Implementación de un proceso biológico como postratamiento a la oxidación de un agua residual textil con el sistema Co/Al–PILC–BAP

dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorMacías Quiroga, Iván Fernando
dc.contributor.authorSalazar Loaiza, Aura María
dc.contributor.cvlacSalazar Loaiza, Aura Maria [1394404]spa
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicosspa
dc.date.accessioned2024-03-19T20:32:20Z
dc.date.available2024-03-19T20:32:20Z
dc.date.issued2024-03
dc.descriptiongraficas, tablasspa
dc.description.abstractEl agua es una sustancia esencial para los seres vivos y durante la historia las poblaciones se han asentado en lugares donde se encuentre este recurso. Sin embargo, las fuentes hídricas están siendo contaminadas con metales pesados, patógenos y diversas sustancias orgánicas e inorgánicas. La industria textil genera gran cantidad de contaminantes al medio ambiente, entre los que se encuentran los colorantes utilizados en los procesos de teñido [1]. Se estima que del 10 al 15% de los colorantes empleados en la industria textil se descargan en las aguas residuales sin un tratamiento previo [2]. Para el mejoramiento de la calidad del agua y la descontaminación de las fuentes hídricas se han empleado sistemas de tratamiento físicos, químicos y biológicos [3, 4]. El uso de tratamientos combinados o acople de tecnologías es una opción para superar las desventajas de los procesos individuales [5]. El acople de procesos es uno de los métodos más efectivos para el tratamiento de aguas con compuestos orgánicos tóxicos y recalcitrantes, dado que mejora el índice de biodegradabilidad [6, 7]. El tratamiento biológico posterior a un proceso de oxidación avanzado presenta ventajas como la protección a los microorganismos de compuestos tóxicos o inhibitorios, incremento del grado mineralización de los contaminantes y reducción de los costos totales de tratamiento [8, 9]. En el presente trabajo final de maestría se realizó un ensayo de laboratorio de un proceso biológico aerobio como postratamiento a la oxidación de un agua residual textil con el sistema Co/Al–PILC–BAP, aumentando el índice de biodegradabilidad de 0.37 (antes del POxA) a 0.59 (después de POxA) y 0.94 (después del proceso biológico). El proceso biológico siguió la metodología establecida para prueba de Zahn-Wallens y permitió una remoción promedio en la demanda química de oxígeno (DQO) del 96.3%, llegando a un valor final de 20 ± 5 mg O2/L. Para analizar el efecto de los contaminantes presentes en el agua residual textil, se evaluó la fitotoxicidad con semillas de lechuga (Lactuca sativa L.) antes y después del acople de los procesos de oxidación química/tratamiento biológico, encontrándose un aumento en el porcentaje de germinación relativo del 31.82 al 100%, lo cual sugiere una disminución de los componentes tóxicos presentes en el agua. Por tanto, el acople de un POxA/sistema biológico es una alternativa para el tratamiento del agua residual textil objeto de estudio, el cual permitió cumplir con los límites máximos permisibles en DQO para el vertimiento de agua en la fabricación de productos textiles, establecidos en la Resolución 0631 de 2015 del Ministerio de Ambiente y Desarrollo Sostenible de Colombia (Texto tomado de la fuente)spa
dc.description.abstractWater is an essential substance for living beings, and throughout history, populations have settled in places where this resource is found. However, water sources are contaminated with heavy metals, pathogens, and organic and inorganic substances. The textile industry generates many environmental pollutants, including the dyes used in the dyeing process [1]. Approximately 10 to 15% of the dyes used in the textile industry are discharged into wastewater without prior treatment [2]. Physical, chemical, and biological treatment systems have improved water quality and decontaminate water sources [3, 4]. Combining treatments or coupling technologies is an option to overcome the disadvantages of individual processes [5]. Process coupling is one of the most effective methods for treating water containing toxic and recalcitrant organic compounds since it improves the rate of biodegradability [6, 7]. Biological treatment after an advanced oxidation process has advantages such as protection of microorganisms from toxic or inhibitory compounds, increased mineralization of pollutants, and reduction of total treatment costs [8, 9]. In this master's thesis, a laboratory test of an aerobic biological process was carried out as a post-treatment to the oxidation of a textile wastewater with the Co/Al–PILC–BAP system, increasing the biodegradability index from 0.37 (before AOP) to 0.59 (after AOP) and 0.94 (after the biological process). The biological process followed the established methodology for the Zahn-Wallens test and allowed an average chemical oxygen demand (COD) removal of 96.3%, reaching a final value of 20 ± 5 mg O2/L. To analyze the effect of the pollutants present in the textile wastewater, phytotoxicity was evaluated with lettuce seeds (Lactuca sativa L.) before and after coupling the chemical oxidation/biological treatment processes, finding an increase in the relative germination percentage from 31.82 to 100%, which suggests a decrease in the toxic components present in the water. Therefore, the coupling of an AOP/biological system is an alternative for the treatment of the textile wastewater under study, which allowed compliance with the maximum permissible limits in COD for the discharge of water in the manufacture of textile products, established in Resolution 0631 of 2015 of the Ministry of Environment and Sustainable Development of Colombia.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.format.extentii, 77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85823
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesZaruma, P., Proal, J., Hernández, I. C., Salas, H. I. Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Rev. Fac. Cienc. Quim., (2018). (19), pg. 38-47.spa
dc.relation.referencesChakroun, S., Mechti, W., Herchi, M., Gaied, M. E. Characterization of ain M’Dheker clay deposits for sunflower oil and acid black 194 dye clarification. Arab. J. Geosci., (2018). Vol. 11(3), pg. 1-14.spa
dc.relation.referencesOrganización de las Naciones Unidas (ONU) Informe de los Objetivos de Desarrollo Sostenible. (2020). New York, USA, Naciones Unidas.spa
dc.relation.referencesUddin, Z., Ahmad, F., Ullan, T., Nawab, Y., Ahmad, S., Azam, F., Rasheed, A., Zafar, M. S. Recent trends in water purification using electrospun nanofibrous membranes. J. Environ. Sci. Technol., (2022). Vol. 19(9), pg. 9149-9176.spa
dc.relation.referencesGilPavas, E. Procesos avanzados de oxidación para la degradación de índigo y materia orgánica de aguas residuales de una industria textil (2020). Tesis de Doctorado Ingeniería-Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. pg. 323.spa
dc.relation.referencesChávez, S. H. Aplicación de procesos electroquímicos de oxidación avanzada acoplados para el tratamiento de aguas residuales de curtidurÍa, In: XXVI Verano de la Ciencia. (2021). Universidad de Guanajuato, México.spa
dc.relation.referencesBlanco, J., Torrades, F., De la Varga, M., García-Montaño, J. Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, (2012). Vol. 286, pg. 394-399.spa
dc.relation.referencesPulgarin, C., Invernizzi, M., Parra, S., Sarria, V., Polania, R., Péringer, P. Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catal. Today, (1999). Vol. 54(2-3), pg. 341-352.spa
dc.relation.referencesLei, Y., Shen, Z., Huang, R., Wang, W. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation. Water Res., (2007). Vol. 41(11), pg. 2417-2426.spa
dc.relation.referencesClemente, A., Chica Arrieta, E., Peñuela Mesa, G., Água Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes. Rev. Ambient. Água (2013). Vol. 8, pg. 93-103.spa
dc.relation.referencesPereira, L., Alves, M. Chapter 4. Dyes-Environmental Impact and Remediation, In: Environmental Protection Strategies for Sustainable Development. (2012). Dordrecht, S. (Ed.): Freiburg, DEU. pg. 111-162.spa
dc.relation.referencesManenti, D., Módenes, A., Soares, P., Boaventura, R., Palácio, S., Borba, F., Espinoza-Quiñones, F., Bergamasco, R., Vilar, V. Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process. Environ. Technol., (2015). Vol. 36(4), pg. 496-506.spa
dc.relation.referencesFigueroa, S., Vazquez, L., Alvarez-Gallegos, A. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell. Water Res., (2009). Vol. 43(2), pg. 283-294.spa
dc.relation.referencesO’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenço, N. D., Pinheiro, H. M., Delée, W. Colour in textile effluents–sources, measurement, discharge consents and simulation: A review. J. Chem. Technol. Biotechnol., (1999). Vol. 74(11), pg. 1009-1018.spa
dc.relation.referencesChakraborty, R., Ahmad, F. Economical use of water in cotton knit dyeing industries of Bangladesh. J. Clean. Prod., (2022). Vol. 340, pg. 130825.spa
dc.relation.referencesGupta, V. K. Application of low-cost adsorbents for dye removal–a review. J. Environ. Manage., (2009). Vol. 90(8), pg. 2313-2342.spa
dc.relation.referencesHossain, L., Sarker, S. K., Khan, M. S. Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh. J. Environ. Dev., (2018). Vol. 26, pg. 23-33.spa
dc.relation.referencesManu, B., Chaudhari, S. Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process. Biochem., (2003). Vol. 38(8), pg. 1213-1221.spa
dc.relation.referencesKornaros, M., Lyberatos, G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J. Hazard. Mater., (2006). Vol. 136(1), pg. 95-102.spa
dc.relation.referencesVijayaraghavan, J., Basha, S. J., Jegan, J. A review on efficacious methods to decolorize reactive azo dye. J. Urban Environ. Eng., (2013). Vol. 7(1), pg. 30-47.spa
dc.relation.referencesSenthil, B., Senthil, P. Sustainable approach on the biodegradation of azo dyes: A short review. Curr. Opin. Green Sustain. Chem., (2022). Vol. 33(100578), pg. 6.spa
dc.relation.referencesShiva-Shankar, Y., Ankur, K., Bhushan, P., Mohan, D. Utilization of water treatment plant (WTP) sludge for pretreatment of dye wastewater using coagulation/flocculation, In: Advances in Waste Management, Kalamdhad, A. S., Singh, J., Dhamodharan, K., Editors. (2019). Springer Singapore, SGP. pg. 107-121.spa
dc.relation.referencesAnjaneyulu, Y., Sreedhara Chary, N., Samuel Suman Raj, D. Decolourization of industrial effluents–available methods and emerging technologies–a review. Rev. Environ. Sci. Biotechnol. , (2005). Vol. 4, pg. 245-273.spa
dc.relation.referencesOller, I., Malato, S., Sánchez-Pérez, J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ., (2011). Vol. 409(20), pg. 4141-4166.spa
dc.relation.referencesKiwi, J., Pulgarin, C., Peringer, P., Grätzel, M. Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment. Appl. Catal. B Env., (1993). Vol. 3(1), pg. 85-99.spa
dc.relation.referencesPalacios, E. M., Sánchez, J. V., Segundo, C. T. Degradación de colorantes en aguas residuales mediante oxidación. Inventio, (2019). Vol. 13(31), pg. 35-42.spa
dc.relation.referencesShahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., Hallam, K. R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. J. Chem. Eng., (2011). Vol. 172(1), pg. 258-266.spa
dc.relation.referencesJawad, A., Lu, X., Chen, Z., Yin, G. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. J. Phys. Chem. A, (2014). Vol. 118(43), pg. 10028-10035.spa
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., Zeng, Q. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt (II)/bicarbonate/hydrogen peroxide system. Ind. Eng. Chem. Res., (2012). Vol. 51(34), pg. 11104-11111.spa
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., Jiang, J. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. J. Chem. Eng., (2021). Vol. 408, pg. Article ID 127332.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., Xu, A. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Adv., (2015). Vol. 5(102), pg. 84303-84310.spa
dc.relation.referencesLi, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., Xu, A. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Appl. Catal. A Gen., (2012). Vol. 411, pg. 24-30.spa
dc.relation.referencesGuo, X., Li, H., Zhao, S. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. J. Taiwan Inst. Chem. Eng., (2015). Vol. 55, pg. 90-100.spa
dc.relation.referencesDulekgurgen, E., Doğruel, S., Karahan, Ö., Orhon, D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res., (2006). Vol. 40(2), pg. 273-282.spa
dc.relation.referencesDomènech, X., Litter, M. I., Jardim, W. F. Chapter 1. Procesos Avanzados de Oxidación para la Eliminación de Contaminantes, In: Eliminación de Contaminantes por Fotocatálisis Heterogénea. (2001). Buenos Aires, ARG. pg. 3-26.spa
dc.relation.referencesBarrios Ziolo, L. F., Gaviria Restrepo, L. F., Agudelo, E. A., Cardona Gallo, S. A. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el Área Metropolitana del Valle de Aburrá. Revista EIA, (2016). Vol. 13(26), pg. 61-74.spa
dc.relation.referencesBrosillon, S., Djelal, H., Merienne, N., Amrane, A. Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination, (2008). Vol. 222(1-3), pg. 331-339.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. (2015). Ministerio de Ambiente y Desarrollo Sostenible, Bogotá DC, COL. pg. 62.spa
dc.relation.referencesMacías-Quiroga, I. F. Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 (2021). Tesis de Doctorado en Ingeniería - Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, COL. pg. 288.spa
dc.relation.referencesPinheiro, H. M., Touraud, E., Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm., (2004). Vol. 61(2), pg. 121-139.spa
dc.relation.referencesGanesh, R., Boardman, G. D., Michelsen, D. Fate of azo dyes in sludges. Water Res., (1994). Vol. 28(6), pg. 1367-1376.spa
dc.relation.referencesSobrero, M. C., Ronco, A. Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Estandarización, intercalibración, resultados y aplicaciones, (2004). Morales, G. C. (Ed.), Instituto Mexicano de Tecnología del Agua: Ciudad de México, MEX. pg. 190.spa
dc.relation.referencesSobrero, M. C., Ronco, A. Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L, In: Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo La experiencia en México. (2008). Secretaría de Medio Ambiente y Recursos Naturales, MÉX. pg. 55-68.spa
dc.relation.referencesExchange, T. Global Market Report on Sustainable Textiles-Executive Summary. (2010). Lamesa-Texas, USA. pg. 1-7.spa
dc.relation.referencesDesore, A., Narula, S. A. An overview on corporate response towards sustainability issues in textile industry. Environ. Dev. Sustain., (2018). Vol. 20, pg. 1439-1459.spa
dc.relation.referencesMarket Analysis, R. Dyes And Pigments Market Size, Share & Trends Analysis Report by Product (Dyes (Reactive, Vat, Acid, Direct, Disperse), Pigment (Organic, Inorganic), by Application, Region and Segment Forecasts 2023 - 2030. (2023). Grand View Research. pg. 1 - 130.spa
dc.relation.referencesSamsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot., (2020). Vol. 143, pg. 138-163.spa
dc.relation.referencesVelusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. Chem. Rec., (2021). Vol. 21(7), pg. 1570-1610.spa
dc.relation.referencesZollinger, H. Azo dyes and pigments. Properties Applications of Organic Dyes Pigments, In: Colour Chemistry-Synthesis. (1987). Sons, J. W. (Ed.): Zurich - Switzerland. pg. 92-100.spa
dc.relation.referencesKatheresan, V., Kansedo, J., Lau, S. Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng., (2018). Vol. 6(4), pg. 4676-4697.spa
dc.relation.referencesMcMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I., Marchant, R., Smyth, W. Microbial decolourisation and degradation of textile dyes. Appl. microbiol. Biotechnol., (2001). Vol. 56, pg. 81-87.spa
dc.relation.referencesPearce, C. I., Lloyd, J. R., Guthrie, J. T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm., (2003). Vol. 58(3), pg. 179-196.spa
dc.relation.referencesRafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., (2010). Vol. 177(1-3), pg. 70-80.spa
dc.relation.referencesWu, J., Li, Q., Li, W., Li, Y., Wang, G., Li, A., Li, H. Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents. J. Clean. Prod., (2020). Vol. 251, pg. 119694.spa
dc.relation.referencesBenkhaya, S., M' rabet, S., El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Comm., (2020). Vol. 115, pg. 107891.spa
dc.relation.referencesMarkets, R. a. Acid Dyes Global Market Report (2023). Retrieve on September 20.spa
dc.relation.referencesChakraborty, J. N. Chapter 13. Metal-complex dyes, In: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Elsevier: Woodhead Publishing Limited, Cambridge-UK. pg. 446-465.spa
dc.relation.referencesChavan, R. B. Chapter 16. Environmentally Friendly Dyes, In: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Woodhead Publishing Limited, Cambridge-UK. pg. 515-561.spa
dc.relation.referencesClark, M. Chapter 1. Fundamental principles of dyeing, In: Handbook of Textile Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Woodhead Publishing Limited, Cambridge-UK. pg. 3-27.spa
dc.relation.referencesStandard Methods 5210 B Ed 23 Standard Methods for the Examination of Water and Wastewater. (2012). Washington: American Public Health Association. pg. 5-6.spa
dc.relation.referencesSebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., Citterio, A. Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes Pigm., (2012). Vol. 94(2), pg. 258-265.spa
dc.relation.referencesKoh, J. S., Kim, Y. G., Kim, J. P. Dyebath reuse in dyeing of nylon microfiber non-woven fabric with 1: 2 metal complex dyes. Fibers Polym., (2001). Vol. 2, pg. 35-40.spa
dc.relation.referencesRevista Digital CECAN E3. La industria textil, un sector importante en la economía de Colombia. Accesed: June 4 2022 Available from: https://cecane3.com/la-industria-textil-un-sector-importante-en-la-economia-de-colombia/.spa
dc.relation.referencesBenavides, V. Diseño del plan de gestión ambiental para la industria textil Aritex de Colombia SA (2015). Trabajo de pasantia de Ingenieria Sanitaria Programa de Ingenieria Ambiental Universidad Autónoma de Occidente, Cali, Valle del Cauca. pg. 151.spa
dc.relation.referencesAsociación Nacional de Empresarios de Colombia ANDI. Camara de Moda y textiles. Accesed: 09/10/2022. Available from: https://www.andi.com.co/Home/Camara/3spa
dc.relation.referencesLellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., (2019). Vol. 3(2), pg. 275-290.spa
dc.relation.referencesBhatia, S. C., Devraj, S. Pollution Control in Textile Industry, (2017). Woodhead Publishing Ltd: New Delhi, IND.spa
dc.relation.referencesOrganización de las Naciones Unidas - ONU. El costo ambiental de estar a la moda. Accesed: 21/09/2022. Available from: https://news.un.org/es/story/2019/04/1454161.spa
dc.relation.referencesBerradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon, (2019). Vol. 5(11), pg. 1-11.spa
dc.relation.referencesHassan, M. M., Carr, C. M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, (2018). Vol. 209, pg. 201-219.spa
dc.relation.referencesChakraborty, J. N. Chapter 32 - Waste-water Problem in Textile Industry, In: Fundamentals and Practices in Colouration of Textiles. (2010). Chakraborty, J. N. (Ed.), Woodhead Publishing, New Delhi, IND. pg. 381-408.spa
dc.relation.referencesMishra, A., Bajpai, M. Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. J. Hazard. Mater., (2005). Vol. 118(1), pg. 213-217.spa
dc.relation.referencesAl-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf., (2022). Vol. 231, pg. 1 -17.spa
dc.relation.referencesSlama, H. B., Bouket, A. C., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Golińska, P., Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci., (2021). Vol. 11(14).spa
dc.relation.referencesBali, U., Çatalkaya, E., Şengül, F. Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2 /Fe2+: A comparative study. J. Hazard. Mater., (2004). Vol. 114(1-3), pg. 159-166.spa
dc.relation.referencesDaza-Pacheco, S. L. Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato (2021). Trabajo Final para el titulo de Maestria Ingenieria, Ingenierial Ambiental Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. pg. 98.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. Decreto 1076 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. Por medio del cual se expide el decreto único reglamentario del sector ambiente y desarrollo sostenible. (2015). Ministerio de Ambiente y Desarrollo Sostenible, Bogotá DC, COL. pg. 654.spa
dc.relation.referencesInstituto de Hidrología Meteorología y Estudios Ambientales. Resolución 0062 de 2007. Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligosos en el pais. (2007). Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM, Bogotá DC, COL. pg. 202.spa
dc.relation.referencesBello-Espinoza, A., Vasquez, M., Rincón, D., López, O., Garzón, S. VIII Fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá. (2005). Secretaria Distrital de Ambiente Bogotá, Bogotá DC, COL.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S. Chapter 2. Colorants in health and environmental aspects, In: Dyes and Pigments. (2016). Springer Cham: Jaipur, IND. pg. 69-83.spa
dc.relation.referencesGalloway, M., Mahoney, J. Ultrafiltration for seawater reverse osmosis pretreatment. Membr. Technol., (2004). Vol. 2004(1), pg. 5-8.spa
dc.relation.referencesJonstrup, M., Punzi, M., Mattiasson, B. Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. J. Photochem. Photobiol. A, (2011). Vol. 224(1), pg. 55-61.spa
dc.relation.referencesYavuz, Y., Shahbazi, R. Anodic oxidation of reactive black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep. Purif. Technol., (2012). Vol. 85, pg. 130-136.spa
dc.relation.referencesSena, S., Demirer, G. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res., (2003). Vol. 37(8), pg. 1868-1878.spa
dc.relation.referencesSoares, P. A., Souza, R., Soler, J., Silva, T., Souza, S. M. G., Boaventura, R. A., Vilar, V. P. Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes. Sep. Purif. Technol., (2017). Vol. 172, pg. 450-462.spa
dc.relation.referencesChieng, H. I., Lim, L. B., Priyantha, N. Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: Adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin. Water Treat., (2015). Vol. 55(3), pg. 664-677.spa
dc.relation.referencesKennedy, K. K., Maseka, K. J., Mbulo, M. Selected adsorbents for removal of contaminants from wastewater: Towards engineering clay minerals. Open J. Appl. Sci., (2018). Vol. 8(8), pg. 355-369.spa
dc.relation.referencesShabir, M., Yasin, M., Hussain, M., Shafiq, I., Akhter, P., Nizami, A.-S., Jeon, B.-H., Park, Y.-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem., (2022). Vol. 112, pg. 1-19.spa
dc.relation.referencesVieira, W. T., de Farias, M. B., Spaolonzi, M. P., da Silva, M. C., Vieira, M. A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett., (2020). Vol. 18(4), pg. 1113-1143.spa
dc.relation.referencesObotey, E., Rathilal, S. Membrane technologies in wastewater treatment: A review. J. Membr., (2020). Vol. 10(5), pg. 89.spa
dc.relation.referencesKarcher, S., Kornmüller, A., Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res., (2002). Vol. 36(19), pg. 4717-4724.spa
dc.relation.referencesSolayman, H. M., Hossen, M., Abd Aziz, A., Yahya, N. Y., Hon, L. K., Ching, S. L., Monir, M. U., Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng., (2023). pg. 109610.spa
dc.relation.referencesAnisuzzaman, S. M., Joseph, C. G., Pang, C. K., Affandi, N. A., Maruja, S. N., Vijayan, V. Current trends in the utilization of photolysis and photocatalysis treatment processes for the remediation of dye wastewater: A short review. J. Chem. Eng., (2022). Vol. 6(4), pg. 58.spa
dc.relation.referencesCuerda-Correa, E. M., Alexandre-Franco, M. F., Fernández-González, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, (2019). Vol. 12(1), pg. 102.spa
dc.relation.referencesLi, X., Tang, S., Yuan, D., Tang, J., Zhang, C., Li, N., Rao, Y. Improved degradation of anthraquinone dye by electrochemical activation of PDS. Ecotoxicol. Environ. Saf., (2019). Vol. 177, pg. 77-85.spa
dc.relation.referencesKhataee, A., Dehghan, G., Ebadi, A., Zarei, M., Pourhassan, M. Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour. Technol., (2010). Vol. 101(7), pg. 2252-2258.spa
dc.relation.referencesChagas-Pereira, E., Durrant, L. R. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb. Technol., (2001). Vol. 29(8-9), pg. 473-477.spa
dc.relation.referencesSrinivasan, A., Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage., (2010). Vol. 91(10), pg. 1915-1929.spa
dc.relation.referencesAtalay, S., Ersöz, G. Novel Catalysts in Advanced Oxidation of Organic Pollutants, (2016). Springer Cham.: Springer International Publishing. New York, NY, USA. pg. 60.spa
dc.relation.referencesAsgari, G., Shabanloo, A., Salari, M., Eslami, F. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Environ. Res., (2020). Vol. 184, pg. 109367.spa
dc.relation.referencesRosa, J. M., Tambourgi, E. B., Vanalle, R. M., Gamarra, F. M. C., Santana, J. C., Araújo, M. C. Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents. J. Clean. Prod., (2020). Vol. 246, pg. 119012.spa
dc.relation.referencesKarthikeyan, K. T., Jothivenkatachalam, K. J. Removal of acid yellow-17 dye from aqueous solution using turmeric industrial waste activated carbon. J. Environ. Nanotechnol., (2014). Vol. 3(2), pg. 69-80.spa
dc.relation.referencesStoner, D. L. Chapter 1. Hazardous Organic Waste Amenable to Biological Treatment, In: Biotechnology for the Treatment of Hazardous Waste. (2017). Routledge, New York, USA. pg. 1-25.spa
dc.relation.referencesMacías-Quiroga, I. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. Characterization of colombian clay and its potential use as adsorbent. Sci. World J., (2018). Vol. 2018, pg. 11.spa
dc.relation.referencesMiralles-Cuevas, S., Oller, I., Agüera, A., Llorca, M., Pérez, J. A., Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. J. Hazard. Mater., (2017). Vol. 323, pg. 442-451.spa
dc.relation.referencesAsghar, A., Abdul Raman, A., Wan Daud, W. M. A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod., (2015). Vol. 87, pg. 826-838.spa
dc.relation.referencesCenti, G., Perathoner, S. Chapter 10 - Advanced oxidation processes in water treatment, In: Handbook of advanced methods and processes in oxidation catalysis. (2014). Imperial College Press: London, UK. pg. 251-290.spa
dc.relation.referencesIsmail, G. A., Sakai, H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, (2022). Vol. 291, pg. 132906.spa
dc.relation.referencesBabuponnusami, A., Muthukumar, K. A review on fenton and improvements to the fenton process for wastewater treatment. J. Environ. Chem. Eng., (2014). Vol. 2(1), pg. 557-572.spa
dc.relation.referencesIlhan, F., Ulucan-Altuntas, K., Dogan, C., Kurt, U. Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation. Desalin. Water Treat., (2019). Vol. 162, pg. 142-148.spa
dc.relation.referencesChowdhury, P., Elkamel, A., Ray, A. K. Photocatalytic processes for the removal of dye. Green Chem. Dyes Removal Waste Water: Res. Trend. Appl., (2015). pg. 119-137.spa
dc.relation.referencesMaroudas, A., Pandis, P. K., Chatzopoulou, A., Davellas, L.-R., Sourkouni, G., Argirusis, C. Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrason. Sonochem., (2021). Vol. 71, pg. 105367.spa
dc.relation.referencesTariq, M., Muhammad, M., Khan, J., Raziq, A., Uddin, M.-K., Niaz, A., Ahmed, S., Rahim, A. Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@ MWCNTs photocatalyst. J. Mol. Liq., (2020). Vol. 312, pg. 113399.spa
dc.relation.referencesClarizia, L., Russo, D., Di Somma, I., Marotta, R., Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B Env., (2017). Vol. 209, pg. 358-371.spa
dc.relation.referencesMachulek Jr, A., Quina, F. H., Gozzi, F., Silva, V. O., Friedrich, L. C., Moraes, J. Fundamental mechanistic studies of the photo-Fenton reaction for the degradation of organic pollutants. in Organic pollutants ten years after the Stockholm convention-environmental and analytical update. 2012.spa
dc.relation.referencesErtugay, N., Acar, F. N. J. A. J. o. C. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arab. J. Chem., (2017). Vol. 10, pg. S1158-S1163.spa
dc.relation.referencesEbrahiem, E. E., Al-Maghrabi, M. N., Mobarki, A. R. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem., (2017). Vol. 10, pg. S1674-S1679.spa
dc.relation.referencesCollivignarelli, M. C., Abbà, A., Miino, M. C., Damiani, S. Treatments for color removal from wastewater: State of the art. J. Environ. Manage., (2019). Vol. 236, pg. 727-745.spa
dc.relation.referencesSohrabi, M. R., Khavaran, A., Shariati, S., Shariati, S. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arab. J. Chem., (2017). Vol. 10, pg. S3523-S3531.spa
dc.relation.referencesWang, J., Yao, J., Wang, L., Xue, Q., Hu, Z., Pan, B. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Sep. Purif. Technol. , (2020). Vol. 230, pg. 115851.spa
dc.relation.referencesOgata, F., Nagahashi, E., Kobayashi, Y., Nakamura, T., Kawasaki, N. Simultaneous removal of dye and chemical oxygen demand from aqueous solution by combination treatment with ozone and carbonaceous material produced from waste biomass. e-J. Surf. Sci. Nanotechnol., (2018). Vol. 16, pg. 229-235.spa
dc.relation.referencesKasiri, M. B., Modirshahla, N., Mansouri, H. Decolorization of organic dye solution by ozonation; Optimization with response surface methodology. Int. J. Ind. Chem., (2013). Vol. 4, pg. 1-10.spa
dc.relation.referencesKhadhraoui, M., Trabelsi, H., Ksibi, M., Bouguerra, S., Elleuch, B. Discoloration and detoxicification of a Congo Red dye solution by means of ozone treatment for a possible water reuse. J. Hazard. Mater., (2009). Vol. 161(2-3), pg. 974-981.spa
dc.relation.referencesGümüş, D., Akbal, F. Photocatalytic degradation of textile dye and wastewater. Water Air Soil Pollut., (2011). Vol. 216, pg. 117-124.spa
dc.relation.referencesZhang, M., Dong, H., Zhao, L., Wang, D., Meng, D. A review on fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ., (2019). Vol. 670, pg. 110-121.spa
dc.relation.referencesPandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A. A., Argirusis, C. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. ChemEngineering, (2022). Vol. 6(1), pg. 8.spa
dc.relation.referencesMatavos-Aramyan, S., Moussavi, M. Avances en Fenton y procesos de oxidación basados en fenton para el control de contaminantes de efluentes industriales - Revisión A. Int. J. Environ. Sci Nat. Res., (2017). (4), pg. Article ID 555594.spa
dc.relation.referencesJawad, A., Chen, Z., Yin, G. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese J. Catal., (2016). Vol. 37(6), pg. 810-825.spa
dc.relation.referencesMeyerstein, D. Re-examining fenton and fenton-like reactions. Nat. Rev. Chem., (2021). Vol. 5(9), pg. 595-597.spa
dc.relation.referencesPerathoner, S., Centi, G. Chapter 7 - Catalytic wastewater treatment using pillared clays, In: Pillared Clays and Related Catalysts. (2010). Gil, A., Korili, S. A., Trujillano, R., Vicente, M. A. (Eds.), Springer New York. pg. 167-200.spa
dc.relation.referencesXu, A., Li, X., Xiong, H., Yin, G. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, (2011). Vol. 82(8), pg. 1190-1195.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z. Q., Yin, G. C. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ. Sci. Technol., (2013). Vol. 47(8), pg. 3833-3839.spa
dc.relation.referencesYang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater., (2010). Vol. 179(1-3), pg. 552-558.spa
dc.relation.referencesYang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater., (2010). Vol. 179(1-3), pg. 552-558.spa
dc.relation.referencesBruland, K., Donat, J., Hutchins, D. Interactive influences of bioactive trace metals on biological production in oceanic waters. J. Limnol. Oceanogr., (1991). Vol. 36(8), pg. 1555-1577.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., Yin, G. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. J. Hazard. Mater., (2015). Vol. 289, pg. 165-173.spa
dc.relation.referencesMacías-Quiroga, I. F., Pérez-Flórez, A., Arcila, J. S., Giraldo-Goméz, G. I., Sanabria-González, N. R. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catal. Letters, (2021). pg. 1-12.spa
dc.relation.referencesLuo, M., Lv, L., Deng, G., Yao, W., Ruan, Y., Li, X., Xu, A. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Appl. Catal. A Gen., (2014). Vol. 469, pg. 198-205.spa
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., Zeng, Q. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Appl. Catal. B Env., (2011b). Vol. 102(1), pg. 37-43.spa
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Br., (2020). Vol. 30, pg. 105463.spa
dc.relation.referencesLapertot, M., Pulgarín, C., Fernández-Ibáñez, P., Maldonado, M., Pérez-Estrada, L., Oller, I., Gernjak, W., Malato, S. Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Res., (2006). Vol. 40(5), pg. 1086-1094.spa
dc.relation.referencesLi, T., Liu, J., Bai, R., Ohandja, D., Wong, F. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Res., (2007). Vol. 41(15), pg. 3465-3473.spa
dc.relation.referencesDennison, S., O’Brien, P., Gopalkrishnan, S., Stark, B. Enhancement of aerobic degradation of benzoate and 2-chlorobenzoate by adapted activated sludge. Microbiol. Res., (2010). Vol. 165(8), pg. 687-694.spa
dc.relation.referencesWang, L., Wu, Z., Shammas, N. Activated sludge processes. , In: Biological Treatment Processes. (2009). Lawrence, K., Pereira, Y. (Eds.), Humana Totowa, NJ: Springer. pg. 207-281.spa
dc.relation.referencesVan den Broeck, R., Van Impe, J., Smets, I. Assessment of activated sludge stability in lab-scale experiments. J. Biotechnol., (2009). Vol. 141(3-4), pg. 147-154.spa
dc.relation.referencesBailey, J., Ollis, D. Biochemical engineering fundamentals, (2018). McGraw-Hill: New York, USA. pg. 753.spa
dc.relation.referencesDe Lucas, A., Rodriguez, L., Villaseñor, J., Fernández, F. Fermentation of agro-food wastewaters by activated sludge. Water res., (2007). Vol. 41(8), pg. 1635-1644.spa
dc.relation.referencesSanchís, S. Eliminación de compuestos emergentes mediante sistemas biológicos y su acoplamiento con procesos de oxidación avanzada (2012). Tesis Doctoral Universidad Autónoma de Madrid, Madrid, ESP. pg. 349.spa
dc.relation.referencesChan, Y. J., Chong, M. F., Law, C. L., Hassell, D. G. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J, (2009). Vol. 155(1-2), pg. 1-18.spa
dc.relation.referencesPapadimitriou, C., Petridis, D., Zouboulis, A., Samaras, P., Yiangou, M., Sakellaropoulos, G. J. Protozoans as indicators of sequential batch processes for phenol treatment; an autoecological approach. Ecotoxicol. Environ. Saf., (2013). Vol. 98, pg. 210-218.spa
dc.relation.referencesDubber, D., Gray, N. Enumeration of protozoan ciliates in activated sludge: Determination of replicate number using probability. Water Res., (2009). Vol. 43(14), pg. 3443-3452.spa
dc.relation.referencesNicolau, A., Dias, N., Mota, M., Lima, N. J. R. i. m. Trends in the use of protozoa in the assessment of wastewater treatment. Res. Microbiol., (2001). Vol. 152(7), pg. 621-630.spa
dc.relation.referencesHashimoto, K., Matsuda, M., Inoue, D., Ike, M. Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. J. Biosci. Bioeng., (2014). Vol. 118(1), pg. 64-71.spa
dc.relation.referencesSenthilnathan, P., Ganczarczyk, J. Adaptation and Deadaptation Kinetics of Activated Sludge, In: Proceedings of the 43rd Industrial Waste Conference May 1988. (2018). Press, C. (Ed.), Indiana,USA: Purdue University. pg. 301-307.spa
dc.relation.referencesRittmann, B., McCarty, P. Environmental biotechnology: principles and applications, (2001). Interamericana, M.-H. (Ed.), McGraw-Hill Interamericana Madrid, ESP. pg. 760.spa
dc.relation.referencesHolkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., Pandit, A. B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag., (2016). Vol. 182, pg. 351-366.spa
dc.relation.referencesOlukanni, O. D., Osuntoki, A. A., Kalyani, D. C., Gbenle, G. O., Govindwar, S. P. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater., (2010). Vol. 184(1-3), pg. 290-298.spa
dc.relation.referencesHolkar, C. R., Pandit, A. B., Pinjari, D. V. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp. F NCIM 5545. Bioresour. Technol., (2014). Vol. 173, pg. 342-351.spa
dc.relation.referencesPraveen, G. N., Bhat, K. Decolorization of azo dye Red 3BN by bacteria. Int. J. Biol. Sci., (2012). Vol. 1(5), pg. 46-52.spa
dc.relation.referencesKhouni, I., Marrot, B., Amar, R. B. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep. Purif. Technol. , (2012). Vol. 87, pg. 110-119.spa
dc.relation.referencesChen, S. H., Ting, A. S. Y. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int. Biodeterior. Biodegrad.. (2015). Vol. 103, pg. 1-7.spa
dc.relation.referencesChen, S. H., Ting, A. S. Y. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J. Environ. Manage., (2015). Vol. 150, pg. 274-280.spa
dc.relation.referencesKousha, M., Daneshvar, E., Sohrabi, M. S., Jokar, M., Bhatnagar, A. Adsorption of Acid Orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. J. Chem. Eng., (2012). Vol. 192, pg. 67-76.spa
dc.relation.referencesMeng, X., Liu, G., Zhou, J., Fu, Q. S. Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions. Bioresour. Technol., (2014). Vol. 151, pg. 63-68.spa
dc.relation.referencesTerasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., Kobayashi, D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci., (2011). Vol. 66(14), pg. 3172-3179.spa
dc.relation.referencesCoelho, A., Sans, C., Agüera, A., Gómez, M., Esplugas, S., Dezotti, M. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ., (2009). Vol. 407(11), pg. 3572-3578.spa
dc.relation.referencesZahn, R., Wellens, H. Ein einfaches Verfahren zur Prüfung der biologischen Abbaubarkeit von Produkten und Abwasserinhaltsstoffen. Chem. Ztg., (1974). Vol. 98, pg. 228-232.spa
dc.relation.referencesYe, F., Shen, D. Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere, (2004). Vol. 54(10), pg. 1573-1580.spa
dc.relation.referencesXu, S., Zhang, Y., Sims, A., Bernards, M., Hu, Z. Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation. Water res., (2013). Vol. 47(7), pg. 2307-2314.spa
dc.relation.referencesEren, Z. Ultrasound as a basic and auxiliary process for dye remediation: A review. Environ. Manage., (2012). Vol. 104, pg. 127-141.spa
dc.relation.referencesSomich, C. J., Muldoon, M. T., Kearney, P. C. On-site treatment of pesticide waste and rinsate using ozone and biologically active soil. Environ. Sci. Technol., (1990). Vol. 24(5), pg. 745-749.spa
dc.relation.referencesAdams, C. D., Scanlan, P. A., Secrist, N. D. Oxidation and biodegradability enhancement of 1, 4-dioxane using hydrogen peroxide and ozone. Environ. Sci. Technol., (1994). Vol. 28(11), pg. 1812-1818.spa
dc.relation.referencesSierka, R. A., Bryant, C. W. Enhancement of biotreatment effluent quality by illuminated titanium dioxide and membrane pretreatment of the Kraft extraction waste stream and by increased chlorine dioxide substitution. Water Sci. Technol., (1994). Vol. 29(5-6), pg. 209-218.spa
dc.relation.referencesHapeman, C. J., Shelton, D. R., Peyton, G. R., Bell, O. J., LeFaivre, M. H. Oxidation and microbial mineralization to remediate pesticide contaminated waters—overcoming the technical challenges. in First International Conference on Advanced Oxidation Technologies for Water and Air Remediation, London, Ontario (June 25–30). 1994.spa
dc.relation.referencesManilal, V. B., Haridas, A., Alexander, R., Surender, G. D. Photocatalytic treatment of toxic organics in wastewater: Toxicity of photodegradation products. Water Res., (1992). Vol. 26(8), pg. 1035-1038.spa
dc.relation.referencesCasierra-Martínez, H., Casalins-Blanco, J., Vargas-Ramírez, X., Caselles-Osorio, A. Desinfección de agua residual doméstica mediante un sistema de tratamiento acoplado con fines de reúso. Tecno. Cienc. del Agua, (2016). Vol. 7(4), pg. 97-111.spa
dc.relation.referencesIsaacs Páez, E. D. Fotodegradación acoplada a un proceso biológico para el tratamiento del efluente de una tintorería (2009). Trabajo de grado de Maestria en Ingenieria Departamento de Ingenieria Civil, Facultad de Ingenieria, Universidad de los Andes, Bogotá. pg. 62.spa
dc.relation.referencesNidheesh, P., Couras, C., Karim, A., Nadais, H. J. C. E. C. A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. Chem. Eng. Commun., (2022). Vol. 209(3), pg. 390-432.spa
dc.relation.referencesEl-Gohary, F., Tawfik, A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, (2009). Vol. 249(3), pg. 1159-1164.spa
dc.relation.referencesLu, X., Yang, B., Chen, J., Sun, R. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. J. Hazard. Mater., (2009). Vol. 161(1), pg. 241-245.spa
dc.relation.referencesSerra, A., Brillas, E., Domènech, X., Peral, J. Treatment of biorecalcitrant α-methylphenylglycine aqueous solutions with a solar photo-Fenton-aerobic biological coupling: Biodegradability and environmental impact assessment. Chem. Eng. J., (2011). Vol. 172(2-3), pg. 654-664.spa
dc.relation.referencesNadarajah, N., Van Hamme, J., Pannu, J., Singh, A., Ward, O. Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton's reagent, microbial treatment and surfactants. Appl. Microbiol. Biotechnol., (2002). Vol. 59(4), pg. 540-544.spa
dc.relation.referencesPark, S., Yoon, T., Bae, J., Seo, H., Park, H. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process. Biochem., (2001). Vol. 36(6), pg. 579-589.spa
dc.relation.referencesTorres, R. A., Sarria, V., Torres, W., Peringer, P., Pulgarin, C. Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: Toward an electrochemical–biological coupling. Water Res., (2003). Vol. 37(13), pg. 3118-3124.spa
dc.relation.referencesSarria, V., Parra, S., Invernizzi, M., Péringer, P., Pulgarin, C. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Sci. Technol., (2001). Vol. 44(5), pg. 93-101.spa
dc.relation.referencesAkmehmet, I., Sarac, C., Kıvılcımdan, C., Tarlan, E. Application of ozonation and biotreatment for forest industry wastewater. Ozone Sci. Eng., (2006). Vol. 28(6), pg. 431-436.spa
dc.relation.referencesVidal, J., Huiliñir, C., Santander, R., Silva-Agredo, J., Torres-Palma, R., Salazar, R. Effective removal of the antibiotic Nafcillin from water by combining the photoelectro-Fenton process and Anaerobic Biological Digestion. Sci. Total Environ., (2018). Vol. 624, pg. 1095-1105.spa
dc.relation.referencesCastro, F., Bassin, J., Dezotti, M. Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: Evaluating the performance, toxicity, and oxidation by-products. Environ. Sci. Pollut. Res., (2017). Vol. 24(7), pg. 6307-6316.spa
dc.relation.referencesRoshini, P., Gandhimathi, R., Ramesh, S., Nidheesh, P. Combined electro-Fenton and biological processes for the treatment of industrial textile effluent: Mineralization and toxicity analysis. J. Hazard. Toxic Radioact. Waste., (2017). Vol. 21(4), pg. 04017016.spa
dc.relation.referencesWang, X., Song, Y., Mai, J. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. J. Hazard. Mater., (2008). Vol. 160(2-3), pg. 344-348.spa
dc.relation.referencesOECD Guideline for testing of chemicals 301. Ready Biodegradability, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-62.spa
dc.relation.referencesSchefer, W. Prüfung der biologischen Abbaubarkeit organisch-chemischer Abwasser-Inhaltsstoffe. Z. Wasser-Abwasser Forsch, (1980). Vol. 13, pg. 205-209.spa
dc.relation.referencesOECD Guideline for Testing of Chemicals 302 B. Zahn-Wellens/EMPA Test, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-8.spa
dc.relation.referencesSirtori, C., Zapata, A., Oller, I., Gernjak, W., Agüera, A., Malato, S. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res., (2009). Vol. 43(3), pg. 661-668.spa
dc.relation.referencesPłuciennik-Koropczuk, E., Myszograj, S. Zahn-Wellens test in industrial wastewater biodegradability assessment. Environ. Eng., (2018). Vol. 28(1), pg. 77-86.spa
dc.relation.referencesDíaz-Díaz, M. A., Rivas-Trasancos, L., Martínez-González, J., Teuteló-Núñez, R., Salazar-Alemán, D. Aplicación del método Zahn-Wellens para determinar biodegradabilidad de un producto antiderrames. Rev. Cub. Quím, (2020). Vol. 32(2), pg. 262-272.spa
dc.relation.referencesLapertot, M., Ebrahimi, S., Oller, I., Maldonado, M., Gernjak, W., Malato, S., Pulgarín, C. Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes. Ecotoxicol. Environ. Saf., (2008). Vol. 69(3), pg. 546-555.spa
dc.relation.referencesOller, I., Gernjak, W., Maldonado, M., Pérez-Estrada, L., Sánchez-Pérez, J., Malato, S. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater., (2006). Vol. 138(3), pg. 507-517.spa
dc.relation.referencesGarcía-Ripoll, A., Amat, A., Arques, A., Vicente, R., López, M., Oller, I., Maldonado, M., Gernjak, W. Increased biodegradability of UltracidTM in aqueous solutions with solar TiO2 photocatalysis. Chemosphere, (2007). Vol. 68(2), pg. 293-300.spa
dc.relation.referencesZapata, A., Velegraki, T., Sánchez-Pérez, J., Mantzavinos, D., Maldonado, M., Malato, S. Solar photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Appl. Catal. B Env., (2009). Vol. 88(3-4), pg. 448-454.spa
dc.relation.referencesAmat, A., Arques, A., García-Ripoll, A., Santos-Juanes, L., Vicente, R., Oller, I., Maldonado, M., Malato, S. A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Res., (2009). Vol. 43(3), pg. 784-792.spa
dc.relation.referencesZapata, A., Oller, I., Gallay, R., Pulgarin, C., Maldonado, M., Malato, S., Gernjak, W. Comparison of photo-Fenton treatment and coupled photo-Fenton and biological treatment for detoxification of pharmaceutical industry contaminants. Adv. Oxid. Technol., (2008). Vol. 11(2), pg. 261-269.spa
dc.relation.referencesBarba-Ho, L. E., Becerra, D. Biodegradabilidad y toxicidad de herbicidas utilizados en el cultivo de caña de azúcar. Ing. Recur. Nat. Amb, (2011). (10), pg. 11-19.spa
dc.relation.referencesRodriguez, M., Sarria, V., Esplugas, S., Pulgarin, C. Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: Biodegradability of the photo-treated solution. Photochem. Photobiol A: Chem. , (2002). Vol. 151(1-3), pg. 129-135.spa
dc.relation.referencesSteger-Hartmann, T., Kümmerer, K., Hartmann, A. Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicol. Environ. Saf. , (1997). Vol. 36(2), pg. 174-179.spa
dc.relation.referencesLyu, J., Park, J., Pandey, L. K., Choi, S., Lee, H., De Saeger, J., Depuydt, S., Han, T. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol. Environ. Saf., (2018). Vol. 149, pg. 225-232.spa
dc.relation.referencesNassour, C., Nabhani-Gebara, S., Barton, S. J., Barker, J. Aquatic ecotoxicology of anticancer drugs: A systematic review. Sci. Total Environ., (2021). Vol. 800, pg. 11.spa
dc.relation.referencesBagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., Morales-Ruano, S. Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soils Sediments, (2011). Vol. 11, pg. 281-289.spa
dc.relation.referencesKapanen, A., Itävaara, M. Ecotoxicity tests for compost applications. Ecotoxicol. Environ. Saf., (2001). Vol. 49(1), pg. 1-16.spa
dc.relation.referencesU.S., E. P. A. Ecological effects test guidelines. OPPTS 850.4200, Seed Germination/Root Elongation Toxicity Test. (1996). (712 C), pg. 96-154.spa
dc.relation.referencesOECD Guideline for the testing of chemicalsTerrestrial Plant Test: 208 Seedling Emergence Seedling Growth Test, In: Organization for Economic Cooperation and Development. (2006). Paris, FRA.spa
dc.relation.referencesWang, W. Literature review on higher plants for toxicity testing. Water Air Soil Pollut., (1991). Vol. 59, pg. 381-400.spa
dc.relation.referencesRede, D., Santos, L., Ramos, S., Oliva-Teles, F., Antão, C., Sousa, S. R., Delerue-Matos, C. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Sci. Total Environ., (2019). Vol. 673, pg. 102-109.spa
dc.relation.referencesAragão, F. B., Duarte, I. D., Fantinato, D. E., Galter, I. N., Silveira, G. L., Dos Reis, G., Andrade-Vieira, L., Matsumoto, S. T. Toxicogenetic of tebuconazole based fungicide through Lactuca sativa bioassays. Ecotoxicol. Environ. Saf., (2021). Vol. 213, pg. 6.spa
dc.relation.referencesDi Salvatore, M., Carafa, A., Carratu, G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, (2008). Vol. 73(9), pg. 1461-1464.spa
dc.relation.referencesLytle, J. S., Lytle, T. F. Use of plants for toxicity assessment of estuarine ecosystems. Environ. Toxicol. Chem. , (2001). Vol. 20(1), pg. 68-83.spa
dc.relation.referencesBowers, N., Pratt, J. R., Beeson, D., Lewis, M. Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environ. Toxicol. Chem. , (1997). Vol. 16(2), pg. 207-213.spa
dc.relation.referencesCheung, Y., Wong, M. H., Tam, N. Root and shoot elongation as an assessment of heavy metal toxicity and ‘Zn Equivalent Value’of edible crops. Hydrobiologia, (1989). Vol. 188, pg. 377-383.spa
dc.relation.referencesPriac, A., Badot, P. M., Crini, G. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. C. R. Biol., (2017). Vol. 340(3), pg. 188-194.spa
dc.relation.referencesChan-Keb, C. A., Agraz-Hernández, C. M., Perez-Balan, R. A., Gómez-Solano, M. I., Maldonado-Montiel, T., Ake-Canche, B., Gutiérrez-Alcántara, E. Acute toxicity of water and aqueous extract of soils from Champotón river in Lactuca sativa L. Toxicol. Rep, (2018). Vol. 5, pg. 593-597.spa
dc.relation.referencesCastillo, G. C., Vila, I. C., Neild, E. Ecotoxicity assessment of metals and wastewater using multitrophic assays. Environ. Toxicol. , (2000). Vol. 15(5), pg. 370-375.spa
dc.relation.referencesDiaz‐Baez, M. C., Perez, J. B. Intralaboratory experience with a battery of bioassays: Colombia experience. Environ. Toxicol., (2000). Vol. 15(4), pg. 297-303.spa
dc.relation.referencesTorres, N., Souza, B., Ferreira, L., Lima, Á., Dos Santos, G., Cavalcanti, E. Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment. Chemosphere, (2019). Vol. 236, pg. 124309.spa
dc.relation.referencesOECD Guideline for Testing of Chemicals 302 B. Zahn-Wellens/EMPA Test, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-8.spa
dc.relation.referencesQuintero-Arias, J. D., Gómez García, M., Dobrosz-Gómez, I. Sci. World J., Submitted (2023).spa
dc.relation.referencesAPHA Standard Methods for Examination of Water and Wastewater. 23rd edition, In: American Public Health Association, American Water Works Association, Water Environment Federation. (2017). Washington DC, USA.spa
dc.relation.referencesReyna Ávila, B. El intercambio iónico, su descripción y comportamiento químico, In: Proyecto de Investigación para obtener el Título de Ingeniero Químico Industrial: Escuela Superior de Ingeniería Química e Industrias Extracticvas. (2014). Instituto Politécnico Nacional México, D. F.spa
dc.relation.referencesLewatit® catálogo resina MonoPlus S 108 H. Tratamiento de intercambio catiónico. (2012). pg. 4.spa
dc.relation.referencesLewatit® catálogo resina MonoPlus M 800 OH. Tratamiento de intercambio aniónico. (2012). pg. 4.spa
dc.relation.referencesMacías-Quiroga, I. F. Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 (2021). Tesis de Doctorado en Ingeniería - Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, COL. pg. 288.spa
dc.relation.referencesMarín-González, N. Oxidación catalítica en medio heterogéneo de un colorante azoico empleando el sistema peróxido activado con bicarbonato (2022). Tesis de Maestría en Ingeniería - Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, COL.spa
dc.relation.referencesMacías-Quiroga, I. F., Pérez-Flórez, A., Arcila, J. S., Giraldo-Goméz, G. I., Sanabria-González, N. R. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catal. Letters, (2021). pg. 1-12.spa
dc.relation.referencesGiraldo Loaiza, C. Aplicación de sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textil, In: Tesis de Maestría en Ingeniería – Ingeniería Química. (2023). Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, COLspa
dc.relation.referencesZahn, R., Wellens, H. Ein einfaches Verfahren zur Prüfung der biologischen Abbaubarkeit von Produkten und Abwasserinhaltsstoffen. Chem. Ztg., (1974). Vol. 98, pg. 228-232.spa
dc.relation.referencesRittmann, B., McCarty, P. Environmental biotechnology: principles and applications, (2001). Interamericana, M.-H. (Ed.), McGraw-Hill Interamericana Madrid, ESP. pg. 760.spa
dc.relation.referencesSenthilnathan, P., Ganczarczyk, J. Adaptation and Deadaptation Kinetics of Activated Sludge, In: Proceedings of the 43rd Industrial Waste Conference May 1988. (2018). Press, C. (Ed.), Indiana,USA: Purdue University. pg. 301-307.spa
dc.relation.referencesStandard Methods 2540 F Ed 23 Standard Methods for the examination of Water and Wastewater. (2012). Washington: American Public Health Association.spa
dc.relation.referencesSobrero, M. C., Ronco, A. Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L, In: Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo La experiencia en México. (2008). Secretaría de Medio Ambiente y Recursos Naturales, MÉX. pg. 55-68.spa
dc.relation.referencesBagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., Morales-Ruano, S. Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soils Sediments, (2011). Vol. 11, pg. 281-289.spa
dc.relation.referencesDi Salvatore, M., Carafa, A., Carratu, G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, (2008). Vol. 73(9), pg. 1461-1464.spa
dc.relation.referencesTiquia, S. M. Evaluating phytotoxicity of pig manure from the pig on litter system. in Proceedings of the International Composting Symposium, CBA Press Inc. Truro, NS. 2000.spa
dc.relation.referencesOECD Guideline for Testing of Chemicals 302 B. Zahn-Wellens/EMPA Test, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-8.spa
dc.relation.referencesBagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., Morales-Ruano, S. Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soil. Sediment. , (2011). Vol. 11, pg. 281-289.spa
dc.relation.referencesDi Salvatore, M., Carafa, A., Carratu, G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, (2008). Vol. 73(9), pg. 1461-1464.spa
dc.relation.referencesAPHA Standard Methods for Examination of Water and Wastewater. 23rd edition, In: American Public Health Association, American Water Works Association, Water Environment Federation. (2017). Washington DC, USA.spa
dc.relation.referencesLellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., (2019). Vol. 3(2), pg. 275-290.spa
dc.relation.referencesBerradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon, (2019). Vol. 5(11), pg. 1-11.spa
dc.relation.referencesKehinde, F., Aziz, H. A. Textile waste water and the advanced oxidative treatment process, an overview. Int. J. Innov. Res. Technol. Sci. Eng.Techn., (2014). Vol. 3(8), pg. 15310-15317.spa
dc.relation.referencesGhaly, A. E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V. V. Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process. Technol., (2014). Vol. 5(1), pg. 1-19.spa
dc.relation.referencesYaseen, D. A., Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol, (2019). Vol. 16, pg. 1193-1226.spa
dc.relation.referencesHussein, F. H. Chemical Properties of Treated Textile Dyeing Wastewater. Asian J. Chem., (2013). Vol. 25(16), pg. 9393-9400.spa
dc.relation.referencesChavan, R. B. Chapter 16. Environmentally Friendly Dyes, In: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Woodhead Publishing Limited, Cambridge-UK. pg. 515-561.spa
dc.relation.referencesKhalfaoui, N., Boutoumi, H., Khalaf, H., Oturan, N., A Oturan, M. Electrochemical oxidation of the xanthene dye Rhodamine 6G by electrochemical advanced oxidation using Pt and BDD anodes. Curr. Org. Chem., (2012). Vol. 16(18), pg. 2083-2090.spa
dc.relation.referencesHassaan, M. A., El Nemr, A. Advanced oxidation processes for textile wastewater treatment. Intern. J. Photochem. Photobiol., (2017). Vol. 2(3), pg. 85-93.spa
dc.relation.referencesBandara, J., Nadtochenko, V., Kiwi, J., Pulgarin, C. Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange II) via advanced oxidation technologies. Water Sci. Technol., (1997). Vol. 35(4), pg. 87-93.spa
dc.relation.referencesBrillas, E., Garrido, J. A., Rodríguez, R. M., Arias, C., Cabot, P. L., Centellas, F. Wastewaters by Electrochemical Advanced Oxidation Processes Using a BDD Anode and Electrogenerated H2O2 with Fe (II) and UVA Light as Catalysts. Port. Electroch. Acta, (2008). Vol. 26(1), pg. 15.spa
dc.relation.referencesCoelho, A., Sans, C., Agüera, A., Gómez, M., Esplugas, S., Dezotti, M. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ., (2009). Vol. 407(11), pg. 3572-3578.spa
dc.relation.referencesGiraldo Loaiza, C. Aplicación de sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textil, In: Tesis de Maestría en Ingeniería – Ingeniería Química. (2024). Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, COL.spa
dc.relation.referencesDirany, A., Sirés, I., Oturan, N., Oturan, M. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, (2010). Vol. 81(5), pg. 594-602.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. (2015). Ministerio de Ambiente y Desarrollo Sostenible, Bogotá DC, COL. pg. 62.spa
dc.relation.referencesWelter, J., Soares, E., Rotta, E., Seibert, D. Bioassays and Zahn-Wellens test assessment on landfill leachate treated by photo-Fenton process. J. Environ. Chem. Eng., (2018). Vol. 6(1), pg. 1390-1395.spa
dc.relation.referencesZucconi, F. Evaluating toxicity of immature compost. Biocycle, (1981). pg. 54-57.spa
dc.relation.referencesFerreira, A., Melkonyan, L., Carapinha, S., Ribeiro, B., Figueiredo, D., Avetisova, G., Gouveia, L. Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environ. Adv., (2021). Vol. 4, pg. 100062.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalIndustria textilspa
dc.subject.proposalOxidación avanzadaspa
dc.subject.proposalTratamiento biológicospa
dc.subject.proposalZahn-Wellensspa
dc.subject.proposalLactuca sativaspa
dc.subject.proposalRemoción de materia orgánicaspa
dc.subject.proposalTextile industryeng
dc.subject.proposalAdvanced oxidationeng
dc.subject.proposalBiological treatmenteng
dc.subject.proposalLactuca sativaeng
dc.subject.proposalOrganic matter removaleng
dc.titleImplementación de un proceso biológico como postratamiento a la oxidación de un agua residual textil con el sistema Co/Al–PILC–BAPspa
dc.title.translatedImplementation of a biological process as post-treatment for the oxidation of a textile wastewater using the system Co/Al–PILC–BAPeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria 852-2019 “Convocatoria de Proyectos Conectando Conocimiento 2019”spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación – Mincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088273892.2024.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: