Implementación de un proceso biológico como postratamiento a la oxidación de un agua residual textil con el sistema Co/Al–PILC–BAP
dc.contributor.advisor | Sanabria González, Nancy Rocío | |
dc.contributor.advisor | Macías Quiroga, Iván Fernando | |
dc.contributor.author | Salazar Loaiza, Aura María | |
dc.contributor.cvlac | Salazar Loaiza, Aura Maria [1394404] | spa |
dc.contributor.researchgroup | Procesos Químicos, Catalíticos y Biotecnológicos | spa |
dc.date.accessioned | 2024-03-19T20:32:20Z | |
dc.date.available | 2024-03-19T20:32:20Z | |
dc.date.issued | 2024-03 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | El agua es una sustancia esencial para los seres vivos y durante la historia las poblaciones se han asentado en lugares donde se encuentre este recurso. Sin embargo, las fuentes hídricas están siendo contaminadas con metales pesados, patógenos y diversas sustancias orgánicas e inorgánicas. La industria textil genera gran cantidad de contaminantes al medio ambiente, entre los que se encuentran los colorantes utilizados en los procesos de teñido [1]. Se estima que del 10 al 15% de los colorantes empleados en la industria textil se descargan en las aguas residuales sin un tratamiento previo [2]. Para el mejoramiento de la calidad del agua y la descontaminación de las fuentes hídricas se han empleado sistemas de tratamiento físicos, químicos y biológicos [3, 4]. El uso de tratamientos combinados o acople de tecnologías es una opción para superar las desventajas de los procesos individuales [5]. El acople de procesos es uno de los métodos más efectivos para el tratamiento de aguas con compuestos orgánicos tóxicos y recalcitrantes, dado que mejora el índice de biodegradabilidad [6, 7]. El tratamiento biológico posterior a un proceso de oxidación avanzado presenta ventajas como la protección a los microorganismos de compuestos tóxicos o inhibitorios, incremento del grado mineralización de los contaminantes y reducción de los costos totales de tratamiento [8, 9]. En el presente trabajo final de maestría se realizó un ensayo de laboratorio de un proceso biológico aerobio como postratamiento a la oxidación de un agua residual textil con el sistema Co/Al–PILC–BAP, aumentando el índice de biodegradabilidad de 0.37 (antes del POxA) a 0.59 (después de POxA) y 0.94 (después del proceso biológico). El proceso biológico siguió la metodología establecida para prueba de Zahn-Wallens y permitió una remoción promedio en la demanda química de oxígeno (DQO) del 96.3%, llegando a un valor final de 20 ± 5 mg O2/L. Para analizar el efecto de los contaminantes presentes en el agua residual textil, se evaluó la fitotoxicidad con semillas de lechuga (Lactuca sativa L.) antes y después del acople de los procesos de oxidación química/tratamiento biológico, encontrándose un aumento en el porcentaje de germinación relativo del 31.82 al 100%, lo cual sugiere una disminución de los componentes tóxicos presentes en el agua. Por tanto, el acople de un POxA/sistema biológico es una alternativa para el tratamiento del agua residual textil objeto de estudio, el cual permitió cumplir con los límites máximos permisibles en DQO para el vertimiento de agua en la fabricación de productos textiles, establecidos en la Resolución 0631 de 2015 del Ministerio de Ambiente y Desarrollo Sostenible de Colombia (Texto tomado de la fuente) | spa |
dc.description.abstract | Water is an essential substance for living beings, and throughout history, populations have settled in places where this resource is found. However, water sources are contaminated with heavy metals, pathogens, and organic and inorganic substances. The textile industry generates many environmental pollutants, including the dyes used in the dyeing process [1]. Approximately 10 to 15% of the dyes used in the textile industry are discharged into wastewater without prior treatment [2]. Physical, chemical, and biological treatment systems have improved water quality and decontaminate water sources [3, 4]. Combining treatments or coupling technologies is an option to overcome the disadvantages of individual processes [5]. Process coupling is one of the most effective methods for treating water containing toxic and recalcitrant organic compounds since it improves the rate of biodegradability [6, 7]. Biological treatment after an advanced oxidation process has advantages such as protection of microorganisms from toxic or inhibitory compounds, increased mineralization of pollutants, and reduction of total treatment costs [8, 9]. In this master's thesis, a laboratory test of an aerobic biological process was carried out as a post-treatment to the oxidation of a textile wastewater with the Co/Al–PILC–BAP system, increasing the biodegradability index from 0.37 (before AOP) to 0.59 (after AOP) and 0.94 (after the biological process). The biological process followed the established methodology for the Zahn-Wallens test and allowed an average chemical oxygen demand (COD) removal of 96.3%, reaching a final value of 20 ± 5 mg O2/L. To analyze the effect of the pollutants present in the textile wastewater, phytotoxicity was evaluated with lettuce seeds (Lactuca sativa L.) before and after coupling the chemical oxidation/biological treatment processes, finding an increase in the relative germination percentage from 31.82 to 100%, which suggests a decrease in the toxic components present in the water. Therefore, the coupling of an AOP/biological system is an alternative for the treatment of the textile wastewater under study, which allowed compliance with the maximum permissible limits in COD for the discharge of water in the manufacture of textile products, established in Resolution 0631 of 2015 of the Ministry of Environment and Sustainable Development of Colombia. | eng |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.format.extent | ii, 77 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85823 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Zaruma, P., Proal, J., Hernández, I. C., Salas, H. I. Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Rev. Fac. Cienc. Quim., (2018). (19), pg. 38-47. | spa |
dc.relation.references | Chakroun, S., Mechti, W., Herchi, M., Gaied, M. E. Characterization of ain M’Dheker clay deposits for sunflower oil and acid black 194 dye clarification. Arab. J. Geosci., (2018). Vol. 11(3), pg. 1-14. | spa |
dc.relation.references | Organización de las Naciones Unidas (ONU) Informe de los Objetivos de Desarrollo Sostenible. (2020). New York, USA, Naciones Unidas. | spa |
dc.relation.references | Uddin, Z., Ahmad, F., Ullan, T., Nawab, Y., Ahmad, S., Azam, F., Rasheed, A., Zafar, M. S. Recent trends in water purification using electrospun nanofibrous membranes. J. Environ. Sci. Technol., (2022). Vol. 19(9), pg. 9149-9176. | spa |
dc.relation.references | GilPavas, E. Procesos avanzados de oxidación para la degradación de índigo y materia orgánica de aguas residuales de una industria textil (2020). Tesis de Doctorado Ingeniería-Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. pg. 323. | spa |
dc.relation.references | Chávez, S. H. Aplicación de procesos electroquímicos de oxidación avanzada acoplados para el tratamiento de aguas residuales de curtidurÍa, In: XXVI Verano de la Ciencia. (2021). Universidad de Guanajuato, México. | spa |
dc.relation.references | Blanco, J., Torrades, F., De la Varga, M., García-Montaño, J. Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, (2012). Vol. 286, pg. 394-399. | spa |
dc.relation.references | Pulgarin, C., Invernizzi, M., Parra, S., Sarria, V., Polania, R., Péringer, P. Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catal. Today, (1999). Vol. 54(2-3), pg. 341-352. | spa |
dc.relation.references | Lei, Y., Shen, Z., Huang, R., Wang, W. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation. Water Res., (2007). Vol. 41(11), pg. 2417-2426. | spa |
dc.relation.references | Clemente, A., Chica Arrieta, E., Peñuela Mesa, G., Água Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes. Rev. Ambient. Água (2013). Vol. 8, pg. 93-103. | spa |
dc.relation.references | Pereira, L., Alves, M. Chapter 4. Dyes-Environmental Impact and Remediation, In: Environmental Protection Strategies for Sustainable Development. (2012). Dordrecht, S. (Ed.): Freiburg, DEU. pg. 111-162. | spa |
dc.relation.references | Manenti, D., Módenes, A., Soares, P., Boaventura, R., Palácio, S., Borba, F., Espinoza-Quiñones, F., Bergamasco, R., Vilar, V. Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process. Environ. Technol., (2015). Vol. 36(4), pg. 496-506. | spa |
dc.relation.references | Figueroa, S., Vazquez, L., Alvarez-Gallegos, A. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell. Water Res., (2009). Vol. 43(2), pg. 283-294. | spa |
dc.relation.references | O’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenço, N. D., Pinheiro, H. M., Delée, W. Colour in textile effluents–sources, measurement, discharge consents and simulation: A review. J. Chem. Technol. Biotechnol., (1999). Vol. 74(11), pg. 1009-1018. | spa |
dc.relation.references | Chakraborty, R., Ahmad, F. Economical use of water in cotton knit dyeing industries of Bangladesh. J. Clean. Prod., (2022). Vol. 340, pg. 130825. | spa |
dc.relation.references | Gupta, V. K. Application of low-cost adsorbents for dye removal–a review. J. Environ. Manage., (2009). Vol. 90(8), pg. 2313-2342. | spa |
dc.relation.references | Hossain, L., Sarker, S. K., Khan, M. S. Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh. J. Environ. Dev., (2018). Vol. 26, pg. 23-33. | spa |
dc.relation.references | Manu, B., Chaudhari, S. Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process. Biochem., (2003). Vol. 38(8), pg. 1213-1221. | spa |
dc.relation.references | Kornaros, M., Lyberatos, G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J. Hazard. Mater., (2006). Vol. 136(1), pg. 95-102. | spa |
dc.relation.references | Vijayaraghavan, J., Basha, S. J., Jegan, J. A review on efficacious methods to decolorize reactive azo dye. J. Urban Environ. Eng., (2013). Vol. 7(1), pg. 30-47. | spa |
dc.relation.references | Senthil, B., Senthil, P. Sustainable approach on the biodegradation of azo dyes: A short review. Curr. Opin. Green Sustain. Chem., (2022). Vol. 33(100578), pg. 6. | spa |
dc.relation.references | Shiva-Shankar, Y., Ankur, K., Bhushan, P., Mohan, D. Utilization of water treatment plant (WTP) sludge for pretreatment of dye wastewater using coagulation/flocculation, In: Advances in Waste Management, Kalamdhad, A. S., Singh, J., Dhamodharan, K., Editors. (2019). Springer Singapore, SGP. pg. 107-121. | spa |
dc.relation.references | Anjaneyulu, Y., Sreedhara Chary, N., Samuel Suman Raj, D. Decolourization of industrial effluents–available methods and emerging technologies–a review. Rev. Environ. Sci. Biotechnol. , (2005). Vol. 4, pg. 245-273. | spa |
dc.relation.references | Oller, I., Malato, S., Sánchez-Pérez, J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ., (2011). Vol. 409(20), pg. 4141-4166. | spa |
dc.relation.references | Kiwi, J., Pulgarin, C., Peringer, P., Grätzel, M. Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment. Appl. Catal. B Env., (1993). Vol. 3(1), pg. 85-99. | spa |
dc.relation.references | Palacios, E. M., Sánchez, J. V., Segundo, C. T. Degradación de colorantes en aguas residuales mediante oxidación. Inventio, (2019). Vol. 13(31), pg. 35-42. | spa |
dc.relation.references | Shahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., Hallam, K. R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. J. Chem. Eng., (2011). Vol. 172(1), pg. 258-266. | spa |
dc.relation.references | Jawad, A., Lu, X., Chen, Z., Yin, G. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. J. Phys. Chem. A, (2014). Vol. 118(43), pg. 10028-10035. | spa |
dc.relation.references | Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., Zeng, Q. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt (II)/bicarbonate/hydrogen peroxide system. Ind. Eng. Chem. Res., (2012). Vol. 51(34), pg. 11104-11111. | spa |
dc.relation.references | Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., Jiang, J. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. J. Chem. Eng., (2021). Vol. 408, pg. Article ID 127332. | spa |
dc.relation.references | Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., Xu, A. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Adv., (2015). Vol. 5(102), pg. 84303-84310. | spa |
dc.relation.references | Li, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., Xu, A. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Appl. Catal. A Gen., (2012). Vol. 411, pg. 24-30. | spa |
dc.relation.references | Guo, X., Li, H., Zhao, S. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. J. Taiwan Inst. Chem. Eng., (2015). Vol. 55, pg. 90-100. | spa |
dc.relation.references | Dulekgurgen, E., Doğruel, S., Karahan, Ö., Orhon, D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res., (2006). Vol. 40(2), pg. 273-282. | spa |
dc.relation.references | Domènech, X., Litter, M. I., Jardim, W. F. Chapter 1. Procesos Avanzados de Oxidación para la Eliminación de Contaminantes, In: Eliminación de Contaminantes por Fotocatálisis Heterogénea. (2001). Buenos Aires, ARG. pg. 3-26. | spa |
dc.relation.references | Barrios Ziolo, L. F., Gaviria Restrepo, L. F., Agudelo, E. A., Cardona Gallo, S. A. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el Área Metropolitana del Valle de Aburrá. Revista EIA, (2016). Vol. 13(26), pg. 61-74. | spa |
dc.relation.references | Brosillon, S., Djelal, H., Merienne, N., Amrane, A. Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination, (2008). Vol. 222(1-3), pg. 331-339. | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. (2015). Ministerio de Ambiente y Desarrollo Sostenible, Bogotá DC, COL. pg. 62. | spa |
dc.relation.references | Macías-Quiroga, I. F. Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 (2021). Tesis de Doctorado en Ingeniería - Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, COL. pg. 288. | spa |
dc.relation.references | Pinheiro, H. M., Touraud, E., Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm., (2004). Vol. 61(2), pg. 121-139. | spa |
dc.relation.references | Ganesh, R., Boardman, G. D., Michelsen, D. Fate of azo dyes in sludges. Water Res., (1994). Vol. 28(6), pg. 1367-1376. | spa |
dc.relation.references | Sobrero, M. C., Ronco, A. Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Estandarización, intercalibración, resultados y aplicaciones, (2004). Morales, G. C. (Ed.), Instituto Mexicano de Tecnología del Agua: Ciudad de México, MEX. pg. 190. | spa |
dc.relation.references | Sobrero, M. C., Ronco, A. Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L, In: Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo La experiencia en México. (2008). Secretaría de Medio Ambiente y Recursos Naturales, MÉX. pg. 55-68. | spa |
dc.relation.references | Exchange, T. Global Market Report on Sustainable Textiles-Executive Summary. (2010). Lamesa-Texas, USA. pg. 1-7. | spa |
dc.relation.references | Desore, A., Narula, S. A. An overview on corporate response towards sustainability issues in textile industry. Environ. Dev. Sustain., (2018). Vol. 20, pg. 1439-1459. | spa |
dc.relation.references | Market Analysis, R. Dyes And Pigments Market Size, Share & Trends Analysis Report by Product (Dyes (Reactive, Vat, Acid, Direct, Disperse), Pigment (Organic, Inorganic), by Application, Region and Segment Forecasts 2023 - 2030. (2023). Grand View Research. pg. 1 - 130. | spa |
dc.relation.references | Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot., (2020). Vol. 143, pg. 138-163. | spa |
dc.relation.references | Velusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. Chem. Rec., (2021). Vol. 21(7), pg. 1570-1610. | spa |
dc.relation.references | Zollinger, H. Azo dyes and pigments. Properties Applications of Organic Dyes Pigments, In: Colour Chemistry-Synthesis. (1987). Sons, J. W. (Ed.): Zurich - Switzerland. pg. 92-100. | spa |
dc.relation.references | Katheresan, V., Kansedo, J., Lau, S. Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng., (2018). Vol. 6(4), pg. 4676-4697. | spa |
dc.relation.references | McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I., Marchant, R., Smyth, W. Microbial decolourisation and degradation of textile dyes. Appl. microbiol. Biotechnol., (2001). Vol. 56, pg. 81-87. | spa |
dc.relation.references | Pearce, C. I., Lloyd, J. R., Guthrie, J. T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm., (2003). Vol. 58(3), pg. 179-196. | spa |
dc.relation.references | Rafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., (2010). Vol. 177(1-3), pg. 70-80. | spa |
dc.relation.references | Wu, J., Li, Q., Li, W., Li, Y., Wang, G., Li, A., Li, H. Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents. J. Clean. Prod., (2020). Vol. 251, pg. 119694. | spa |
dc.relation.references | Benkhaya, S., M' rabet, S., El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Comm., (2020). Vol. 115, pg. 107891. | spa |
dc.relation.references | Markets, R. a. Acid Dyes Global Market Report (2023). Retrieve on September 20. | spa |
dc.relation.references | Chakraborty, J. N. Chapter 13. Metal-complex dyes, In: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Elsevier: Woodhead Publishing Limited, Cambridge-UK. pg. 446-465. | spa |
dc.relation.references | Chavan, R. B. Chapter 16. Environmentally Friendly Dyes, In: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Woodhead Publishing Limited, Cambridge-UK. pg. 515-561. | spa |
dc.relation.references | Clark, M. Chapter 1. Fundamental principles of dyeing, In: Handbook of Textile Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Woodhead Publishing Limited, Cambridge-UK. pg. 3-27. | spa |
dc.relation.references | Standard Methods 5210 B Ed 23 Standard Methods for the Examination of Water and Wastewater. (2012). Washington: American Public Health Association. pg. 5-6. | spa |
dc.relation.references | Sebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., Citterio, A. Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes Pigm., (2012). Vol. 94(2), pg. 258-265. | spa |
dc.relation.references | Koh, J. S., Kim, Y. G., Kim, J. P. Dyebath reuse in dyeing of nylon microfiber non-woven fabric with 1: 2 metal complex dyes. Fibers Polym., (2001). Vol. 2, pg. 35-40. | spa |
dc.relation.references | Revista Digital CECAN E3. La industria textil, un sector importante en la economía de Colombia. Accesed: June 4 2022 Available from: https://cecane3.com/la-industria-textil-un-sector-importante-en-la-economia-de-colombia/. | spa |
dc.relation.references | Benavides, V. Diseño del plan de gestión ambiental para la industria textil Aritex de Colombia SA (2015). Trabajo de pasantia de Ingenieria Sanitaria Programa de Ingenieria Ambiental Universidad Autónoma de Occidente, Cali, Valle del Cauca. pg. 151. | spa |
dc.relation.references | Asociación Nacional de Empresarios de Colombia ANDI. Camara de Moda y textiles. Accesed: 09/10/2022. Available from: https://www.andi.com.co/Home/Camara/3 | spa |
dc.relation.references | Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., (2019). Vol. 3(2), pg. 275-290. | spa |
dc.relation.references | Bhatia, S. C., Devraj, S. Pollution Control in Textile Industry, (2017). Woodhead Publishing Ltd: New Delhi, IND. | spa |
dc.relation.references | Organización de las Naciones Unidas - ONU. El costo ambiental de estar a la moda. Accesed: 21/09/2022. Available from: https://news.un.org/es/story/2019/04/1454161. | spa |
dc.relation.references | Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon, (2019). Vol. 5(11), pg. 1-11. | spa |
dc.relation.references | Hassan, M. M., Carr, C. M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, (2018). Vol. 209, pg. 201-219. | spa |
dc.relation.references | Chakraborty, J. N. Chapter 32 - Waste-water Problem in Textile Industry, In: Fundamentals and Practices in Colouration of Textiles. (2010). Chakraborty, J. N. (Ed.), Woodhead Publishing, New Delhi, IND. pg. 381-408. | spa |
dc.relation.references | Mishra, A., Bajpai, M. Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. J. Hazard. Mater., (2005). Vol. 118(1), pg. 213-217. | spa |
dc.relation.references | Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf., (2022). Vol. 231, pg. 1 -17. | spa |
dc.relation.references | Slama, H. B., Bouket, A. C., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Golińska, P., Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci., (2021). Vol. 11(14). | spa |
dc.relation.references | Bali, U., Çatalkaya, E., Şengül, F. Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2 /Fe2+: A comparative study. J. Hazard. Mater., (2004). Vol. 114(1-3), pg. 159-166. | spa |
dc.relation.references | Daza-Pacheco, S. L. Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato (2021). Trabajo Final para el titulo de Maestria Ingenieria, Ingenierial Ambiental Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia. pg. 98. | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. Decreto 1076 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. Por medio del cual se expide el decreto único reglamentario del sector ambiente y desarrollo sostenible. (2015). Ministerio de Ambiente y Desarrollo Sostenible, Bogotá DC, COL. pg. 654. | spa |
dc.relation.references | Instituto de Hidrología Meteorología y Estudios Ambientales. Resolución 0062 de 2007. Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligosos en el pais. (2007). Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM, Bogotá DC, COL. pg. 202. | spa |
dc.relation.references | Bello-Espinoza, A., Vasquez, M., Rincón, D., López, O., Garzón, S. VIII Fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá. (2005). Secretaria Distrital de Ambiente Bogotá, Bogotá DC, COL. | spa |
dc.relation.references | Gürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S. Chapter 2. Colorants in health and environmental aspects, In: Dyes and Pigments. (2016). Springer Cham: Jaipur, IND. pg. 69-83. | spa |
dc.relation.references | Galloway, M., Mahoney, J. Ultrafiltration for seawater reverse osmosis pretreatment. Membr. Technol., (2004). Vol. 2004(1), pg. 5-8. | spa |
dc.relation.references | Jonstrup, M., Punzi, M., Mattiasson, B. Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. J. Photochem. Photobiol. A, (2011). Vol. 224(1), pg. 55-61. | spa |
dc.relation.references | Yavuz, Y., Shahbazi, R. Anodic oxidation of reactive black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep. Purif. Technol., (2012). Vol. 85, pg. 130-136. | spa |
dc.relation.references | Sena, S., Demirer, G. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res., (2003). Vol. 37(8), pg. 1868-1878. | spa |
dc.relation.references | Soares, P. A., Souza, R., Soler, J., Silva, T., Souza, S. M. G., Boaventura, R. A., Vilar, V. P. Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes. Sep. Purif. Technol., (2017). Vol. 172, pg. 450-462. | spa |
dc.relation.references | Chieng, H. I., Lim, L. B., Priyantha, N. Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: Adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin. Water Treat., (2015). Vol. 55(3), pg. 664-677. | spa |
dc.relation.references | Kennedy, K. K., Maseka, K. J., Mbulo, M. Selected adsorbents for removal of contaminants from wastewater: Towards engineering clay minerals. Open J. Appl. Sci., (2018). Vol. 8(8), pg. 355-369. | spa |
dc.relation.references | Shabir, M., Yasin, M., Hussain, M., Shafiq, I., Akhter, P., Nizami, A.-S., Jeon, B.-H., Park, Y.-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem., (2022). Vol. 112, pg. 1-19. | spa |
dc.relation.references | Vieira, W. T., de Farias, M. B., Spaolonzi, M. P., da Silva, M. C., Vieira, M. A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett., (2020). Vol. 18(4), pg. 1113-1143. | spa |
dc.relation.references | Obotey, E., Rathilal, S. Membrane technologies in wastewater treatment: A review. J. Membr., (2020). Vol. 10(5), pg. 89. | spa |
dc.relation.references | Karcher, S., Kornmüller, A., Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res., (2002). Vol. 36(19), pg. 4717-4724. | spa |
dc.relation.references | Solayman, H. M., Hossen, M., Abd Aziz, A., Yahya, N. Y., Hon, L. K., Ching, S. L., Monir, M. U., Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng., (2023). pg. 109610. | spa |
dc.relation.references | Anisuzzaman, S. M., Joseph, C. G., Pang, C. K., Affandi, N. A., Maruja, S. N., Vijayan, V. Current trends in the utilization of photolysis and photocatalysis treatment processes for the remediation of dye wastewater: A short review. J. Chem. Eng., (2022). Vol. 6(4), pg. 58. | spa |
dc.relation.references | Cuerda-Correa, E. M., Alexandre-Franco, M. F., Fernández-González, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water, (2019). Vol. 12(1), pg. 102. | spa |
dc.relation.references | Li, X., Tang, S., Yuan, D., Tang, J., Zhang, C., Li, N., Rao, Y. Improved degradation of anthraquinone dye by electrochemical activation of PDS. Ecotoxicol. Environ. Saf., (2019). Vol. 177, pg. 77-85. | spa |
dc.relation.references | Khataee, A., Dehghan, G., Ebadi, A., Zarei, M., Pourhassan, M. Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour. Technol., (2010). Vol. 101(7), pg. 2252-2258. | spa |
dc.relation.references | Chagas-Pereira, E., Durrant, L. R. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb. Technol., (2001). Vol. 29(8-9), pg. 473-477. | spa |
dc.relation.references | Srinivasan, A., Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage., (2010). Vol. 91(10), pg. 1915-1929. | spa |
dc.relation.references | Atalay, S., Ersöz, G. Novel Catalysts in Advanced Oxidation of Organic Pollutants, (2016). Springer Cham.: Springer International Publishing. New York, NY, USA. pg. 60. | spa |
dc.relation.references | Asgari, G., Shabanloo, A., Salari, M., Eslami, F. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Environ. Res., (2020). Vol. 184, pg. 109367. | spa |
dc.relation.references | Rosa, J. M., Tambourgi, E. B., Vanalle, R. M., Gamarra, F. M. C., Santana, J. C., Araújo, M. C. Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents. J. Clean. Prod., (2020). Vol. 246, pg. 119012. | spa |
dc.relation.references | Karthikeyan, K. T., Jothivenkatachalam, K. J. Removal of acid yellow-17 dye from aqueous solution using turmeric industrial waste activated carbon. J. Environ. Nanotechnol., (2014). Vol. 3(2), pg. 69-80. | spa |
dc.relation.references | Stoner, D. L. Chapter 1. Hazardous Organic Waste Amenable to Biological Treatment, In: Biotechnology for the Treatment of Hazardous Waste. (2017). Routledge, New York, USA. pg. 1-25. | spa |
dc.relation.references | Macías-Quiroga, I. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. Characterization of colombian clay and its potential use as adsorbent. Sci. World J., (2018). Vol. 2018, pg. 11. | spa |
dc.relation.references | Miralles-Cuevas, S., Oller, I., Agüera, A., Llorca, M., Pérez, J. A., Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. J. Hazard. Mater., (2017). Vol. 323, pg. 442-451. | spa |
dc.relation.references | Asghar, A., Abdul Raman, A., Wan Daud, W. M. A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod., (2015). Vol. 87, pg. 826-838. | spa |
dc.relation.references | Centi, G., Perathoner, S. Chapter 10 - Advanced oxidation processes in water treatment, In: Handbook of advanced methods and processes in oxidation catalysis. (2014). Imperial College Press: London, UK. pg. 251-290. | spa |
dc.relation.references | Ismail, G. A., Sakai, H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, (2022). Vol. 291, pg. 132906. | spa |
dc.relation.references | Babuponnusami, A., Muthukumar, K. A review on fenton and improvements to the fenton process for wastewater treatment. J. Environ. Chem. Eng., (2014). Vol. 2(1), pg. 557-572. | spa |
dc.relation.references | Ilhan, F., Ulucan-Altuntas, K., Dogan, C., Kurt, U. Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation. Desalin. Water Treat., (2019). Vol. 162, pg. 142-148. | spa |
dc.relation.references | Chowdhury, P., Elkamel, A., Ray, A. K. Photocatalytic processes for the removal of dye. Green Chem. Dyes Removal Waste Water: Res. Trend. Appl., (2015). pg. 119-137. | spa |
dc.relation.references | Maroudas, A., Pandis, P. K., Chatzopoulou, A., Davellas, L.-R., Sourkouni, G., Argirusis, C. Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrason. Sonochem., (2021). Vol. 71, pg. 105367. | spa |
dc.relation.references | Tariq, M., Muhammad, M., Khan, J., Raziq, A., Uddin, M.-K., Niaz, A., Ahmed, S., Rahim, A. Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@ MWCNTs photocatalyst. J. Mol. Liq., (2020). Vol. 312, pg. 113399. | spa |
dc.relation.references | Clarizia, L., Russo, D., Di Somma, I., Marotta, R., Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B Env., (2017). Vol. 209, pg. 358-371. | spa |
dc.relation.references | Machulek Jr, A., Quina, F. H., Gozzi, F., Silva, V. O., Friedrich, L. C., Moraes, J. Fundamental mechanistic studies of the photo-Fenton reaction for the degradation of organic pollutants. in Organic pollutants ten years after the Stockholm convention-environmental and analytical update. 2012. | spa |
dc.relation.references | Ertugay, N., Acar, F. N. J. A. J. o. C. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arab. J. Chem., (2017). Vol. 10, pg. S1158-S1163. | spa |
dc.relation.references | Ebrahiem, E. E., Al-Maghrabi, M. N., Mobarki, A. R. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem., (2017). Vol. 10, pg. S1674-S1679. | spa |
dc.relation.references | Collivignarelli, M. C., Abbà, A., Miino, M. C., Damiani, S. Treatments for color removal from wastewater: State of the art. J. Environ. Manage., (2019). Vol. 236, pg. 727-745. | spa |
dc.relation.references | Sohrabi, M. R., Khavaran, A., Shariati, S., Shariati, S. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arab. J. Chem., (2017). Vol. 10, pg. S3523-S3531. | spa |
dc.relation.references | Wang, J., Yao, J., Wang, L., Xue, Q., Hu, Z., Pan, B. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Sep. Purif. Technol. , (2020). Vol. 230, pg. 115851. | spa |
dc.relation.references | Ogata, F., Nagahashi, E., Kobayashi, Y., Nakamura, T., Kawasaki, N. Simultaneous removal of dye and chemical oxygen demand from aqueous solution by combination treatment with ozone and carbonaceous material produced from waste biomass. e-J. Surf. Sci. Nanotechnol., (2018). Vol. 16, pg. 229-235. | spa |
dc.relation.references | Kasiri, M. B., Modirshahla, N., Mansouri, H. Decolorization of organic dye solution by ozonation; Optimization with response surface methodology. Int. J. Ind. Chem., (2013). Vol. 4, pg. 1-10. | spa |
dc.relation.references | Khadhraoui, M., Trabelsi, H., Ksibi, M., Bouguerra, S., Elleuch, B. Discoloration and detoxicification of a Congo Red dye solution by means of ozone treatment for a possible water reuse. J. Hazard. Mater., (2009). Vol. 161(2-3), pg. 974-981. | spa |
dc.relation.references | Gümüş, D., Akbal, F. Photocatalytic degradation of textile dye and wastewater. Water Air Soil Pollut., (2011). Vol. 216, pg. 117-124. | spa |
dc.relation.references | Zhang, M., Dong, H., Zhao, L., Wang, D., Meng, D. A review on fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ., (2019). Vol. 670, pg. 110-121. | spa |
dc.relation.references | Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A. A., Argirusis, C. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. ChemEngineering, (2022). Vol. 6(1), pg. 8. | spa |
dc.relation.references | Matavos-Aramyan, S., Moussavi, M. Avances en Fenton y procesos de oxidación basados en fenton para el control de contaminantes de efluentes industriales - Revisión A. Int. J. Environ. Sci Nat. Res., (2017). (4), pg. Article ID 555594. | spa |
dc.relation.references | Jawad, A., Chen, Z., Yin, G. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese J. Catal., (2016). Vol. 37(6), pg. 810-825. | spa |
dc.relation.references | Meyerstein, D. Re-examining fenton and fenton-like reactions. Nat. Rev. Chem., (2021). Vol. 5(9), pg. 595-597. | spa |
dc.relation.references | Perathoner, S., Centi, G. Chapter 7 - Catalytic wastewater treatment using pillared clays, In: Pillared Clays and Related Catalysts. (2010). Gil, A., Korili, S. A., Trujillano, R., Vicente, M. A. (Eds.), Springer New York. pg. 167-200. | spa |
dc.relation.references | Xu, A., Li, X., Xiong, H., Yin, G. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, (2011). Vol. 82(8), pg. 1190-1195. | spa |
dc.relation.references | Zhou, L., Song, W., Chen, Z. Q., Yin, G. C. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ. Sci. Technol., (2013). Vol. 47(8), pg. 3833-3839. | spa |
dc.relation.references | Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater., (2010). Vol. 179(1-3), pg. 552-558. | spa |
dc.relation.references | Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater., (2010). Vol. 179(1-3), pg. 552-558. | spa |
dc.relation.references | Bruland, K., Donat, J., Hutchins, D. Interactive influences of bioactive trace metals on biological production in oceanic waters. J. Limnol. Oceanogr., (1991). Vol. 36(8), pg. 1555-1577. | spa |
dc.relation.references | Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., Yin, G. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. J. Hazard. Mater., (2015). Vol. 289, pg. 165-173. | spa |
dc.relation.references | Macías-Quiroga, I. F., Pérez-Flórez, A., Arcila, J. S., Giraldo-Goméz, G. I., Sanabria-González, N. R. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catal. Letters, (2021). pg. 1-12. | spa |
dc.relation.references | Luo, M., Lv, L., Deng, G., Yao, W., Ruan, Y., Li, X., Xu, A. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Appl. Catal. A Gen., (2014). Vol. 469, pg. 198-205. | spa |
dc.relation.references | Xu, A., Li, X., Ye, S., Yin, G., Zeng, Q. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Appl. Catal. B Env., (2011b). Vol. 102(1), pg. 37-43. | spa |
dc.relation.references | Macías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Br., (2020). Vol. 30, pg. 105463. | spa |
dc.relation.references | Lapertot, M., Pulgarín, C., Fernández-Ibáñez, P., Maldonado, M., Pérez-Estrada, L., Oller, I., Gernjak, W., Malato, S. Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Res., (2006). Vol. 40(5), pg. 1086-1094. | spa |
dc.relation.references | Li, T., Liu, J., Bai, R., Ohandja, D., Wong, F. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Res., (2007). Vol. 41(15), pg. 3465-3473. | spa |
dc.relation.references | Dennison, S., O’Brien, P., Gopalkrishnan, S., Stark, B. Enhancement of aerobic degradation of benzoate and 2-chlorobenzoate by adapted activated sludge. Microbiol. Res., (2010). Vol. 165(8), pg. 687-694. | spa |
dc.relation.references | Wang, L., Wu, Z., Shammas, N. Activated sludge processes. , In: Biological Treatment Processes. (2009). Lawrence, K., Pereira, Y. (Eds.), Humana Totowa, NJ: Springer. pg. 207-281. | spa |
dc.relation.references | Van den Broeck, R., Van Impe, J., Smets, I. Assessment of activated sludge stability in lab-scale experiments. J. Biotechnol., (2009). Vol. 141(3-4), pg. 147-154. | spa |
dc.relation.references | Bailey, J., Ollis, D. Biochemical engineering fundamentals, (2018). McGraw-Hill: New York, USA. pg. 753. | spa |
dc.relation.references | De Lucas, A., Rodriguez, L., Villaseñor, J., Fernández, F. Fermentation of agro-food wastewaters by activated sludge. Water res., (2007). Vol. 41(8), pg. 1635-1644. | spa |
dc.relation.references | Sanchís, S. Eliminación de compuestos emergentes mediante sistemas biológicos y su acoplamiento con procesos de oxidación avanzada (2012). Tesis Doctoral Universidad Autónoma de Madrid, Madrid, ESP. pg. 349. | spa |
dc.relation.references | Chan, Y. J., Chong, M. F., Law, C. L., Hassell, D. G. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J, (2009). Vol. 155(1-2), pg. 1-18. | spa |
dc.relation.references | Papadimitriou, C., Petridis, D., Zouboulis, A., Samaras, P., Yiangou, M., Sakellaropoulos, G. J. Protozoans as indicators of sequential batch processes for phenol treatment; an autoecological approach. Ecotoxicol. Environ. Saf., (2013). Vol. 98, pg. 210-218. | spa |
dc.relation.references | Dubber, D., Gray, N. Enumeration of protozoan ciliates in activated sludge: Determination of replicate number using probability. Water Res., (2009). Vol. 43(14), pg. 3443-3452. | spa |
dc.relation.references | Nicolau, A., Dias, N., Mota, M., Lima, N. J. R. i. m. Trends in the use of protozoa in the assessment of wastewater treatment. Res. Microbiol., (2001). Vol. 152(7), pg. 621-630. | spa |
dc.relation.references | Hashimoto, K., Matsuda, M., Inoue, D., Ike, M. Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. J. Biosci. Bioeng., (2014). Vol. 118(1), pg. 64-71. | spa |
dc.relation.references | Senthilnathan, P., Ganczarczyk, J. Adaptation and Deadaptation Kinetics of Activated Sludge, In: Proceedings of the 43rd Industrial Waste Conference May 1988. (2018). Press, C. (Ed.), Indiana,USA: Purdue University. pg. 301-307. | spa |
dc.relation.references | Rittmann, B., McCarty, P. Environmental biotechnology: principles and applications, (2001). Interamericana, M.-H. (Ed.), McGraw-Hill Interamericana Madrid, ESP. pg. 760. | spa |
dc.relation.references | Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., Pandit, A. B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag., (2016). Vol. 182, pg. 351-366. | spa |
dc.relation.references | Olukanni, O. D., Osuntoki, A. A., Kalyani, D. C., Gbenle, G. O., Govindwar, S. P. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater., (2010). Vol. 184(1-3), pg. 290-298. | spa |
dc.relation.references | Holkar, C. R., Pandit, A. B., Pinjari, D. V. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp. F NCIM 5545. Bioresour. Technol., (2014). Vol. 173, pg. 342-351. | spa |
dc.relation.references | Praveen, G. N., Bhat, K. Decolorization of azo dye Red 3BN by bacteria. Int. J. Biol. Sci., (2012). Vol. 1(5), pg. 46-52. | spa |
dc.relation.references | Khouni, I., Marrot, B., Amar, R. B. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep. Purif. Technol. , (2012). Vol. 87, pg. 110-119. | spa |
dc.relation.references | Chen, S. H., Ting, A. S. Y. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int. Biodeterior. Biodegrad.. (2015). Vol. 103, pg. 1-7. | spa |
dc.relation.references | Chen, S. H., Ting, A. S. Y. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J. Environ. Manage., (2015). Vol. 150, pg. 274-280. | spa |
dc.relation.references | Kousha, M., Daneshvar, E., Sohrabi, M. S., Jokar, M., Bhatnagar, A. Adsorption of Acid Orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. J. Chem. Eng., (2012). Vol. 192, pg. 67-76. | spa |
dc.relation.references | Meng, X., Liu, G., Zhou, J., Fu, Q. S. Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions. Bioresour. Technol., (2014). Vol. 151, pg. 63-68. | spa |
dc.relation.references | Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., Kobayashi, D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci., (2011). Vol. 66(14), pg. 3172-3179. | spa |
dc.relation.references | Coelho, A., Sans, C., Agüera, A., Gómez, M., Esplugas, S., Dezotti, M. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ., (2009). Vol. 407(11), pg. 3572-3578. | spa |
dc.relation.references | Zahn, R., Wellens, H. Ein einfaches Verfahren zur Prüfung der biologischen Abbaubarkeit von Produkten und Abwasserinhaltsstoffen. Chem. Ztg., (1974). Vol. 98, pg. 228-232. | spa |
dc.relation.references | Ye, F., Shen, D. Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere, (2004). Vol. 54(10), pg. 1573-1580. | spa |
dc.relation.references | Xu, S., Zhang, Y., Sims, A., Bernards, M., Hu, Z. Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation. Water res., (2013). Vol. 47(7), pg. 2307-2314. | spa |
dc.relation.references | Eren, Z. Ultrasound as a basic and auxiliary process for dye remediation: A review. Environ. Manage., (2012). Vol. 104, pg. 127-141. | spa |
dc.relation.references | Somich, C. J., Muldoon, M. T., Kearney, P. C. On-site treatment of pesticide waste and rinsate using ozone and biologically active soil. Environ. Sci. Technol., (1990). Vol. 24(5), pg. 745-749. | spa |
dc.relation.references | Adams, C. D., Scanlan, P. A., Secrist, N. D. Oxidation and biodegradability enhancement of 1, 4-dioxane using hydrogen peroxide and ozone. Environ. Sci. Technol., (1994). Vol. 28(11), pg. 1812-1818. | spa |
dc.relation.references | Sierka, R. A., Bryant, C. W. Enhancement of biotreatment effluent quality by illuminated titanium dioxide and membrane pretreatment of the Kraft extraction waste stream and by increased chlorine dioxide substitution. Water Sci. Technol., (1994). Vol. 29(5-6), pg. 209-218. | spa |
dc.relation.references | Hapeman, C. J., Shelton, D. R., Peyton, G. R., Bell, O. J., LeFaivre, M. H. Oxidation and microbial mineralization to remediate pesticide contaminated waters—overcoming the technical challenges. in First International Conference on Advanced Oxidation Technologies for Water and Air Remediation, London, Ontario (June 25–30). 1994. | spa |
dc.relation.references | Manilal, V. B., Haridas, A., Alexander, R., Surender, G. D. Photocatalytic treatment of toxic organics in wastewater: Toxicity of photodegradation products. Water Res., (1992). Vol. 26(8), pg. 1035-1038. | spa |
dc.relation.references | Casierra-Martínez, H., Casalins-Blanco, J., Vargas-Ramírez, X., Caselles-Osorio, A. Desinfección de agua residual doméstica mediante un sistema de tratamiento acoplado con fines de reúso. Tecno. Cienc. del Agua, (2016). Vol. 7(4), pg. 97-111. | spa |
dc.relation.references | Isaacs Páez, E. D. Fotodegradación acoplada a un proceso biológico para el tratamiento del efluente de una tintorería (2009). Trabajo de grado de Maestria en Ingenieria Departamento de Ingenieria Civil, Facultad de Ingenieria, Universidad de los Andes, Bogotá. pg. 62. | spa |
dc.relation.references | Nidheesh, P., Couras, C., Karim, A., Nadais, H. J. C. E. C. A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. Chem. Eng. Commun., (2022). Vol. 209(3), pg. 390-432. | spa |
dc.relation.references | El-Gohary, F., Tawfik, A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, (2009). Vol. 249(3), pg. 1159-1164. | spa |
dc.relation.references | Lu, X., Yang, B., Chen, J., Sun, R. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. J. Hazard. Mater., (2009). Vol. 161(1), pg. 241-245. | spa |
dc.relation.references | Serra, A., Brillas, E., Domènech, X., Peral, J. Treatment of biorecalcitrant α-methylphenylglycine aqueous solutions with a solar photo-Fenton-aerobic biological coupling: Biodegradability and environmental impact assessment. Chem. Eng. J., (2011). Vol. 172(2-3), pg. 654-664. | spa |
dc.relation.references | Nadarajah, N., Van Hamme, J., Pannu, J., Singh, A., Ward, O. Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton's reagent, microbial treatment and surfactants. Appl. Microbiol. Biotechnol., (2002). Vol. 59(4), pg. 540-544. | spa |
dc.relation.references | Park, S., Yoon, T., Bae, J., Seo, H., Park, H. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process. Biochem., (2001). Vol. 36(6), pg. 579-589. | spa |
dc.relation.references | Torres, R. A., Sarria, V., Torres, W., Peringer, P., Pulgarin, C. Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: Toward an electrochemical–biological coupling. Water Res., (2003). Vol. 37(13), pg. 3118-3124. | spa |
dc.relation.references | Sarria, V., Parra, S., Invernizzi, M., Péringer, P., Pulgarin, C. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Sci. Technol., (2001). Vol. 44(5), pg. 93-101. | spa |
dc.relation.references | Akmehmet, I., Sarac, C., Kıvılcımdan, C., Tarlan, E. Application of ozonation and biotreatment for forest industry wastewater. Ozone Sci. Eng., (2006). Vol. 28(6), pg. 431-436. | spa |
dc.relation.references | Vidal, J., Huiliñir, C., Santander, R., Silva-Agredo, J., Torres-Palma, R., Salazar, R. Effective removal of the antibiotic Nafcillin from water by combining the photoelectro-Fenton process and Anaerobic Biological Digestion. Sci. Total Environ., (2018). Vol. 624, pg. 1095-1105. | spa |
dc.relation.references | Castro, F., Bassin, J., Dezotti, M. Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: Evaluating the performance, toxicity, and oxidation by-products. Environ. Sci. Pollut. Res., (2017). Vol. 24(7), pg. 6307-6316. | spa |
dc.relation.references | Roshini, P., Gandhimathi, R., Ramesh, S., Nidheesh, P. Combined electro-Fenton and biological processes for the treatment of industrial textile effluent: Mineralization and toxicity analysis. J. Hazard. Toxic Radioact. Waste., (2017). Vol. 21(4), pg. 04017016. | spa |
dc.relation.references | Wang, X., Song, Y., Mai, J. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. J. Hazard. Mater., (2008). Vol. 160(2-3), pg. 344-348. | spa |
dc.relation.references | OECD Guideline for testing of chemicals 301. Ready Biodegradability, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-62. | spa |
dc.relation.references | Schefer, W. Prüfung der biologischen Abbaubarkeit organisch-chemischer Abwasser-Inhaltsstoffe. Z. Wasser-Abwasser Forsch, (1980). Vol. 13, pg. 205-209. | spa |
dc.relation.references | OECD Guideline for Testing of Chemicals 302 B. Zahn-Wellens/EMPA Test, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-8. | spa |
dc.relation.references | Sirtori, C., Zapata, A., Oller, I., Gernjak, W., Agüera, A., Malato, S. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res., (2009). Vol. 43(3), pg. 661-668. | spa |
dc.relation.references | Płuciennik-Koropczuk, E., Myszograj, S. Zahn-Wellens test in industrial wastewater biodegradability assessment. Environ. Eng., (2018). Vol. 28(1), pg. 77-86. | spa |
dc.relation.references | Díaz-Díaz, M. A., Rivas-Trasancos, L., Martínez-González, J., Teuteló-Núñez, R., Salazar-Alemán, D. Aplicación del método Zahn-Wellens para determinar biodegradabilidad de un producto antiderrames. Rev. Cub. Quím, (2020). Vol. 32(2), pg. 262-272. | spa |
dc.relation.references | Lapertot, M., Ebrahimi, S., Oller, I., Maldonado, M., Gernjak, W., Malato, S., Pulgarín, C. Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes. Ecotoxicol. Environ. Saf., (2008). Vol. 69(3), pg. 546-555. | spa |
dc.relation.references | Oller, I., Gernjak, W., Maldonado, M., Pérez-Estrada, L., Sánchez-Pérez, J., Malato, S. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater., (2006). Vol. 138(3), pg. 507-517. | spa |
dc.relation.references | García-Ripoll, A., Amat, A., Arques, A., Vicente, R., López, M., Oller, I., Maldonado, M., Gernjak, W. Increased biodegradability of UltracidTM in aqueous solutions with solar TiO2 photocatalysis. Chemosphere, (2007). Vol. 68(2), pg. 293-300. | spa |
dc.relation.references | Zapata, A., Velegraki, T., Sánchez-Pérez, J., Mantzavinos, D., Maldonado, M., Malato, S. Solar photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Appl. Catal. B Env., (2009). Vol. 88(3-4), pg. 448-454. | spa |
dc.relation.references | Amat, A., Arques, A., García-Ripoll, A., Santos-Juanes, L., Vicente, R., Oller, I., Maldonado, M., Malato, S. A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Res., (2009). Vol. 43(3), pg. 784-792. | spa |
dc.relation.references | Zapata, A., Oller, I., Gallay, R., Pulgarin, C., Maldonado, M., Malato, S., Gernjak, W. Comparison of photo-Fenton treatment and coupled photo-Fenton and biological treatment for detoxification of pharmaceutical industry contaminants. Adv. Oxid. Technol., (2008). Vol. 11(2), pg. 261-269. | spa |
dc.relation.references | Barba-Ho, L. E., Becerra, D. Biodegradabilidad y toxicidad de herbicidas utilizados en el cultivo de caña de azúcar. Ing. Recur. Nat. Amb, (2011). (10), pg. 11-19. | spa |
dc.relation.references | Rodriguez, M., Sarria, V., Esplugas, S., Pulgarin, C. Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: Biodegradability of the photo-treated solution. Photochem. Photobiol A: Chem. , (2002). Vol. 151(1-3), pg. 129-135. | spa |
dc.relation.references | Steger-Hartmann, T., Kümmerer, K., Hartmann, A. Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicol. Environ. Saf. , (1997). Vol. 36(2), pg. 174-179. | spa |
dc.relation.references | Lyu, J., Park, J., Pandey, L. K., Choi, S., Lee, H., De Saeger, J., Depuydt, S., Han, T. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol. Environ. Saf., (2018). Vol. 149, pg. 225-232. | spa |
dc.relation.references | Nassour, C., Nabhani-Gebara, S., Barton, S. J., Barker, J. Aquatic ecotoxicology of anticancer drugs: A systematic review. Sci. Total Environ., (2021). Vol. 800, pg. 11. | spa |
dc.relation.references | Bagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., Morales-Ruano, S. Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soils Sediments, (2011). Vol. 11, pg. 281-289. | spa |
dc.relation.references | Kapanen, A., Itävaara, M. Ecotoxicity tests for compost applications. Ecotoxicol. Environ. Saf., (2001). Vol. 49(1), pg. 1-16. | spa |
dc.relation.references | U.S., E. P. A. Ecological effects test guidelines. OPPTS 850.4200, Seed Germination/Root Elongation Toxicity Test. (1996). (712 C), pg. 96-154. | spa |
dc.relation.references | OECD Guideline for the testing of chemicalsTerrestrial Plant Test: 208 Seedling Emergence Seedling Growth Test, In: Organization for Economic Cooperation and Development. (2006). Paris, FRA. | spa |
dc.relation.references | Wang, W. Literature review on higher plants for toxicity testing. Water Air Soil Pollut., (1991). Vol. 59, pg. 381-400. | spa |
dc.relation.references | Rede, D., Santos, L., Ramos, S., Oliva-Teles, F., Antão, C., Sousa, S. R., Delerue-Matos, C. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Sci. Total Environ., (2019). Vol. 673, pg. 102-109. | spa |
dc.relation.references | Aragão, F. B., Duarte, I. D., Fantinato, D. E., Galter, I. N., Silveira, G. L., Dos Reis, G., Andrade-Vieira, L., Matsumoto, S. T. Toxicogenetic of tebuconazole based fungicide through Lactuca sativa bioassays. Ecotoxicol. Environ. Saf., (2021). Vol. 213, pg. 6. | spa |
dc.relation.references | Di Salvatore, M., Carafa, A., Carratu, G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, (2008). Vol. 73(9), pg. 1461-1464. | spa |
dc.relation.references | Lytle, J. S., Lytle, T. F. Use of plants for toxicity assessment of estuarine ecosystems. Environ. Toxicol. Chem. , (2001). Vol. 20(1), pg. 68-83. | spa |
dc.relation.references | Bowers, N., Pratt, J. R., Beeson, D., Lewis, M. Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environ. Toxicol. Chem. , (1997). Vol. 16(2), pg. 207-213. | spa |
dc.relation.references | Cheung, Y., Wong, M. H., Tam, N. Root and shoot elongation as an assessment of heavy metal toxicity and ‘Zn Equivalent Value’of edible crops. Hydrobiologia, (1989). Vol. 188, pg. 377-383. | spa |
dc.relation.references | Priac, A., Badot, P. M., Crini, G. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. C. R. Biol., (2017). Vol. 340(3), pg. 188-194. | spa |
dc.relation.references | Chan-Keb, C. A., Agraz-Hernández, C. M., Perez-Balan, R. A., Gómez-Solano, M. I., Maldonado-Montiel, T., Ake-Canche, B., Gutiérrez-Alcántara, E. Acute toxicity of water and aqueous extract of soils from Champotón river in Lactuca sativa L. Toxicol. Rep, (2018). Vol. 5, pg. 593-597. | spa |
dc.relation.references | Castillo, G. C., Vila, I. C., Neild, E. Ecotoxicity assessment of metals and wastewater using multitrophic assays. Environ. Toxicol. , (2000). Vol. 15(5), pg. 370-375. | spa |
dc.relation.references | Diaz‐Baez, M. C., Perez, J. B. Intralaboratory experience with a battery of bioassays: Colombia experience. Environ. Toxicol., (2000). Vol. 15(4), pg. 297-303. | spa |
dc.relation.references | Torres, N., Souza, B., Ferreira, L., Lima, Á., Dos Santos, G., Cavalcanti, E. Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment. Chemosphere, (2019). Vol. 236, pg. 124309. | spa |
dc.relation.references | OECD Guideline for Testing of Chemicals 302 B. Zahn-Wellens/EMPA Test, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-8. | spa |
dc.relation.references | Quintero-Arias, J. D., Gómez García, M., Dobrosz-Gómez, I. Sci. World J., Submitted (2023). | spa |
dc.relation.references | APHA Standard Methods for Examination of Water and Wastewater. 23rd edition, In: American Public Health Association, American Water Works Association, Water Environment Federation. (2017). Washington DC, USA. | spa |
dc.relation.references | Reyna Ávila, B. El intercambio iónico, su descripción y comportamiento químico, In: Proyecto de Investigación para obtener el Título de Ingeniero Químico Industrial: Escuela Superior de Ingeniería Química e Industrias Extracticvas. (2014). Instituto Politécnico Nacional México, D. F. | spa |
dc.relation.references | Lewatit® catálogo resina MonoPlus S 108 H. Tratamiento de intercambio catiónico. (2012). pg. 4. | spa |
dc.relation.references | Lewatit® catálogo resina MonoPlus M 800 OH. Tratamiento de intercambio aniónico. (2012). pg. 4. | spa |
dc.relation.references | Macías-Quiroga, I. F. Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 (2021). Tesis de Doctorado en Ingeniería - Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, COL. pg. 288. | spa |
dc.relation.references | Marín-González, N. Oxidación catalítica en medio heterogéneo de un colorante azoico empleando el sistema peróxido activado con bicarbonato (2022). Tesis de Maestría en Ingeniería - Ingeniería Química Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, COL. | spa |
dc.relation.references | Macías-Quiroga, I. F., Pérez-Flórez, A., Arcila, J. S., Giraldo-Goméz, G. I., Sanabria-González, N. R. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catal. Letters, (2021). pg. 1-12. | spa |
dc.relation.references | Giraldo Loaiza, C. Aplicación de sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textil, In: Tesis de Maestría en Ingeniería – Ingeniería Química. (2023). Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, COL | spa |
dc.relation.references | Zahn, R., Wellens, H. Ein einfaches Verfahren zur Prüfung der biologischen Abbaubarkeit von Produkten und Abwasserinhaltsstoffen. Chem. Ztg., (1974). Vol. 98, pg. 228-232. | spa |
dc.relation.references | Rittmann, B., McCarty, P. Environmental biotechnology: principles and applications, (2001). Interamericana, M.-H. (Ed.), McGraw-Hill Interamericana Madrid, ESP. pg. 760. | spa |
dc.relation.references | Senthilnathan, P., Ganczarczyk, J. Adaptation and Deadaptation Kinetics of Activated Sludge, In: Proceedings of the 43rd Industrial Waste Conference May 1988. (2018). Press, C. (Ed.), Indiana,USA: Purdue University. pg. 301-307. | spa |
dc.relation.references | Standard Methods 2540 F Ed 23 Standard Methods for the examination of Water and Wastewater. (2012). Washington: American Public Health Association. | spa |
dc.relation.references | Sobrero, M. C., Ronco, A. Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L, In: Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo La experiencia en México. (2008). Secretaría de Medio Ambiente y Recursos Naturales, MÉX. pg. 55-68. | spa |
dc.relation.references | Bagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., Morales-Ruano, S. Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soils Sediments, (2011). Vol. 11, pg. 281-289. | spa |
dc.relation.references | Di Salvatore, M., Carafa, A., Carratu, G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, (2008). Vol. 73(9), pg. 1461-1464. | spa |
dc.relation.references | Tiquia, S. M. Evaluating phytotoxicity of pig manure from the pig on litter system. in Proceedings of the International Composting Symposium, CBA Press Inc. Truro, NS. 2000. | spa |
dc.relation.references | OECD Guideline for Testing of Chemicals 302 B. Zahn-Wellens/EMPA Test, In: Organization for Economic Cooperation and Development. (1992). Paris, FRA. pg. 1-8. | spa |
dc.relation.references | Bagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., Morales-Ruano, S. Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soil. Sediment. , (2011). Vol. 11, pg. 281-289. | spa |
dc.relation.references | Di Salvatore, M., Carafa, A., Carratu, G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, (2008). Vol. 73(9), pg. 1461-1464. | spa |
dc.relation.references | APHA Standard Methods for Examination of Water and Wastewater. 23rd edition, In: American Public Health Association, American Water Works Association, Water Environment Federation. (2017). Washington DC, USA. | spa |
dc.relation.references | Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., (2019). Vol. 3(2), pg. 275-290. | spa |
dc.relation.references | Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon, (2019). Vol. 5(11), pg. 1-11. | spa |
dc.relation.references | Kehinde, F., Aziz, H. A. Textile waste water and the advanced oxidative treatment process, an overview. Int. J. Innov. Res. Technol. Sci. Eng.Techn., (2014). Vol. 3(8), pg. 15310-15317. | spa |
dc.relation.references | Ghaly, A. E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V. V. Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process. Technol., (2014). Vol. 5(1), pg. 1-19. | spa |
dc.relation.references | Yaseen, D. A., Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol, (2019). Vol. 16, pg. 1193-1226. | spa |
dc.relation.references | Hussein, F. H. Chemical Properties of Treated Textile Dyeing Wastewater. Asian J. Chem., (2013). Vol. 25(16), pg. 9393-9400. | spa |
dc.relation.references | Chavan, R. B. Chapter 16. Environmentally Friendly Dyes, In: Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. (2011). Woodhead Publishing Limited, Cambridge-UK. pg. 515-561. | spa |
dc.relation.references | Khalfaoui, N., Boutoumi, H., Khalaf, H., Oturan, N., A Oturan, M. Electrochemical oxidation of the xanthene dye Rhodamine 6G by electrochemical advanced oxidation using Pt and BDD anodes. Curr. Org. Chem., (2012). Vol. 16(18), pg. 2083-2090. | spa |
dc.relation.references | Hassaan, M. A., El Nemr, A. Advanced oxidation processes for textile wastewater treatment. Intern. J. Photochem. Photobiol., (2017). Vol. 2(3), pg. 85-93. | spa |
dc.relation.references | Bandara, J., Nadtochenko, V., Kiwi, J., Pulgarin, C. Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange II) via advanced oxidation technologies. Water Sci. Technol., (1997). Vol. 35(4), pg. 87-93. | spa |
dc.relation.references | Brillas, E., Garrido, J. A., Rodríguez, R. M., Arias, C., Cabot, P. L., Centellas, F. Wastewaters by Electrochemical Advanced Oxidation Processes Using a BDD Anode and Electrogenerated H2O2 with Fe (II) and UVA Light as Catalysts. Port. Electroch. Acta, (2008). Vol. 26(1), pg. 15. | spa |
dc.relation.references | Coelho, A., Sans, C., Agüera, A., Gómez, M., Esplugas, S., Dezotti, M. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ., (2009). Vol. 407(11), pg. 3572-3578. | spa |
dc.relation.references | Giraldo Loaiza, C. Aplicación de sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textil, In: Tesis de Maestría en Ingeniería – Ingeniería Química. (2024). Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, COL. | spa |
dc.relation.references | Dirany, A., Sirés, I., Oturan, N., Oturan, M. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, (2010). Vol. 81(5), pg. 594-602. | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. (2015). Ministerio de Ambiente y Desarrollo Sostenible, Bogotá DC, COL. pg. 62. | spa |
dc.relation.references | Welter, J., Soares, E., Rotta, E., Seibert, D. Bioassays and Zahn-Wellens test assessment on landfill leachate treated by photo-Fenton process. J. Environ. Chem. Eng., (2018). Vol. 6(1), pg. 1390-1395. | spa |
dc.relation.references | Zucconi, F. Evaluating toxicity of immature compost. Biocycle, (1981). pg. 54-57. | spa |
dc.relation.references | Ferreira, A., Melkonyan, L., Carapinha, S., Ribeiro, B., Figueiredo, D., Avetisova, G., Gouveia, L. Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environ. Adv., (2021). Vol. 4, pg. 100062. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines | spa |
dc.subject.proposal | Industria textil | spa |
dc.subject.proposal | Oxidación avanzada | spa |
dc.subject.proposal | Tratamiento biológico | spa |
dc.subject.proposal | Zahn-Wellens | spa |
dc.subject.proposal | Lactuca sativa | spa |
dc.subject.proposal | Remoción de materia orgánica | spa |
dc.subject.proposal | Textile industry | eng |
dc.subject.proposal | Advanced oxidation | eng |
dc.subject.proposal | Biological treatment | eng |
dc.subject.proposal | Lactuca sativa | eng |
dc.subject.proposal | Organic matter removal | eng |
dc.title | Implementación de un proceso biológico como postratamiento a la oxidación de un agua residual textil con el sistema Co/Al–PILC–BAP | spa |
dc.title.translated | Implementation of a biological process as post-treatment for the oxidation of a textile wastewater using the system Co/Al–PILC–BAP | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Convocatoria 852-2019 “Convocatoria de Proyectos Conectando Conocimiento 2019” | spa |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación – Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1088273892.2024.pdf
- Tamaño:
- 2.32 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: