Análisis Dinámico de Relevancia en Bioseñales

dc.contributorCastellanos Domínguez, César Germánspa
dc.contributor.authorSepúlveda Cano, Lina Maríaspa
dc.date.accessioned2019-06-25T18:22:10Zspa
dc.date.available2019-06-25T18:22:10Zspa
dc.date.issued2013spa
dc.description.abstractAbstract : In this work, a methodology for biosignal analysis (e.g. pathology diagnosis) is discussed, which is based on dynamic relevance analysis of stochastic features extracted from different decomposition techniques of biosignal recordings. Dimension reduction is carried out by adapting in time commonly used latent variable techniques, in such a way, that the data information is maximally preserved for a given relevance function. Specifically, since the maximum variance is assumed as a measure of relevance, time– adapted supervised approaches are developed. Additionally, in the case of high dimensionality data with significant correlation among the whole set, a dimensionality reduction technique is proposed, based on time–frequency relevance maps. The proposed approaches are experimentally assessed on real-world data sets, allowing to confirm whether the proposed feature selection algorithm is adequate for classification purposes. The conjunction of these advances conforms a methodology for training pattern recognition systems, which is a fully automatized dimensionality reduction method that allows the use of functional representations. The main advantage of the proposed methodology, is that preserves the maximum information among the high dimensional input data. In this terms of classifi- cation performance, the proposed methodology is efficient and competitive, outperforming other similar methods.spa
dc.description.degreelevelDoctoradospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/10221/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/19997
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.ispartofDepartamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.referencesSepúlveda Cano, Lina María (2013) Análisis Dinámico de Relevancia en Bioseñales. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc0 Generalidades / Computer science, information and general worksspa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.ddc61 Ciencias médicas; Medicina / Medicine and healthspa
dc.subject.proposalAnálisis de bioseñalesspa
dc.subject.proposalprocesos estocásticosspa
dc.subject.proposalsistemas de reconocimiento de configuracionesspa
dc.subject.proposalbiosignal analysisspa
dc.subject.proposalstochastic processesspa
dc.subject.proposalPattern recognition systemsspa
dc.titleAnálisis Dinámico de Relevancia en Bioseñalesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
7910003.2013.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format