 2015 - 18th Eur. Symp. Improv. Oil Recover., no. April 2015, pp. 14–16, 2015spa
dc.relation.referencesM. Ogechukwuka, “Chemical Enhanced Oil Recovery Utilizing Alternative Alkalis,” The University of Texas at Austin, 2013spa
dc.relation.referencesA. M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. Hawkes, and C. Whalan, “Visualising surfactant enhanced oil recovery,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 480, pp. 449–461, 2014spa
dc.relation.referencesM. Aoudia, M. N. Al-Shibli, L. H. Al-Kasimi, R. Al-Maamari, and A. Al-Bemani, “Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature,” J. Surfactants Deterg., vol. 9, no. 3, pp. 287–293, 2006spa
dc.relation.referencesS. Singh, N. Arora, K. Paul, R. Kumar, and R. Kumar, “FTIR and rheological studies of PMMA-based nano-dispersed gel polymer electrolytes incorporated with LiBF 4 and SiO 2,” Ionics (Kiel)., vol. 25, no. 4, pp. 1495–1503, 2019spa
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, “Interaction of anionic surfactant-nanoparticles for gas - Wettability alteration of sandstone in tight gas-condensate reservoirs,” J. Nat. Gas Sci. Eng., vol. 51, pp. 53–64, 2018spa
dc.relation.referencesA. H. C. Chun and A. N. Martin, “Measurement of hydrophile‐lipophile balance of surface‐active agents,” J. Pharm. Sci., vol. 50, no. 9, pp. 732–736, 1961spa
dc.relation.referencesJ. J. Taber, F. D. Martin, R. S. Seright, and P. Recovery, “EOR Screening Revisited- Part 1: Introduction to Screeningn Criteria and Enhanced Recovery Field Projects,” SPE Reserv. Eng., no. August, pp. 189–198, 1997.spa
dc.relation.referencesC. A. Paternina, A. K. Londoño, J. A. Botett, M. J. Rondon, R. A. Mercado, and S. F. Muñoz, “Influencia de la salinidad y dureza del agua sobre la adsorción estática de surfactantes extendidos en el medio poroso,” pp. 1–14.spa
dc.relation.referencesM. Yu, M. A. Mahmoud, and H. A. Nasr-El-Din, “Propagation and Retention of Viscoelastic Surfactants Following Matrix-Acidizing Treatments in Carbonate Cores,” SPE J., vol. 16, no. 04, pp. 993–1001, 2011spa
dc.relation.referencesJ.-S. Tsau, A. Syahputra, and R. Grigg, “Economic Evaluation of Surfactant Adsorption in CO2 Foam Application,” 2007spa
dc.relation.referencesD. Li, M. Shi, W. Demin, Z. Li, and H. Fei, “Chromatographic Separation of Chemicals in Alkaline Surfactant Polymer Flooding in Reservoir Rocks in the Daqing Oilfield,” SPE Oilf. Chem. Symp. Woodlands, no. SPE121598-MS, pp. 1–11, 2009spa
dc.relation.referencesS. Solairaj, C. Britton, D. H. Kim, U. Weerasooriya, and G. a Pope, “Measurement and Analysis of Surfactant Retention,” SPE Imroved Oil Recover. Simp., no. 1993, pp. 1–17, 2012spa
dc.relation.referencesT. E. Randall and D. B. Bennion, “Laboratory Factors Influencing Slim Tube Test Results,” J. Can. Pet. Technol., vol. 28, no. 4, pp. 60–70, 1989spa
dc.relation.referencesI. A. Adel, F. D. Tovar, and D. S. Schechter, “Fast-Slim Tube: A Reliable and Rapid Technique for the Laboratory Determination of MMP in CO<sub>2</sub> - Light Crude Oil Systems,” SPE Improv. Oil Recover. Conf., no. 2012, 2016spa
dc.relation.referencesE. M. Mansour, A. M. Al-Sabagh, S. M. Desouky, F. M. Zawawy, and M. Ramzi, “A new estimating method of minimum miscibility pressure as a key parameter in designing CO 2 gas injection process,” Egypt. J. Pet., 2017spa
dc.relation.referencesS. Jackson et al., “SPE-169549-MS Increased Oil Recovery by Permeability Modification in High Permeability Contrast Slim Tubes,” no. 1, pp. 1–14, 2014spa
dc.relation.referencesK. K. Mohanty, U. Houston, W. H. M. Jr, and T. D. Ma, “Role of Three-Hydrocarbon-Phase Flow in a Gas-Displacement Process,” no. August, pp. 1–8, 1995spa
dc.relation.referencesR. Stacey, K. Li, and R. Horne, “Electrical impedance tomography (EIT) Technique for real time saturation minitoring,” SPE J., pp. 1–14, 2006spa
dc.relation.referencesJ. J. A. Van Weereld, M. A. Player, D. A. L. Collie, A. P. Watkins, and D. Olsen, “Flow Imaging in Core Samples By Electrical Impedance Tomography,” SCA Soc. Core Anal., no. 1, pp. 1–12, 2001spa
dc.relation.referencesD. P. Yale and S. W. Meier, “SPE 134313 Large-Scale Laboratory Testing of Petroleum Reservoir Processes,” Proc. SPE ATCE, pp. 1–14, 2010spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.proposalSurfactanteng
dc.subject.proposalSurfactantespa
dc.subject.proposalRecobro mejoradospa
dc.subject.proposalenhanced oil recoveryeng
dc.titlePerfil de invasión de un surfactante aniónico en procesos de recobro mejoradospa
dc.title.alternativeInvasion profile of an anionic surfactant in enhanced recovery processesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1.112.957.887.2019.pdf
Tamaño:
1.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: