Producción, caracterización y resistencia a la corrosión de recubrimientos de TiAlZrTaNbN con potencial aplicación en la industria Biomédica e Industrial

dc.contributor.advisorOlaya Florez, Jhon Jairospa
dc.contributor.authorGonzalez Avila, Ingrid Johanaspa
dc.contributor.other(Piamba Tulcan, Oscar Edwin)spa
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energíaspa
dc.date.accessioned2025-07-02T19:50:13Z
dc.date.available2025-07-02T19:50:13Z
dc.date.issued2024-08-21
dc.description.abstractEl objeto de estudio de esta investigación son los recubrimientos de nitruro de TiAlZrTaNb sobre la superaleación Haynes 282 y la aleación de Ti6Al4V, los cuales fueron depositados mediante la técnica de pulverización catódica con magnetrón por impulso de alta potencia (HiPIMS) con una variación de la polarización del sustrato de 0 V a −75 V y una presión de trabajo de 0,3 Pa a 0,7 Pa. Se investigó el efecto de la polarización del voltaje de sustrato Bias y la presión de trabajo sobre la resistencia a la corrosión mediante métodos electroquímicos en las películas. La microestructura, morfología y composición química de los recubrimientos se analizaron mediante difracción de rayos X, microscopía electrónica de barrido y espectroscopía de rayos X de energía dispersiva. La porosidad de la muestra y la resistencia a la corrosión se caracterizaron mediante métodos electroquímicos, en específico, a partir de pruebas de impedancia electroquímica (EIS) y de polarización potenciodinámica empleando una solución de NaCl al 3,5 % en peso y suero fisiológico. Los resultados sugieren que las películas pueden ser consideradas como aleaciones de alta entropía, nanoestructuradas, policristalinas y que su resistencia a la corrosión es afectada principalmente por la presión de trabajo en la cámara. Por último, se describe el mecanismo de corrosión en las películas depositadas sobre cada uno de los sustratos. (Texto tomado de la fuente)spa
dc.description.abstractThe object of study of this research is the TiAlZrTaNb nitride coatings on the Haynes 282 superalloy and the Ti6Al4V alloy, which were deposited using the high-power impulse magnetron sputtering technique (HiPIMS), applying a variation of the substrate bias from 0 V to −75 V and a working pressure from 0,3 Pa to 0,7 Pa. The effect of substrate voltage Bias and working pressure on corrosion resistance was investigated by electrochemical methods on the films. The microstructure, morphology and chemical composition of the coatings were analyzed by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The porosity of the sample and the corrosion resistance were characterized by electrochemical methods, specifically, with electrochemical impedance (EIS) and potentiodynamic polarization tests using a 3.5 wt % NaCl solution and physiological saline. The results suggest that the films can be considered as high entropy, nanostructured, polycrystalline alloys and that their corrosion resistance is mainly affected by the working pressure in the chamber. Finally, the corrosion mechanism in the films deposited on each of the substrates is describedeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Materiales y procesosspa
dc.description.researchareaIngeniería de superficiespa
dc.format.extent121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88274
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesJ.-W. Yeh et al., “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes,” Adv Eng Mater, vol. 6, no. 5, pp. 299–303, May 2004, doi: https://doi.org/10.1002/adem.200300567.spa
dc.relation.referencesY. Zhang et al., “Microstructures and properties of high-entropy alloys,” 2014, Elsevier Ltd. doi: 10.1016/j.pmatsci.2013.10.001.spa
dc.relation.referencesK. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Feb. 25, 2010. doi: 10.1016/j.surfcoat.2009.11.013.spa
dc.relation.referencesA. D. Pogrebnjak, A. A. Bagdasaryan, I. V Yakushchenko, and V. M. Beresnev, “The structure and properties of high-entropy alloys and nitride coatings based on them,” Russian Chemical Reviews, vol. 83, no. 11, pp. 1027–1061, Nov. 2014, doi: 10.1070/rcr4407.spa
dc.relation.referencesA. Anders, “Discharge physics of high power impulse magnetron sputtering,” Surf Coat Technol, vol. 205, no. SUPPL. 2, Jul. 2011, doi: 10.1016/j.surfcoat.2011.03.081.spa
dc.relation.referencesM. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review,” May 2009. doi: 10.1016/j.pmatsci.2008.06.004.spa
dc.relation.referencesC. Pope, N. Mays, and J. Popay, Pope C, Mays N, Popay J. (2007) Synthesizing qualitative and quantitative health evidence: a guide to methods. Buckingham: Open University Press. 2007.spa
dc.relation.referencesA. S. Shaikh, F. Schulz, K. Minet-Lallemand, and E. Hryha, “Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion,” Mater Today Commun, vol. 26, Mar. 2021, doi: 10.1016/j.mtcomm.2021.102038.spa
dc.relation.referencesA. Ramakrishnan and G. P. Dinda, “Microstructure and mechanical properties of direct laser metal deposited Haynes 282 superalloy,” Materials Science and Engineering: A, vol. 748, pp. 347–356, Mar. 2019, doi: 10.1016/j.msea.2019.01.101.spa
dc.relation.referencesD. Luo et al., “Tribological Behavior of High Entropy Alloy Coatings: A Review,” Oct. 01, 2022, MDPI. doi: 10.3390/coatings12101428spa
dc.relation.referencesW. H. Kao, Y. L. Su, and Y. J. Lin, “Mechanical, Tribological, and Anti-corrosion Properties of Nitrogen-Doped AlCrNbSiTiMoW High-Entropy Coatings,” J Mater Eng Perform, vol. 33, no. 12, pp. 6092–6110, 2024, doi: 10.1007/s11665-023-08394-3.spa
dc.relation.referencesT. Hori, T. Nagase, M. Todai, A. Matsugaki, and T. Nakano, “Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials,” Scr Mater, vol. 172, pp. 83–87, Nov. 2019, doi: 10.1016/j.scriptamat.2019.07.011.spa
dc.relation.referencesK. Cui and Y. Zhang, “High-Entropy Alloy Films,” Mar. 01, 2023, MDPI. doi: 10.3390/coatings13030635.spa
dc.relation.referencesG. Walunj, M. Mugale, A. Patil, and T. Borkar, “Spark Plasma Sintering of Mechanically Alloyed High Entropy Nitrides to Investigate the Mechanical, Tribological, and Oxidation Properties,” JOM, vol. 76, no. 1, pp. 171–185, 2024, doi: 10.1007/s11837-023-06259-7.spa
dc.relation.referencesYu. F. Ivanov, N. A. Prokopenko, E. A. Petrikova, V. V Shugurov, A. D. Teresov, and O. S. Tolkachev, “Structure and Properties of Hard Nitride Coatings from a High-Entropy Alloy,” Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, vol. 16, no. 6, pp. 1061–1068, 2022, doi: 10.1134/S1027451022060118.spa
dc.relation.referencesC. Liu, H. Zhu, S. Lu, F. Duan, and M. Du, “High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions,” New Journal of Chemistry, vol. 45, no. 47, pp. 22255–22260, 2021, doi: 10.1039/D1NJ04509A.spa
dc.relation.referencesY. Wan et al., “A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications,” Engineering, vol. 30, pp. 110–120, Nov. 2023, doi: 10.1016/j.eng.2023.06.008.spa
dc.relation.referencesY. T. Li, X. Jiang, X. T. Wang, and Y. X. Leng, “Integration of hardness and toughness in (CuNiTiNbCr)Nx high entropy films through nitrogen-induced nanocomposite structure,” Scr Mater, vol. 238, Jan. 2024, doi: 10.1016/j.scriptamat.2023.115763.spa
dc.relation.referencesB. S. Lou, Y. C. Lin, and J. W. Lee, “Mechanical Properties and Corrosion Resistance of AlCrNbSiTiN High Entropy Alloy Nitride Coatings,” Coatings, vol. 13, no. 10, Oct. 2023, doi: 10.3390/coatings13101724.spa
dc.relation.referencesYu. F. Ivanov et al., “Nitride Coatings Based on a High-Entropy Alloy Formed by the Ion-Plasma Method,” High Energy Chemistry, vol. 57, no. 1, pp. S77–S80, 2023, doi: 10.1134/S0018143923070172.spa
dc.relation.referencesY. F. Ivanov et al., “Structure and Properties of NbMoCrTiAl High-Entropy Alloy Coatings Formed by Plasma-Assisted Vacuum Arc Deposition,” Coatings, vol. 13, no. 7, Jul. 2023, doi: 10.3390/coatings13071191.spa
dc.relation.referencesL. Yuan, F. Wang, H. Chen, M. Gao, and H. Zhang, “Improvement of the Mechanical Properties and Corrosion Resistance of CSS-42L Steel with a Novel TiAlMoNbW Nitrid Film Deposition,” Coatings, vol. 12, no. 8, Aug. 2022, doi: 10.3390/coatings12081048.spa
dc.relation.referencesB. S. Lou, R. Z. Lin, C. L. Li, and J. W. Lee, “Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition,” Surf Coat Technol, vol. 483, May 2024, doi: 10.1016/j.surfcoat.2024.130772.spa
dc.relation.referencesR. Shu et al., “Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films,” Surf Coat Technol, vol. 404, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126485.spa
dc.relation.referencesC. Cheng et al., “Effect of substrate bias on structure and properties of (AlTiCrZrNb)N high-entropy alloy nitride coatings through arc ion plating,” Surf Coat Technol, vol. 467, Aug. 2023, doi: 10.1016/j.surfcoat.2023.129692.spa
dc.relation.referencesY. C. Godoy et al., “Corrosion resistant TiTaN and TiTaAlN thin films grown by hybrid HiPIMS/DCMS using synchronized pulsed substrate bias with no external substrate heating,” Coatings, vol. 9, no. 12, 2019, doi: 10.3390/coatings9120841.spa
dc.relation.referencesX. Yu, J. Wang, L. Wang, and W. Huang, “Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias,” Surf Coat Technol, vol. 412, Apr. 2021, doi: 10.1016/j.surfcoat.2021.127074.spa
dc.relation.referencesJ. Srinivasan et al., “Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves You may also like One-Dimensional Pit Experiments and Modeling to Determine Critical Factors for Pit Stability and Repassivation Hydrogen Evolution during the Corrosion of Galvanically Coupled Magnesium Investigation of Corrosion and Cathodic Protection in Reinforced Concrete: II. Properties of Steel Surface Layers.”spa
dc.relation.referencesZ. Y. Ding, Q. F. He, and Y. Yang, “Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys,” Feb. 01, 2018, Springer Verlag. doi: 10.1007/s11431-017-9051-6.spa
dc.relation.referencesQ. W. Xing, S. Q. Xia, X. H. Yan, and Y. Zhang, “Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures,” J Mater Res, vol. 33, no. 19, pp. 3347–3354, Oct. 2018, doi: 10.1557/jmr.2018.337.spa
dc.relation.referencesA. D. Pogrebnjak, A. A. Bagdasaryan, I. V Yakushchenko, and V. M. Beresnev, “The structure and properties of high-entropy alloys and nitride coatings based on them,” Russian Chemical Reviews, vol. 83, no. 11, pp. 1027–1061, Nov. 2014, doi: 10.1070/rcr4407.spa
dc.relation.references“Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys”.spa
dc.relation.referencesM. Arshad et al., “High-Entropy Coatings (HEC) for High-Temperature Applications: Materials, Processing, and Properties,” May 01, 2022, MDPI. doi: 10.3390/coatings12050691.spa
dc.relation.referencesY. Liu et al., “Corrosion mechanism of a high corrosion-resistance Zn–Al–Mg coating in typical extremely harsh marine and cold environments,” Journal of Materials Research and Technology, vol. 33, pp. 4290–4302, Nov. 2024, doi: 10.1016/j.jmrt.2024.10.080.spa
dc.relation.referencesC. Hu, Y. Tian, and W. Zheng, “Send Orders for Reprints to reprints@benthamscience.ae A Review of Corrosion-Protective Transition Metal Nitride Coatings,” 2015.spa
dc.relation.referencesJ. Mu, H. Wang, B. Qin, Y. Zhang, L. Chen, and C. Zeng, “Improved wear and corrosion resistance of biological compatible TiZrNb films on biomedical Ti6Al4V substrates by optimizing sputtering power,” Surf Coat Technol, vol. 428, Dec. 2021, doi: 10.1016/j.surfcoat.2021.127866.spa
dc.relation.referencesW. Li, P. Liu, and P. K. Liaw, “Microstructures and properties of high-entropy alloy films and coatings: A review,” Apr. 03, 2018, Taylor and Francis Ltd. doi: 10.1080/21663831.2018.1434248.spa
dc.relation.referencesK. H. Cheng, C. H. Lai, S. J. Lin, and J. W. Yeh, “Structural and mechanical properties of multi-element (AlCrMoTaTiZr)N x coatings by reactive magnetron sputtering,” Thin Solid Films, vol. 519, no. 10, pp. 3185–3190, Mar. 2011, doi: 10.1016/j.tsf.2010.11.034.spa
dc.relation.referencesS. Calderon Velasco, A. Cavaleiro, and S. Carvalho, “Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering,” Dec. 01, 2016, Elsevier Ltd. doi: 10.1016/j.pmatsci.2016.09.005.spa
dc.relation.referencesJ. Nieto, J. Caicedo, C. Amaya, W. Aperador, L. Tirado, and G. Bejarano, “EVALUACIÓN DE LA INFLUENCIA DEL VOLTAJ E BIAS SOBRE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE AlNbN EVALUATION OF THE INFLUENCE OF BIAS VOLTAGE ON THE CORROSION RESISTANCE OF AlNbN THIN FILMS.”spa
dc.relation.referencesF. Cemin, S. R. S. de Mello, C. A. Figueroa, and F. Alvarez, “Influence of substrate bias and temperature on the crystallization of metallic NbTaTiVZr high-entropy alloy thin films,” Surf Coat Technol, vol. 421, Sep. 2021, doi: 10.1016/j.surfcoat.2021.127357.spa
dc.relation.referencesR. Bandorf, V. Sittinger, and G. Bräuer, “High Power Impulse Magnetron Sputtering – HIPIMS,” in Comprehensive Materials Processing: Thirteen Volume Set, vol. 4, Elsevier, 2014, pp. V4-75-V4-99. doi: 10.1016/B978-0-08-096532-1.00404-0.spa
dc.relation.referencesA. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films, vol. 518, no. 15, pp. 4087–4090, May 2010, doi: 10.1016/j.tsf.2009.10.145.spa
dc.relation.referencesB. A. Movchan, A. V Demchishin, and G. F. Badilenko, “The structure and mechanical properties of thin layers of dispersion-strengthened condensed nickel-zirconium dioxide material,” Strength of Materials, vol. 9, no. 6, pp. 699–704, 1977, doi: 10.1007/BF01537769.spa
dc.relation.referencesJ. A. Thornton, “HIGH RATE THICK FILM GROWTH,” 1977. [Online]. Available: www.annualreviews.orgspa
dc.relation.referencesU. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Aug. 14, 2006. doi: 10.1016/j.tsf.2006.03.033.spa
dc.relation.referencesJ. Musil, “Advanced Hard Coatings with Enhanced Toughness and Resistance to Cracking,” 2015, pp. 377–464. doi: 10.1201/b18729-8.spa
dc.relation.referencesD. Craciun et al., “Structural Parameters and Behavior in Simulated Body Fluid of High Entropy Alloy Thin Films,” Materials, vol. 17, no. 5, Mar. 2024, doi: 10.3390/ma17051162.spa
dc.relation.referencesS. A. Hassanzadeh-Tabrizi, “Precise calculation of crystallite size of nanomaterials: A review,” Dec. 15, 2023, Elsevier Ltd. doi: 10.1016/j.jallcom.2023.171914.spa
dc.relation.referencesW. Yang, J. Shen, Z. Wang, G. Ma, P. Ke, and A. Wang, “Mechanical and electrochemical properties of (MoNbTaTiZr)1-xNx high-entropy nitride coatings,” J Mater Sci Technol, vol. 208, pp. 78–91, Feb. 2025, doi: 10.1016/j.jmst.2024.04.062.spa
dc.relation.referencesH. Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Commun, vol. 23, no. 11, pp. 815–819, 1977, doi: https://doi.org/10.1016/0038-1098(77)90959-0.spa
dc.relation.referencesW. L. Lo, S. Y. Hsu, Y. C. Lin, S. Y. Tsai, Y. T. Lai, and J. G. Duh, “Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias,” Surf Coat Technol, vol. 401, Nov. 2020, doi: 10.1016/j.surfcoat.2020.126247.spa
dc.relation.referencesY. Xu, G. Li, G. Li, F. Gao, and Y. Xia, “Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering,” Appl Surf Sci, vol. 564, Oct. 2021, doi: 10.1016/j.apsusc.2021.150417.spa
dc.relation.referencesB. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Materials Science and Engineering: A, vol. 375–377, no. 1-2 SPEC. ISS., pp. 213–218, Jul. 2004, doi: 10.1016/J.MSEA.2003.10.257.spa
dc.relation.referencesP.-K. Huang and J.-W. Yeh, “Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating,” Surf Coat Technol, vol. 203, no. 13, pp. 1891–1896, 2009, doi: https://doi.org/10.1016/j.surfcoat.2009.01.016.spa
dc.relation.referencesS. K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, and J.-W. Lee, “Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics,” J Alloys Compd, vol. 873, p. 159605, 2021, doi: https://doi.org/10.1016/j.jallcom.2021.159605.spa
dc.relation.referencesA. B. B. Chaar et al., “The Effect of Cathodic Arc Guiding Magnetic Field on the Growth of (Ti0.36Al0.64)N Coatings,” Coatings, vol. 9, no. 10, 2019, doi: 10.3390/coatings9100660.spa
dc.relation.referencesM. P. Johansson Jõesaar, N. Norrby, J. Ullbrand, R. M’Saoubi, and M. Odén, “Anisotropy effects on microstructure and properties in decomposed arc evaporated Ti1-xAlxN coatings during metal cutting,” Surf Coat Technol, vol. 235, pp. 181–185, Nov. 2013, doi: 10.1016/j.surfcoat.2013.07.031.spa
dc.relation.referencesL. Aihua, D. Jianxin, C. Haibing, C. Yangyang, and Z. Jun, “Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings,” Int J Refract Metals Hard Mater, vol. 31, pp. 82–88, 2012, doi: https://doi.org/10.1016/j.ijrmhm.2011.09.010.spa
dc.relation.referencesG. Greczynski et al., “A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering,” Surf Coat Technol, vol. 257, pp. 15–25, 2014, doi: https://doi.org/10.1016/j.surfcoat.2014.01.055.spa
dc.relation.referencesC. Sabitzer, J. Paulitsch, S. Kolozsvári, R. Rachbauer, and P. H. Mayrhofer, “Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated Al–Cr–N coatings,” Vacuum, vol. 106, pp. 49–52, 2014, doi: https://doi.org/10.1016/j.vacuum.2014.03.006.spa
dc.relation.referencesA. V. Pshyk et al., “High-entropy transition metal nitride thin films alloyed with Al: Microstructure, phase composition and mechanical properties,” Mater Des, vol. 219, Jul. 2022, doi: 10.1016/j.matdes.2022.110798.spa
dc.relation.referencesI. Petrov, P. Barna, L. Hultman, and J. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 5, pp. S117–S128, 2003.spa
dc.relation.references] S. Mahieu et al., “Biaxially aligned titanium nitride thin films deposited by reactive unbalanced magnetron sputtering,” Surf Coat Technol, vol. 200, no. 8, pp. 2764–2768, Jan. 2006, doi: 10.1016/j.surfcoat.2004.09.012.spa
dc.relation.referencesK. Johansson, L. Riekehr, S. Fritze, and E. Lewin, “Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition,” Surf Coat Technol, vol. 349, pp. 529–539, Sep. 2018, doi: 10.1016/j.surfcoat.2018.06.030.spa
dc.relation.referencesS.-Y. Chang, S.-Y. Lin, Y.-C. Huang, and C.-L. Wu, “Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings,” Surf Coat Technol, vol. 204, no. 20, pp. 3307–3314, 2010, doi: https://doi.org/10.1016/j.surfcoat.2010.03.041.spa
dc.relation.referencesD. C. Tsai, S. C. Liang, Z. C. Chang, T. N. Lin, M. H. Shiao, and F. S. Shieu, “Effects of substrate bias on structure and mechanical properties of (TiVCrZrHf)N coatings,” Surf Coat Technol, vol. 207, pp. 293–299, Aug. 2012, doi: 10.1016/j.surfcoat.2012.07.004.spa
dc.relation.referencesK. D. Ralston and N. Birbilis, “Effect of Grain Size on Corrosion: A Review,” 2010.spa
dc.relation.referencesH.-C. Yao, M.-C. Chiu, W.-T. Wu, and F.-S. Shieu, “Influence of radio frequency bias on the characteristics of TiO 2 Thin films prepared by DC sputtering,” J Electrochem Soc, vol. 153, no. 10, pp. F237–F243, 2006, doi: 10.1149/1.2221866.spa
dc.relation.referencesT. H. Hsieh, C. H. Hsu, C. Y. Wu, J. Y. Kao, and C. Y. Hsu, “Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films,” Current Applied Physics, vol. 18, no. 5, pp. 512–518, May 2018, doi: 10.1016/j.cap.2018.02.015.spa
dc.relation.referencesS. K. Kim and B. C. Cha, “Deposition of tantalum nitride thin films by D.C. magnetron sputtering,” in Thin Solid Films, Mar. 2005, pp. 202–207. doi: 10.1016/j.tsf.2004.08.059.spa
dc.relation.referencesS. K. Kim, B. C. Cha, and J. S. Yoo, “Deposition of NbN thin films by DC magnetron sputtering process,” Surf Coat Technol, vol. 177–178, pp. 434–440, 2004, doi: https://doi.org/10.1016/j.surfcoat.2003.09.021.spa
dc.relation.referencesD. C. Tsai, Z. C. Chang, B. H. Kuo, M. H. Shiao, S. Y. Chang, and F. S. Shieu, “Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering,” Appl Surf Sci, vol. 282, pp. 789–797, Oct. 2013, doi: 10.1016/j.apsusc.2013.06.057.spa
dc.relation.referencesS. Sun et al., “Microstructure evolution and mechanical properties of refractory high-entropy alloy nitride film,” Surf Coat Technol, vol. 483, p. 130775, 2024, doi: https://doi.org/10.1016/j.surfcoat.2024.130775.spa
dc.relation.referencesA. Valente-Feliciano, HIPIMS: A NEW GENERATION OF FILM DEPOSITION TECHNIQUES FOR SRF APPLICATIONS*.spa
dc.relation.referencesJ. Patidar et al., “Improving the crystallinity and texture of oblique-angle-deposited AlN thin films using reactive synchronized HiPIMS,” Surf Coat Technol, vol. 468, Sep. 2023, doi: 10.1016/j.surfcoat.2023.129719.spa
dc.relation.referencesJ. J. Wang, S. Y. Chang, and F. Y. Ouyang, “Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr)Nx high entropy nitride thin film,” Surf Coat Technol, vol. 393, Jul. 2020, doi: 10.1016/j.surfcoat.2020.125796.spa
dc.relation.referencesD. K. Stewart, J. A. Morgan, and B. Ward, “Focused ion beam induced deposition of tungsten on vertical sidewalls,” ournal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 5, pp. 2670–2674, Sep. 1991.spa
dc.relation.referencesC. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “ImageJ: Image Processing and Analysis in Java,” 2012.spa
dc.relation.referencesJ. M. Albella Martín, Capas delgadas y modificación superficial de materiales. Consejo Superior de Investigaciones Científicas, 2018.spa
dc.relation.referencesB. A. Movchan and A. V Demchishin, “STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM.,” 1969. [Online]. Available: https://api.semanticscholar.org/CorpusID:93074292spa
dc.relation.referencesP. Vlcak, J. Fojt, Z. Weiss, J. Kopeček, and V. Perina, “The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation,” Surf Coat Technol, vol. 358, pp. 144–152, 2019, doi: https://doi.org/10.1016/j.surfcoat.2018.11.004.spa
dc.relation.referencesS. J. Brito-Garcia, J. C. Mirza-Rosca, C. Jimenez-Marcos, and I. Voiculescu, “EIS Study of Doped High-Entropy Alloy,” Metals (Basel), vol. 13, no. 5, May 2023, doi: 10.3390/met13050883.spa
dc.relation.referencesG. L. Song and Z. Shi, “Corrosion mechanism and evaluation of anodized magnesium alloys,” Corros Sci, vol. 85, pp. 126–140, 2014, doi: 10.1016/j.corsci.2014.04.008.spa
dc.relation.referencesX. Liu, L. Zhong, Y. Chen, L. Chai, S. Guo, and N. Guo, “Corrosion and oxidation behaviors of CoAlTiWTa RHEA coating on Inconel 718 superalloy prepared by laser cladding,” Corros Sci, vol. 236, Aug. 2024, doi: 10.1016/j.corsci.2024.112273.spa
dc.relation.references“Equivalent Circuit Modeling in EIS.” [Online]. Available: http://www.gamry.com/App_Notes/EIS_Primer/EIS_Prispa
dc.relation.referencesM. Sowa and W. Simka, “Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC Plasma electrolytic oxidation,” Materials, vol. 11, no. 4, Apr. 2018, doi: 10.3390/ma11040545.spa
dc.relation.referencesZ. Mukhtar, N. Kundan, and A. Dey, “Corrosion and wear characterization of Ti6-Al-4 V alloy: Experimental analysis and performance evaluation,” Tribol Int, vol. 197, Sep. 2024, doi: 10.1016/j.triboint.2024.109745.spa
dc.relation.referencesM. Atapour, A. L. Pilchak, M. Shamanian, and M. H. Fathi, “Corrosion behavior of Ti-8Al-1Mo-1V alloy compared to Ti-6Al-4V,” Mater Des, vol. 32, no. 3, pp. 1692–1696, Mar. 2011, doi: 10.1016/j.matdes.2010.09.009.spa
dc.relation.referencesX. Gai et al., “In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid,” Acta Biomater, vol. 106, pp. 387–395, Apr. 2020, doi: 10.1016/j.actbio.2020.02.008.spa
dc.relation.referencesH. Te Hsueh, W. J. Shen, M. H. Tsai, and J. W. Yeh, “Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100-xN x,” Surf Coat Technol, vol. 206, no. 19–20, pp. 4106–4112, May 2012, doi: 10.1016/j.surfcoat.2012.03.096.spa
dc.relation.referencesY. Jiang, L. Yuan, C. Zhao, Z. Shi, W. Zhao, and F. Wang, “Effects of N element on the micro-structures and properties of (TiAlMoNbW)N high entropy nitride film,” Intermetallics (Barking), vol. 162, Nov. 2023, doi: 10.1016/j.intermet.2023.108032.spa
dc.relation.referencesC. E. B. Marino, S. R. Biaggio, R. C. Rocha-Filho, and N. Bocchi, “Voltammetric stability of anodic films on the Ti6Al4V alloy in chloride medium,” Electrochim Acta, vol. 51, no. 28, pp. 6580–6583, Sep. 2006, doi: 10.1016/j.electacta.2006.04.051.spa
dc.relation.referencesV. A. Alves et al., “In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25 °C and 37 °C,” Corros Sci, vol. 51, no. 10, pp. 2473–2482, Oct. 2009, doi: 10.1016/j.corsci.2009.06.035.spa
dc.relation.referencesS. Tamilselvi, V. Raman, and N. Rajendran, “Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy,” Electrochim Acta, vol. 52, no. 3, pp. 839–846, Nov. 2006, doi: 10.1016/j.electacta.2006.06.018.spa
dc.relation.referencesA. Balakrishnan, B. C. Lee, T. N. Kim, and B. B. Panigrahi, “Corrosion behavior of ultra fine grained titanium in simulated body fluid for implant application Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid for Implant Application,” 2008. [Online]. Available: http://www.sbaoi.orgspa
dc.relation.referencesH. Miyamoto, “Corrosion of Ultrafine Grained Materials by Severe Plastic Deformation, an Overview,” Mater Trans, vol. 57, no. 5, pp. 559–572, 2016, doi: 10.2320/matertrans.M2015452.spa
dc.relation.referencesM. Hoseini, A. Shahryari, S. Omanovic, and J. Szpunar, “Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing,” Corrosion Science - CORROS SCI, vol. 51, pp. 3064–3067, Dec. 2009, doi: 10.1016/j.corsci.2009.08.017.spa
dc.relation.referencesE. Dur, Ö. N. Cora, and M. Ko, “Experimental investigations on the corrosion resistance characteristics of coated metallic bipolar plates for PEMFC,” Int J Hydrogen Energy, vol. 36, no. 12, pp. 7162–7173, Jun. 2011, doi: 10.1016/j.ijhydene.2011.03.014.spa
dc.relation.referencesJ. Barranco, F. Barreras, A. Lozano, and M. Maza, “Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates,” in Journal of Power Sources, May 2011, pp. 4283–4289. doi: 10.1016/j.jpowsour.2010.11.069.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembCorrosión del aluminiospa
dc.subject.lembAluminum - corrosioneng
dc.subject.proposalHiPIMSeng
dc.subject.proposalSuperaleaciónspa
dc.subject.proposalAleaciones de alta entropíasspa
dc.subject.proposalNitruros de alta entropíaspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalHigh entropy alloyseng
dc.subject.proposalHigh entropy nitrideseng
dc.subject.proposalCorrosioneng
dc.subject.proposalSuperalloyeng
dc.subject.wikidataAleaciones de aluminiospa
dc.subject.wikidataNitruro de titanio aluminiospa
dc.subject.wikidataAluminium alloyeng
dc.subject.wikidataTitanium aluminium nitrideeng
dc.titleProducción, caracterización y resistencia a la corrosión de recubrimientos de TiAlZrTaNbN con potencial aplicación en la industria Biomédica e Industrialspa
dc.title.translatedProduction, characterization and corrosion resistance of TiAlZrTaNbN coatings with potential application in the biomedical and industrial industrieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1057690667.2024.pdf
Tamaño:
3.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ingenieria - Materiales y proceso

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: