Producción, caracterización y resistencia a la corrosión de recubrimientos de TiAlZrTaNbN con potencial aplicación en la industria Biomédica e Industrial
dc.contributor.advisor | Olaya Florez, Jhon Jairo | spa |
dc.contributor.author | Gonzalez Avila, Ingrid Johana | spa |
dc.contributor.other | (Piamba Tulcan, Oscar Edwin) | spa |
dc.contributor.researchgroup | Grupo de Investigación en Corrosión, Tribologia y Energía | spa |
dc.date.accessioned | 2025-07-02T19:50:13Z | |
dc.date.available | 2025-07-02T19:50:13Z | |
dc.date.issued | 2024-08-21 | |
dc.description.abstract | El objeto de estudio de esta investigación son los recubrimientos de nitruro de TiAlZrTaNb sobre la superaleación Haynes 282 y la aleación de Ti6Al4V, los cuales fueron depositados mediante la técnica de pulverización catódica con magnetrón por impulso de alta potencia (HiPIMS) con una variación de la polarización del sustrato de 0 V a −75 V y una presión de trabajo de 0,3 Pa a 0,7 Pa. Se investigó el efecto de la polarización del voltaje de sustrato Bias y la presión de trabajo sobre la resistencia a la corrosión mediante métodos electroquímicos en las películas. La microestructura, morfología y composición química de los recubrimientos se analizaron mediante difracción de rayos X, microscopía electrónica de barrido y espectroscopía de rayos X de energía dispersiva. La porosidad de la muestra y la resistencia a la corrosión se caracterizaron mediante métodos electroquímicos, en específico, a partir de pruebas de impedancia electroquímica (EIS) y de polarización potenciodinámica empleando una solución de NaCl al 3,5 % en peso y suero fisiológico. Los resultados sugieren que las películas pueden ser consideradas como aleaciones de alta entropía, nanoestructuradas, policristalinas y que su resistencia a la corrosión es afectada principalmente por la presión de trabajo en la cámara. Por último, se describe el mecanismo de corrosión en las películas depositadas sobre cada uno de los sustratos. (Texto tomado de la fuente) | spa |
dc.description.abstract | The object of study of this research is the TiAlZrTaNb nitride coatings on the Haynes 282 superalloy and the Ti6Al4V alloy, which were deposited using the high-power impulse magnetron sputtering technique (HiPIMS), applying a variation of the substrate bias from 0 V to −75 V and a working pressure from 0,3 Pa to 0,7 Pa. The effect of substrate voltage Bias and working pressure on corrosion resistance was investigated by electrochemical methods on the films. The microstructure, morphology and chemical composition of the coatings were analyzed by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The porosity of the sample and the corrosion resistance were characterized by electrochemical methods, specifically, with electrochemical impedance (EIS) and potentiodynamic polarization tests using a 3.5 wt % NaCl solution and physiological saline. The results suggest that the films can be considered as high entropy, nanostructured, polycrystalline alloys and that their corrosion resistance is mainly affected by the working pressure in the chamber. Finally, the corrosion mechanism in the films deposited on each of the substrates is described | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Materiales y procesos | spa |
dc.description.researcharea | Ingeniería de superficie | spa |
dc.format.extent | 121 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88274 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | J.-W. Yeh et al., “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes,” Adv Eng Mater, vol. 6, no. 5, pp. 299–303, May 2004, doi: https://doi.org/10.1002/adem.200300567. | spa |
dc.relation.references | Y. Zhang et al., “Microstructures and properties of high-entropy alloys,” 2014, Elsevier Ltd. doi: 10.1016/j.pmatsci.2013.10.001. | spa |
dc.relation.references | K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Feb. 25, 2010. doi: 10.1016/j.surfcoat.2009.11.013. | spa |
dc.relation.references | A. D. Pogrebnjak, A. A. Bagdasaryan, I. V Yakushchenko, and V. M. Beresnev, “The structure and properties of high-entropy alloys and nitride coatings based on them,” Russian Chemical Reviews, vol. 83, no. 11, pp. 1027–1061, Nov. 2014, doi: 10.1070/rcr4407. | spa |
dc.relation.references | A. Anders, “Discharge physics of high power impulse magnetron sputtering,” Surf Coat Technol, vol. 205, no. SUPPL. 2, Jul. 2011, doi: 10.1016/j.surfcoat.2011.03.081. | spa |
dc.relation.references | M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review,” May 2009. doi: 10.1016/j.pmatsci.2008.06.004. | spa |
dc.relation.references | C. Pope, N. Mays, and J. Popay, Pope C, Mays N, Popay J. (2007) Synthesizing qualitative and quantitative health evidence: a guide to methods. Buckingham: Open University Press. 2007. | spa |
dc.relation.references | A. S. Shaikh, F. Schulz, K. Minet-Lallemand, and E. Hryha, “Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion,” Mater Today Commun, vol. 26, Mar. 2021, doi: 10.1016/j.mtcomm.2021.102038. | spa |
dc.relation.references | A. Ramakrishnan and G. P. Dinda, “Microstructure and mechanical properties of direct laser metal deposited Haynes 282 superalloy,” Materials Science and Engineering: A, vol. 748, pp. 347–356, Mar. 2019, doi: 10.1016/j.msea.2019.01.101. | spa |
dc.relation.references | D. Luo et al., “Tribological Behavior of High Entropy Alloy Coatings: A Review,” Oct. 01, 2022, MDPI. doi: 10.3390/coatings12101428 | spa |
dc.relation.references | W. H. Kao, Y. L. Su, and Y. J. Lin, “Mechanical, Tribological, and Anti-corrosion Properties of Nitrogen-Doped AlCrNbSiTiMoW High-Entropy Coatings,” J Mater Eng Perform, vol. 33, no. 12, pp. 6092–6110, 2024, doi: 10.1007/s11665-023-08394-3. | spa |
dc.relation.references | T. Hori, T. Nagase, M. Todai, A. Matsugaki, and T. Nakano, “Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials,” Scr Mater, vol. 172, pp. 83–87, Nov. 2019, doi: 10.1016/j.scriptamat.2019.07.011. | spa |
dc.relation.references | K. Cui and Y. Zhang, “High-Entropy Alloy Films,” Mar. 01, 2023, MDPI. doi: 10.3390/coatings13030635. | spa |
dc.relation.references | G. Walunj, M. Mugale, A. Patil, and T. Borkar, “Spark Plasma Sintering of Mechanically Alloyed High Entropy Nitrides to Investigate the Mechanical, Tribological, and Oxidation Properties,” JOM, vol. 76, no. 1, pp. 171–185, 2024, doi: 10.1007/s11837-023-06259-7. | spa |
dc.relation.references | Yu. F. Ivanov, N. A. Prokopenko, E. A. Petrikova, V. V Shugurov, A. D. Teresov, and O. S. Tolkachev, “Structure and Properties of Hard Nitride Coatings from a High-Entropy Alloy,” Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, vol. 16, no. 6, pp. 1061–1068, 2022, doi: 10.1134/S1027451022060118. | spa |
dc.relation.references | C. Liu, H. Zhu, S. Lu, F. Duan, and M. Du, “High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions,” New Journal of Chemistry, vol. 45, no. 47, pp. 22255–22260, 2021, doi: 10.1039/D1NJ04509A. | spa |
dc.relation.references | Y. Wan et al., “A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications,” Engineering, vol. 30, pp. 110–120, Nov. 2023, doi: 10.1016/j.eng.2023.06.008. | spa |
dc.relation.references | Y. T. Li, X. Jiang, X. T. Wang, and Y. X. Leng, “Integration of hardness and toughness in (CuNiTiNbCr)Nx high entropy films through nitrogen-induced nanocomposite structure,” Scr Mater, vol. 238, Jan. 2024, doi: 10.1016/j.scriptamat.2023.115763. | spa |
dc.relation.references | B. S. Lou, Y. C. Lin, and J. W. Lee, “Mechanical Properties and Corrosion Resistance of AlCrNbSiTiN High Entropy Alloy Nitride Coatings,” Coatings, vol. 13, no. 10, Oct. 2023, doi: 10.3390/coatings13101724. | spa |
dc.relation.references | Yu. F. Ivanov et al., “Nitride Coatings Based on a High-Entropy Alloy Formed by the Ion-Plasma Method,” High Energy Chemistry, vol. 57, no. 1, pp. S77–S80, 2023, doi: 10.1134/S0018143923070172. | spa |
dc.relation.references | Y. F. Ivanov et al., “Structure and Properties of NbMoCrTiAl High-Entropy Alloy Coatings Formed by Plasma-Assisted Vacuum Arc Deposition,” Coatings, vol. 13, no. 7, Jul. 2023, doi: 10.3390/coatings13071191. | spa |
dc.relation.references | L. Yuan, F. Wang, H. Chen, M. Gao, and H. Zhang, “Improvement of the Mechanical Properties and Corrosion Resistance of CSS-42L Steel with a Novel TiAlMoNbW Nitrid Film Deposition,” Coatings, vol. 12, no. 8, Aug. 2022, doi: 10.3390/coatings12081048. | spa |
dc.relation.references | B. S. Lou, R. Z. Lin, C. L. Li, and J. W. Lee, “Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition,” Surf Coat Technol, vol. 483, May 2024, doi: 10.1016/j.surfcoat.2024.130772. | spa |
dc.relation.references | R. Shu et al., “Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films,” Surf Coat Technol, vol. 404, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126485. | spa |
dc.relation.references | C. Cheng et al., “Effect of substrate bias on structure and properties of (AlTiCrZrNb)N high-entropy alloy nitride coatings through arc ion plating,” Surf Coat Technol, vol. 467, Aug. 2023, doi: 10.1016/j.surfcoat.2023.129692. | spa |
dc.relation.references | Y. C. Godoy et al., “Corrosion resistant TiTaN and TiTaAlN thin films grown by hybrid HiPIMS/DCMS using synchronized pulsed substrate bias with no external substrate heating,” Coatings, vol. 9, no. 12, 2019, doi: 10.3390/coatings9120841. | spa |
dc.relation.references | X. Yu, J. Wang, L. Wang, and W. Huang, “Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias,” Surf Coat Technol, vol. 412, Apr. 2021, doi: 10.1016/j.surfcoat.2021.127074. | spa |
dc.relation.references | J. Srinivasan et al., “Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves You may also like One-Dimensional Pit Experiments and Modeling to Determine Critical Factors for Pit Stability and Repassivation Hydrogen Evolution during the Corrosion of Galvanically Coupled Magnesium Investigation of Corrosion and Cathodic Protection in Reinforced Concrete: II. Properties of Steel Surface Layers.” | spa |
dc.relation.references | Z. Y. Ding, Q. F. He, and Y. Yang, “Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys,” Feb. 01, 2018, Springer Verlag. doi: 10.1007/s11431-017-9051-6. | spa |
dc.relation.references | Q. W. Xing, S. Q. Xia, X. H. Yan, and Y. Zhang, “Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures,” J Mater Res, vol. 33, no. 19, pp. 3347–3354, Oct. 2018, doi: 10.1557/jmr.2018.337. | spa |
dc.relation.references | A. D. Pogrebnjak, A. A. Bagdasaryan, I. V Yakushchenko, and V. M. Beresnev, “The structure and properties of high-entropy alloys and nitride coatings based on them,” Russian Chemical Reviews, vol. 83, no. 11, pp. 1027–1061, Nov. 2014, doi: 10.1070/rcr4407. | spa |
dc.relation.references | “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys”. | spa |
dc.relation.references | M. Arshad et al., “High-Entropy Coatings (HEC) for High-Temperature Applications: Materials, Processing, and Properties,” May 01, 2022, MDPI. doi: 10.3390/coatings12050691. | spa |
dc.relation.references | Y. Liu et al., “Corrosion mechanism of a high corrosion-resistance Zn–Al–Mg coating in typical extremely harsh marine and cold environments,” Journal of Materials Research and Technology, vol. 33, pp. 4290–4302, Nov. 2024, doi: 10.1016/j.jmrt.2024.10.080. | spa |
dc.relation.references | C. Hu, Y. Tian, and W. Zheng, “Send Orders for Reprints to reprints@benthamscience.ae A Review of Corrosion-Protective Transition Metal Nitride Coatings,” 2015. | spa |
dc.relation.references | J. Mu, H. Wang, B. Qin, Y. Zhang, L. Chen, and C. Zeng, “Improved wear and corrosion resistance of biological compatible TiZrNb films on biomedical Ti6Al4V substrates by optimizing sputtering power,” Surf Coat Technol, vol. 428, Dec. 2021, doi: 10.1016/j.surfcoat.2021.127866. | spa |
dc.relation.references | W. Li, P. Liu, and P. K. Liaw, “Microstructures and properties of high-entropy alloy films and coatings: A review,” Apr. 03, 2018, Taylor and Francis Ltd. doi: 10.1080/21663831.2018.1434248. | spa |
dc.relation.references | K. H. Cheng, C. H. Lai, S. J. Lin, and J. W. Yeh, “Structural and mechanical properties of multi-element (AlCrMoTaTiZr)N x coatings by reactive magnetron sputtering,” Thin Solid Films, vol. 519, no. 10, pp. 3185–3190, Mar. 2011, doi: 10.1016/j.tsf.2010.11.034. | spa |
dc.relation.references | S. Calderon Velasco, A. Cavaleiro, and S. Carvalho, “Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering,” Dec. 01, 2016, Elsevier Ltd. doi: 10.1016/j.pmatsci.2016.09.005. | spa |
dc.relation.references | J. Nieto, J. Caicedo, C. Amaya, W. Aperador, L. Tirado, and G. Bejarano, “EVALUACIÓN DE LA INFLUENCIA DEL VOLTAJ E BIAS SOBRE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE AlNbN EVALUATION OF THE INFLUENCE OF BIAS VOLTAGE ON THE CORROSION RESISTANCE OF AlNbN THIN FILMS.” | spa |
dc.relation.references | F. Cemin, S. R. S. de Mello, C. A. Figueroa, and F. Alvarez, “Influence of substrate bias and temperature on the crystallization of metallic NbTaTiVZr high-entropy alloy thin films,” Surf Coat Technol, vol. 421, Sep. 2021, doi: 10.1016/j.surfcoat.2021.127357. | spa |
dc.relation.references | R. Bandorf, V. Sittinger, and G. Bräuer, “High Power Impulse Magnetron Sputtering – HIPIMS,” in Comprehensive Materials Processing: Thirteen Volume Set, vol. 4, Elsevier, 2014, pp. V4-75-V4-99. doi: 10.1016/B978-0-08-096532-1.00404-0. | spa |
dc.relation.references | A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films, vol. 518, no. 15, pp. 4087–4090, May 2010, doi: 10.1016/j.tsf.2009.10.145. | spa |
dc.relation.references | B. A. Movchan, A. V Demchishin, and G. F. Badilenko, “The structure and mechanical properties of thin layers of dispersion-strengthened condensed nickel-zirconium dioxide material,” Strength of Materials, vol. 9, no. 6, pp. 699–704, 1977, doi: 10.1007/BF01537769. | spa |
dc.relation.references | J. A. Thornton, “HIGH RATE THICK FILM GROWTH,” 1977. [Online]. Available: www.annualreviews.org | spa |
dc.relation.references | U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Aug. 14, 2006. doi: 10.1016/j.tsf.2006.03.033. | spa |
dc.relation.references | J. Musil, “Advanced Hard Coatings with Enhanced Toughness and Resistance to Cracking,” 2015, pp. 377–464. doi: 10.1201/b18729-8. | spa |
dc.relation.references | D. Craciun et al., “Structural Parameters and Behavior in Simulated Body Fluid of High Entropy Alloy Thin Films,” Materials, vol. 17, no. 5, Mar. 2024, doi: 10.3390/ma17051162. | spa |
dc.relation.references | S. A. Hassanzadeh-Tabrizi, “Precise calculation of crystallite size of nanomaterials: A review,” Dec. 15, 2023, Elsevier Ltd. doi: 10.1016/j.jallcom.2023.171914. | spa |
dc.relation.references | W. Yang, J. Shen, Z. Wang, G. Ma, P. Ke, and A. Wang, “Mechanical and electrochemical properties of (MoNbTaTiZr)1-xNx high-entropy nitride coatings,” J Mater Sci Technol, vol. 208, pp. 78–91, Feb. 2025, doi: 10.1016/j.jmst.2024.04.062. | spa |
dc.relation.references | H. Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Commun, vol. 23, no. 11, pp. 815–819, 1977, doi: https://doi.org/10.1016/0038-1098(77)90959-0. | spa |
dc.relation.references | W. L. Lo, S. Y. Hsu, Y. C. Lin, S. Y. Tsai, Y. T. Lai, and J. G. Duh, “Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias,” Surf Coat Technol, vol. 401, Nov. 2020, doi: 10.1016/j.surfcoat.2020.126247. | spa |
dc.relation.references | Y. Xu, G. Li, G. Li, F. Gao, and Y. Xia, “Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering,” Appl Surf Sci, vol. 564, Oct. 2021, doi: 10.1016/j.apsusc.2021.150417. | spa |
dc.relation.references | B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Materials Science and Engineering: A, vol. 375–377, no. 1-2 SPEC. ISS., pp. 213–218, Jul. 2004, doi: 10.1016/J.MSEA.2003.10.257. | spa |
dc.relation.references | P.-K. Huang and J.-W. Yeh, “Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating,” Surf Coat Technol, vol. 203, no. 13, pp. 1891–1896, 2009, doi: https://doi.org/10.1016/j.surfcoat.2009.01.016. | spa |
dc.relation.references | S. K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, and J.-W. Lee, “Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics,” J Alloys Compd, vol. 873, p. 159605, 2021, doi: https://doi.org/10.1016/j.jallcom.2021.159605. | spa |
dc.relation.references | A. B. B. Chaar et al., “The Effect of Cathodic Arc Guiding Magnetic Field on the Growth of (Ti0.36Al0.64)N Coatings,” Coatings, vol. 9, no. 10, 2019, doi: 10.3390/coatings9100660. | spa |
dc.relation.references | M. P. Johansson Jõesaar, N. Norrby, J. Ullbrand, R. M’Saoubi, and M. Odén, “Anisotropy effects on microstructure and properties in decomposed arc evaporated Ti1-xAlxN coatings during metal cutting,” Surf Coat Technol, vol. 235, pp. 181–185, Nov. 2013, doi: 10.1016/j.surfcoat.2013.07.031. | spa |
dc.relation.references | L. Aihua, D. Jianxin, C. Haibing, C. Yangyang, and Z. Jun, “Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings,” Int J Refract Metals Hard Mater, vol. 31, pp. 82–88, 2012, doi: https://doi.org/10.1016/j.ijrmhm.2011.09.010. | spa |
dc.relation.references | G. Greczynski et al., “A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering,” Surf Coat Technol, vol. 257, pp. 15–25, 2014, doi: https://doi.org/10.1016/j.surfcoat.2014.01.055. | spa |
dc.relation.references | C. Sabitzer, J. Paulitsch, S. Kolozsvári, R. Rachbauer, and P. H. Mayrhofer, “Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated Al–Cr–N coatings,” Vacuum, vol. 106, pp. 49–52, 2014, doi: https://doi.org/10.1016/j.vacuum.2014.03.006. | spa |
dc.relation.references | A. V. Pshyk et al., “High-entropy transition metal nitride thin films alloyed with Al: Microstructure, phase composition and mechanical properties,” Mater Des, vol. 219, Jul. 2022, doi: 10.1016/j.matdes.2022.110798. | spa |
dc.relation.references | I. Petrov, P. Barna, L. Hultman, and J. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 5, pp. S117–S128, 2003. | spa |
dc.relation.references | ] S. Mahieu et al., “Biaxially aligned titanium nitride thin films deposited by reactive unbalanced magnetron sputtering,” Surf Coat Technol, vol. 200, no. 8, pp. 2764–2768, Jan. 2006, doi: 10.1016/j.surfcoat.2004.09.012. | spa |
dc.relation.references | K. Johansson, L. Riekehr, S. Fritze, and E. Lewin, “Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition,” Surf Coat Technol, vol. 349, pp. 529–539, Sep. 2018, doi: 10.1016/j.surfcoat.2018.06.030. | spa |
dc.relation.references | S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, and C.-L. Wu, “Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings,” Surf Coat Technol, vol. 204, no. 20, pp. 3307–3314, 2010, doi: https://doi.org/10.1016/j.surfcoat.2010.03.041. | spa |
dc.relation.references | D. C. Tsai, S. C. Liang, Z. C. Chang, T. N. Lin, M. H. Shiao, and F. S. Shieu, “Effects of substrate bias on structure and mechanical properties of (TiVCrZrHf)N coatings,” Surf Coat Technol, vol. 207, pp. 293–299, Aug. 2012, doi: 10.1016/j.surfcoat.2012.07.004. | spa |
dc.relation.references | K. D. Ralston and N. Birbilis, “Effect of Grain Size on Corrosion: A Review,” 2010. | spa |
dc.relation.references | H.-C. Yao, M.-C. Chiu, W.-T. Wu, and F.-S. Shieu, “Influence of radio frequency bias on the characteristics of TiO 2 Thin films prepared by DC sputtering,” J Electrochem Soc, vol. 153, no. 10, pp. F237–F243, 2006, doi: 10.1149/1.2221866. | spa |
dc.relation.references | T. H. Hsieh, C. H. Hsu, C. Y. Wu, J. Y. Kao, and C. Y. Hsu, “Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films,” Current Applied Physics, vol. 18, no. 5, pp. 512–518, May 2018, doi: 10.1016/j.cap.2018.02.015. | spa |
dc.relation.references | S. K. Kim and B. C. Cha, “Deposition of tantalum nitride thin films by D.C. magnetron sputtering,” in Thin Solid Films, Mar. 2005, pp. 202–207. doi: 10.1016/j.tsf.2004.08.059. | spa |
dc.relation.references | S. K. Kim, B. C. Cha, and J. S. Yoo, “Deposition of NbN thin films by DC magnetron sputtering process,” Surf Coat Technol, vol. 177–178, pp. 434–440, 2004, doi: https://doi.org/10.1016/j.surfcoat.2003.09.021. | spa |
dc.relation.references | D. C. Tsai, Z. C. Chang, B. H. Kuo, M. H. Shiao, S. Y. Chang, and F. S. Shieu, “Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering,” Appl Surf Sci, vol. 282, pp. 789–797, Oct. 2013, doi: 10.1016/j.apsusc.2013.06.057. | spa |
dc.relation.references | S. Sun et al., “Microstructure evolution and mechanical properties of refractory high-entropy alloy nitride film,” Surf Coat Technol, vol. 483, p. 130775, 2024, doi: https://doi.org/10.1016/j.surfcoat.2024.130775. | spa |
dc.relation.references | A. Valente-Feliciano, HIPIMS: A NEW GENERATION OF FILM DEPOSITION TECHNIQUES FOR SRF APPLICATIONS*. | spa |
dc.relation.references | J. Patidar et al., “Improving the crystallinity and texture of oblique-angle-deposited AlN thin films using reactive synchronized HiPIMS,” Surf Coat Technol, vol. 468, Sep. 2023, doi: 10.1016/j.surfcoat.2023.129719. | spa |
dc.relation.references | J. J. Wang, S. Y. Chang, and F. Y. Ouyang, “Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr)Nx high entropy nitride thin film,” Surf Coat Technol, vol. 393, Jul. 2020, doi: 10.1016/j.surfcoat.2020.125796. | spa |
dc.relation.references | D. K. Stewart, J. A. Morgan, and B. Ward, “Focused ion beam induced deposition of tungsten on vertical sidewalls,” ournal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 5, pp. 2670–2674, Sep. 1991. | spa |
dc.relation.references | C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “ImageJ: Image Processing and Analysis in Java,” 2012. | spa |
dc.relation.references | J. M. Albella Martín, Capas delgadas y modificación superficial de materiales. Consejo Superior de Investigaciones Científicas, 2018. | spa |
dc.relation.references | B. A. Movchan and A. V Demchishin, “STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM.,” 1969. [Online]. Available: https://api.semanticscholar.org/CorpusID:93074292 | spa |
dc.relation.references | P. Vlcak, J. Fojt, Z. Weiss, J. Kopeček, and V. Perina, “The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation,” Surf Coat Technol, vol. 358, pp. 144–152, 2019, doi: https://doi.org/10.1016/j.surfcoat.2018.11.004. | spa |
dc.relation.references | S. J. Brito-Garcia, J. C. Mirza-Rosca, C. Jimenez-Marcos, and I. Voiculescu, “EIS Study of Doped High-Entropy Alloy,” Metals (Basel), vol. 13, no. 5, May 2023, doi: 10.3390/met13050883. | spa |
dc.relation.references | G. L. Song and Z. Shi, “Corrosion mechanism and evaluation of anodized magnesium alloys,” Corros Sci, vol. 85, pp. 126–140, 2014, doi: 10.1016/j.corsci.2014.04.008. | spa |
dc.relation.references | X. Liu, L. Zhong, Y. Chen, L. Chai, S. Guo, and N. Guo, “Corrosion and oxidation behaviors of CoAlTiWTa RHEA coating on Inconel 718 superalloy prepared by laser cladding,” Corros Sci, vol. 236, Aug. 2024, doi: 10.1016/j.corsci.2024.112273. | spa |
dc.relation.references | “Equivalent Circuit Modeling in EIS.” [Online]. Available: http://www.gamry.com/App_Notes/EIS_Primer/EIS_Pri | spa |
dc.relation.references | M. Sowa and W. Simka, “Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC Plasma electrolytic oxidation,” Materials, vol. 11, no. 4, Apr. 2018, doi: 10.3390/ma11040545. | spa |
dc.relation.references | Z. Mukhtar, N. Kundan, and A. Dey, “Corrosion and wear characterization of Ti6-Al-4 V alloy: Experimental analysis and performance evaluation,” Tribol Int, vol. 197, Sep. 2024, doi: 10.1016/j.triboint.2024.109745. | spa |
dc.relation.references | M. Atapour, A. L. Pilchak, M. Shamanian, and M. H. Fathi, “Corrosion behavior of Ti-8Al-1Mo-1V alloy compared to Ti-6Al-4V,” Mater Des, vol. 32, no. 3, pp. 1692–1696, Mar. 2011, doi: 10.1016/j.matdes.2010.09.009. | spa |
dc.relation.references | X. Gai et al., “In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid,” Acta Biomater, vol. 106, pp. 387–395, Apr. 2020, doi: 10.1016/j.actbio.2020.02.008. | spa |
dc.relation.references | H. Te Hsueh, W. J. Shen, M. H. Tsai, and J. W. Yeh, “Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100-xN x,” Surf Coat Technol, vol. 206, no. 19–20, pp. 4106–4112, May 2012, doi: 10.1016/j.surfcoat.2012.03.096. | spa |
dc.relation.references | Y. Jiang, L. Yuan, C. Zhao, Z. Shi, W. Zhao, and F. Wang, “Effects of N element on the micro-structures and properties of (TiAlMoNbW)N high entropy nitride film,” Intermetallics (Barking), vol. 162, Nov. 2023, doi: 10.1016/j.intermet.2023.108032. | spa |
dc.relation.references | C. E. B. Marino, S. R. Biaggio, R. C. Rocha-Filho, and N. Bocchi, “Voltammetric stability of anodic films on the Ti6Al4V alloy in chloride medium,” Electrochim Acta, vol. 51, no. 28, pp. 6580–6583, Sep. 2006, doi: 10.1016/j.electacta.2006.04.051. | spa |
dc.relation.references | V. A. Alves et al., “In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25 °C and 37 °C,” Corros Sci, vol. 51, no. 10, pp. 2473–2482, Oct. 2009, doi: 10.1016/j.corsci.2009.06.035. | spa |
dc.relation.references | S. Tamilselvi, V. Raman, and N. Rajendran, “Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy,” Electrochim Acta, vol. 52, no. 3, pp. 839–846, Nov. 2006, doi: 10.1016/j.electacta.2006.06.018. | spa |
dc.relation.references | A. Balakrishnan, B. C. Lee, T. N. Kim, and B. B. Panigrahi, “Corrosion behavior of ultra fine grained titanium in simulated body fluid for implant application Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid for Implant Application,” 2008. [Online]. Available: http://www.sbaoi.org | spa |
dc.relation.references | H. Miyamoto, “Corrosion of Ultrafine Grained Materials by Severe Plastic Deformation, an Overview,” Mater Trans, vol. 57, no. 5, pp. 559–572, 2016, doi: 10.2320/matertrans.M2015452. | spa |
dc.relation.references | M. Hoseini, A. Shahryari, S. Omanovic, and J. Szpunar, “Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing,” Corrosion Science - CORROS SCI, vol. 51, pp. 3064–3067, Dec. 2009, doi: 10.1016/j.corsci.2009.08.017. | spa |
dc.relation.references | E. Dur, Ö. N. Cora, and M. Ko, “Experimental investigations on the corrosion resistance characteristics of coated metallic bipolar plates for PEMFC,” Int J Hydrogen Energy, vol. 36, no. 12, pp. 7162–7173, Jun. 2011, doi: 10.1016/j.ijhydene.2011.03.014. | spa |
dc.relation.references | J. Barranco, F. Barreras, A. Lozano, and M. Maza, “Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates,” in Journal of Power Sources, May 2011, pp. 4283–4289. doi: 10.1016/j.jpowsour.2010.11.069. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.lemb | Corrosión del aluminio | spa |
dc.subject.lemb | Aluminum - corrosion | eng |
dc.subject.proposal | HiPIMS | eng |
dc.subject.proposal | Superaleación | spa |
dc.subject.proposal | Aleaciones de alta entropías | spa |
dc.subject.proposal | Nitruros de alta entropía | spa |
dc.subject.proposal | Corrosión | spa |
dc.subject.proposal | High entropy alloys | eng |
dc.subject.proposal | High entropy nitrides | eng |
dc.subject.proposal | Corrosion | eng |
dc.subject.proposal | Superalloy | eng |
dc.subject.wikidata | Aleaciones de aluminio | spa |
dc.subject.wikidata | Nitruro de titanio aluminio | spa |
dc.subject.wikidata | Aluminium alloy | eng |
dc.subject.wikidata | Titanium aluminium nitride | eng |
dc.title | Producción, caracterización y resistencia a la corrosión de recubrimientos de TiAlZrTaNbN con potencial aplicación en la industria Biomédica e Industrial | spa |
dc.title.translated | Production, characterization and corrosion resistance of TiAlZrTaNbN coatings with potential application in the biomedical and industrial industries | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1057690667.2024.pdf
- Tamaño:
- 3.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestria en Ingenieria - Materiales y proceso
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: