Influencia de la incorporación de nanopartículas de Au en procesos de corrosión en recubrimientos de TiO2 obtenidos por OEP

dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.authorGarcía Gallego, Yury Paola
dc.date.accessioned2023-10-03T02:46:21Z
dc.date.available2023-10-03T02:46:21Z
dc.date.issued2022
dc.descriptiongraficas, ilustraciones, tablasspa
dc.description.abstractEn el presente trabajo se describe la influencia de la incorporación de nanopartículas de oro (AuNPs) en procesos de corrosión a recubrimientos de titanio, obtenidos por oxidación electrolítica por plasma (OEP), en el cual, se planteó variar la concentración de nanopartículas de oro (3,75ppm Au; 7,5ppm Au; 15 ppm Au) en la solución. Las AuNPs fueron sintetizada mediante ablación láser en fase liquida. Los recubrimientos se realizaron sobre placas de titanio de 20x20x1 mm, en una solución acuosa acidificada con H2SO4 0;1M; que contenía la variación de la concentración de las AuNPs. La OEP se realizó en una fuente conmutada de tensión máxima de salida de 356 V, con una frecuencia de 2000 Hz, un ciclo útil del 10 % y una duración de 7 minutos. La caracterización de las AuNPs se llevó a cabo mediante varias técnicas incluyendo absorción atómica, UV-Vis y XRD. A partir de estas técnicas se encontró un tamaño de cristalito de aproximadamente de 8.9 nm y un tamaño aproximado de nanopartícula de 40-50nm. Los cambios a nivel morfológicos de los recubrimientos se determinaron mediante AFM y SEM que no hay diferencias significativas entre las muestras, los cambios a nivel composicional se efectuaron mediante XRD y XPS, evidenciando la presencia de las AuNPs no solo en la superficie del recubrimiento sino en el interior de esta. Para evaluar la resistencia a la corrosión de los recubrimientos, se utilizó espectroscopia de impedancia electroquímica y resistencia a la polarización en fluido biológico simulado. Se encontró que todas las muestras presentaban un mecanismo de corrosión mixto, que involucra tanto la corrosión de la superficie como la corrosión en el interior del recubrimiento. Sin embargo, se observó una disminución en la velocidad de corrosión de las muestras con AuNPs en comparación con la muestra sin AuNPs. Esto sugiere que la presencia de las AuNPs mejora la resistencia a la corrosión del recubrimiento. En general, este estudio proporciona una base para el desarrollo de nuevos materiales que incorporen nanopartículas de oro para mejorar la resistencia a la corrosión del titanio y, por lo tanto, su posible uso en aplicaciones biomédicas. (Texto tomado de la fuente)spa
dc.description.abstractThe present work describes the influence of the incorporation of gold nanoparticles (AuNPs) in corrosion processes of titanium coatings, obtained by electrolytic oxidation by plasma (EPO), in which, it was proposed to vary the concentration of gold nanoparticles (3.75ppm Au; 7.5ppm Au; 15 ppm Au) in the solution. The AuNPs were synthesized by laser ablation in liquid phase. The coatings were performed on 20x20x1 mm titanium plates, in an aqueous solution acidified with 0;1M H2SO4; containing the variation of AuNPs concentration. The EPO was performed on a switched-mode source with a maximum output voltage of 356 V, with a frequency of 2000 Hz, a useful cycle of 10 % and a duration of 7 min. Characterization of the AuNPs was carried out by various techniques including atomic absorption, UV-Vis and XRD. From these techniques a crystallite size of approximately 8.9 nm and an approximate nanoparticle size of 40-50nm was found. The changes at the morphological level of the coatings were determined by AFM and SEM that there are no significant differences between the samples, the changes at the compositional level were performed by XRD and XPS, evidencing the presence of AuNPs not only on the surface of the coating but also in the interior of it. To evaluate the corrosion resistance of the coatings, electrochemical impedance spectroscopy and polarization resistance in simulated biological fluid were used. All samples were found to exhibit a mixed corrosion mechanism, involving both surface corrosion and corrosion inside the coating. However, a decrease in corrosion rate was observed for the samples with AuNPs compared to the sample without AuNPs. This suggests that the presence of AuNPs improves the corrosion resistance of the coating. Overall, this study provides a basis for the development of new materials incorporating gold nanoparticles to improve the corrosion resistance of titanium and thus its potential use in biomedical applications.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentxi, 47 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84745
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.references[1] F. Martinez-Gutierrez et al., “Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles”, Nanomedicine Nanotechnology, Biol. Med., vol. 6, n´um. 5, pp. 681–688, 2010, doi: 10.1016/j.nano.2010.02.001.spa
dc.relation.references[2] C. N. Elias, J. H. C. Lima, R. Valiev, y M. A. Meyers, “Biomedical applications of titanium and its alloys Biological Materials Science 46-49”, Biol. Mater. Sci., n´um. March, pp. 1–4, 2008.spa
dc.relation.references[3] M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, J. Mech. Behav. Biomed. Mater., vol. 1, n´um. 1, pp. 30–42, 2008, doi: 10.1016/j. jmbbm.2007.07.001 .spa
dc.relation.references[4] Y. L. Zhou y D. M. Luo, “Corrosion behavior of Ti-Mo alloys cold rolled and heat treated”, J. Alloys Compd., vol. 509, n´um. 21, pp. 6267–6272, 2011, doi: 10.1016/j.jallcom.2011.03.045.spa
dc.relation.references[5] A. L. Yerokhin, X. Nie, A. Leyland, y A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy”, Surf. Coatings Technol., vol. 130, n´um. 2–3, pp. 195–206, 2000, doi: 10.1016/S0257-8972(00)00719-2.spa
dc.relation.references[6] O. J. Choudhry, L. D. Christiano, O. Arnaout, J. G. Adel, y J. K. Liu, “Reconstruction of pterional defects after frontotemporal and orbitozygomatic craniotomy using Medpor Titan implant: Cosmetic results in 98 patients”, Clin. Neurol. Neurosurg., vol. 115, n´um. 9, pp. 1716–1720, 2013, doi: 10.1016/j.clineuro.2013.03.014.spa
dc.relation.references[7] K. R. Shin, Y. G. Ko, y D. H. Shin, “Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation”, J. Alloys Compd., vol. 509, n´um. SUPPL. 1, pp. S478–S481, 2011, doi: 10.1016/j.jallcom.2011.02.056.spa
dc.relation.references[8] M. V. Kaneva, L. B. Gulina, y V. P. Tolstoy, “Pt nanoparticles synthesized by successive ionic layers deposition method and their electrocatalytic properties in hydrogen evolution reaction during water splitting in the acidic medium”, J. Alloys Compd., vol. 901, p. 163640, 2022, doi: 10.1016/j.jallcom.2022.163640.spa
dc.relation.references[9] V. Stani´c, T. H. Etsell, A. C. Pierre, y R. J. Mikula, “Sol-gel processing of ZnS”, Mater. Lett., vol. 31, n´um. 1–2, pp. 35–38, 1997, doi: 10.1016/S0167-577X(96)00237-6.spa
dc.relation.references[10] T. Liu, Y. qin Wang, X. gang Liu, H. tao Fu, X. zhong An, y J. kun Yu, “Enhanced n-butanol sensitivity and selectivity of Sb-doped ZnO–Co3O4 nanoparticles synthesized by solvothermal method”, Ceram. Int., vol. 47, n´um. 24, pp. 34979–34986, 2021, doi:10.1016/j.ceramint.2021.09.039.spa
dc.relation.references[11] M. Echeverry-Rendon, V. Duque, D. Quintero, M. C. Harmsen, y F. Echeverria, “Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implants”, Surf. Coatings Technol., vol. 354, n´um. August, pp. 28–37, 2018, doi: 10.1016/j.surfcoat.2018.09.007.spa
dc.relation.references12] Z. Yan y D. B. Chrisey, “Pulsed laser ablation in liquid for micro-/nanostructure generation”, J. Photochem. Photobiol. C Photochem. Rev., vol. 13, n´um. 3, pp. 204–223, 2012, doi: 10.1016/j.jphotochemrev.2012.04.004.spa
dc.relation.references[13] A. Nyabadza, M. V´azquez, B. Fitzpatrick, y D. Brabazon, “Effect of liquid medium and laser processing parameters on the fabrication of carbon nanoparticles via pulsed laser ablation in liquid towards paper electronics”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 636, 2022, doi: 10.1016/j.colsurfa.2021.128151.spa
dc.relation.references[14] Y. Yang, M. Shi, Q. F. Zhou, Y. S. Li, y Z. W. Fu, “Platinum nanoparticle-graphene hybrids synthesized by liquid phase pulsed laser ablation as cathode catalysts for Li-air batteries”, Electrochem. commun., vol. 20, n´um. 1, pp. 11–14, 2012, doi: 10.1016/j.elecom.2012.03.040.spa
dc.relation.references[15] S. C. Singh y R. Gopal, “Drop shaped zinc oxide quantum dots and their self-assembly into dendritic nanostructures: Liquid assisted pulsed laser ablation and characterizations”, Appl. Surf. Sci., vol. 258, n´um. 7, pp. 2211–2218, 2012, doi: 10.1016/j.apsusc.2011.05.018.spa
dc.relation.references[16] H. J. Jung y M. Y. Choi, “One-pot synthesis of graphitic and nitrogen-doped graphitic layers on nickel nanoparticles produced by pulsed laser ablation in liquid: Solvent as the carbon and nitrogen source”, Appl. Surf. Sci., vol. 457, n´um. June, pp. 1050–1056, 2018, doi: 10.1016/j.apsusc.2018.07.036.spa
dc.relation.references[17] A. Chaturvedi, M. P. Joshi, P. Mondal, A. K. Sinha, y A. K. Srivastava, “Growth of anatase and rutile phase TiO 2 nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation”, Appl. Surf. Sci., vol. 396, pp. 303–309, 2017, doi: 10.1016/j.apsusc.2016.10.133.spa
dc.relation.references[18] G. Guisbiers et al., “Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids”, Nanomedicine Nanotechnology, Biol. Med., vol. 13, n´um. 3, pp. 1095–1103, 2017, doi: 10.1016/j.nano.2016.10.011.spa
dc.relation.references[19] A. B. Etame, C. A. Smith, W. C. W. Chan, y J. T. Rutka, “Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature”, Nanomedicine Nanotechnology, Biol. Med., vol. 7, n´um. 6, pp. 992–1000, 2011, doi: 10.1016/j.nano.2011.04.004spa
dc.relation.references[20] G. F. Paciotti et al., “Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery”, Drug Deliv. J. Deliv. Target. Ther. Agents, vol. 11, n´um. 3, pp. 169–183, 2004, doi: 10.1080/10717540490433895.spa
dc.relation.references[21] E. Marsich et al., “Biological response of hydrogels embedding gold nanoparticles”, Colloids Surfaces B Biointerfaces, vol. 83, n´um. 2, pp. 331–339, 2011, doi: 10.1016/j. colsurfb.2010.12.002.spa
dc.relation.references[22] K. B. Male, B. Lachance, S. Hrapovic, G. Sunahara, y J. H. T. Luong, “Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy”, Anal. Chem., vol. 80, n´um. 14, pp. 5487–5493, 2008, doi: 10.1021/ac8004555.spa
dc.relation.references[23] M. P. Patil et al., “Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines”, Colloids Surfaces B Biointerfaces, vol. 183, n´um. June, p. 110455, 2019, doi: 10.1016/j.colsurfb.2019.110455.spa
dc.relation.references[24] T. R. Rautray, R. Narayanan, y K. H. Kim, “Ion implantation of titanium based biomaterials”, Prog. Mater. Sci., vol. 56, n´um. 8, pp. 1137–1177, 2011, doi: 10.1016/j.pmatsci. 2011.03.002.spa
dc.relation.references[25] M. Wollmann, J. Kiese, y L. Wagner, “Properties and applications of titanium alloys in transport”, Ti 2011 - Proc. 12th World Conf. Titan., vol. 2, n´um. December, pp. 837–844, 2012.spa
dc.relation.references[26] M. Niinomi, “Recent research and development in metallic materials for biomedical, dental and healthcare products applications”, Mater. Sci. Forum, vol. 539–543, n´um. PART 1, pp. 193–200, 2007, doi: 10.4028/0-87849-428-6.193.spa
dc.relation.references[27] D. P. De Andrade et al., “Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study”, Mater. Sci. Eng. C, vol. 56, pp. 538–544, 2015, doi:10.1016/j.msec.2015.07.026.spa
dc.relation.references[28] B. Matthes et al., “Corrosion performance of some titanium- based hard coatings”, Surf. Coatings Technol., vol. 49, n´um. 1–3, pp. 489–495, 1991, doi: 10.1016/0257-8972(91)90105-6.spa
dc.relation.references[29] W. A. Badawy, A. M. Fathi, R. M. El-Sherief, y S. A. Fadl-Allah, “Electrochemical and biological behaviors of porous titania (TiO2) in simulated body fluids for implantation in human bodies”, J. Alloys Compd., vol. 475, n´um. 1–2, pp. 911–916, 2009, doi:10.1016/j.jallcom.2008.08.061.spa
dc.relation.references[30] E. V. Bergmann et al., “Photoactivation of Erythrosine in simulated body fluids”, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 259, p. 119867, 2021, doi: 10.1016/j.saa.2021.119867spa
dc.relation.references31] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, y S. J. Dowey, “Plasma electrolysis for surface engineering”, Surf. Coatings Technol., vol. 122, n´um. 2–3, pp. 73–93, 1999, doi: 10.1016/S0257-8972(99)00441-7.spa
dc.relation.references[32] D. A. Torres-Ceron, E. Restrepo-Parra, C. D. Acosta-Medina, D. Escobar-Rincon, y R. Ospina-Ospina, “Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process”, Surf. Coatings Technol., vol. 375, n´um. April, pp. 221–228, 2019, doi: 10.1016/j.surfcoat.2019.06.021.spa
dc.relation.references[33] S. Stojadinovic et al., “Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate”, Corros. Sci., vol. 52, n´um. 10, pp. 3258–3265, 2010, doi: 10.1016/j.corsci.2010.05.042.spa
dc.relation.references[34] D. A. Torres Ceron, F. Gordillo Delgado, y J. Plazas Salda˜na, “Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction”, J. Phys. Conf. Ser., vol. 755, n´um. 1, p. 11001, oct. 2016, doi: 10.1088/1742- 6596/755/1/011001.spa
dc.relation.references35] M. Aliofkhazraee y A. Sabour Rouhaghdam, “Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a??-TiAl alloy. Part 2. Constant frequency and duty cycle”, J. Alloys Compd., vol. 462, n´um. 1–2, pp. 421–427, 2008, doi: 10.1016/j.jallcom. 2007.08.074.spa
dc.relation.references[36] W. Zhou y H. Fu, “Mesoporous TiO2: Preparation, Doping, and as a Composite for Photocatalysis”, ChemCatChem, vol. 5, n´um. 4, pp. 885–894, 2013, doi: 10.1002/cctc.201200519spa
dc.relation.references[37] J. Choi, H. Park, y M. R. Hoffmann, “Effects of Single Metal-Ion Doping on the VisibleLight Photoreactivity of TiO 2”, J. Phys. Chem. C, vol. 114, n´um. 2, pp. 783–792, ene. 2010, doi: 10.1021/jp908088x.spa
dc.relation.references[38] M. Fronzi y M. Nolan, “Surface modification of perfect and hydroxylated TiO2 rutile (110) and anatase (101) with chromium oxide nanoclusters”, ACS Omega, vol. 2, n´um. 10, pp. 6795–6808, 2017, doi: 10.1021/acsomega.7b01118.spa
dc.relation.references[39] P. Swarnakar et al., “Silver deposited titanium dioxide thin film for photocatalysis of organic compounds using natural light”, Sol. Energy, vol. 88, pp. 242–249, feb. 2013, doi: 10.1016/j.solener.2012.10.014.spa
dc.relation.references[40] W. Kong, B. Tian, J. Zhang, D. He, y M. Anpo, “Microstructure and hydrogen production activity of Pt–TiO2 prepared by precipitation–photodeposition”, Res. Chem. Intermed.,vol. 39, n´um. 4, pp. 1701–1710, abr. 2013, doi: 10.1007/s11164-012-0903-4.spa
dc.relation.references[41] Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, y X. Bai, “Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst”, Appl. Surf. Sci., vol. 256, n´um. 6, pp.1793–1797, 2010, doi: 10.1016/j.apsusc.2009.10.005.spa
dc.relation.references42] S. Stojadinovic et al., “Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation”, Appl. Surf. Sci., vol. 370, pp. 218–228, 2016, doi: 10.1016/j.apsusc.2016.02.131.spa
dc.relation.references[43] F. Gordillo-Delgado, S. Moya-Betancourt, A. Parra-L´opez, J. A. Garcia-Giraldo, y D. Torres-Cer´on, “S-incorporated TiO 2 coatings grown by plasma electrolytic oxidation for reduction of Cr(VI)-EDTA with sunlight”, Environ. Sci. Pollut. Res., vol. 26, n´um. 5, pp. 4253–4259, 2019, doi: 10.1007/s11356-018-2695-6.spa
dc.relation.references[44] D. A. Torres-Ceron, S. Amaya-Roncancio, J. S. Riva, A. Vargas-Eudor, D. EscobarRincon, y E. Restrepo-Parra, “Incorporation of P5+ and P3 from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study”, Surf. Coatings Technol., vol. 421, n´um. May, p. 127437, 2021, doi: 10.1016/j.surfcoat.2021.127437.spa
dc.relation.references[45] M. Mohedano, B. Mingo, H. Mora-S´anchez, E. Matykina, y R. Arrabal, “Effects of pre-anodizing and phosphates on energy consumption and corrosion performance of PEO coatings on AA6082”, Surf. Coatings Technol., vol. 409, n´um. November 2020, 2021, doi: 10.1016/j.surfcoat.2021.126892.spa
dc.relation.references[46] Z. Zhang et al., “Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO 2 by H 2 reduction”, Appl. Catal. A Gen., vol. 425–426, pp. 117–124, 2012, doi: 10.1016/j.apcata.2012.03.008.spa
dc.relation.references[47] S. H. Cheung, P. Nachimuthu, A. G. Joly, M. H. Engelhard, M. K. Bowman, y S. A. Chambers, “N incorporation and electronic structure in N-doped TiO2(110) rutile”, Surf. Sci., vol. 601, n´um. 7, pp. 1754–1762, abr. 2007, doi: 10.1016/j.susc.2007.01.051.spa
dc.relation.references48] C. Di Valentin y G. Pacchioni, “Trends in non-metal doping of anatase TiO2: B, C, N and F”, Catal. Today, vol. 206, pp. 12–18, 2013, doi: 10.1016/j.cattod.2011.11.030.spa
dc.relation.references[49] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, y S. J. Dowey, “Plasma electrolysis for surface engineering”, Surf. Coatings Technol., vol. 122, n´um. 2–3, pp. 73–93, 1999, doi: 10.1016/S0257-8972(99)00441-7.spa
dc.relation.references[50] S. I. Braginskii, “Contribution to the theory of the development of a spark channel”, Sov. Phys. -JEPT, vol. 34, n´um. 7, pp. 1068–1074, 1958.spa
dc.relation.references[51] A. Ugaz Lock y I. D´ıaz Tang, “Principios de las t´ecnicas electroqu´ımicas en estudios de procesos de corrosi´on”, Rev. Qu´ımica, vol. 2, n´um. 1, pp. 23–31, 1988spa
dc.relation.references[52] K. Dorado-Bustamante, S. Leal-Marin, y H. Estupi˜n´an-Duran, “Electrochemical analysis of the degradation of nitrided zirconia 3Y-TZP”, DYNA, vol. 85, n´um. 206, pp. 9–15, 2018, doi: 10.15446/dyna.v85n206.68296.spa
dc.relation.references[53] M. Sluyters-Rehbach, “Impedances of electrochemical systems: Terminology, nomenclature and representation part I: Cells with metal electrodes and liquid solutions”, Pure Appl.Chem., vol. 66, n´um. 9, pp. 1831–1891, 1994, doi: 10.1351/pac199466091831.spa
dc.relation.references[54] Y. Han, J. Wang, H. Zhang, S. Zhao, Q. Ma, y Z. Wang, “Electrochemical impedance spectroscopy (EIS): An efficiency method to monitor resin curing processes”, Sensors Actuators, A Phys., vol. 250, pp. 78–86, 2016, doi: 10.1016/j.sna.2016.08.028.spa
dc.relation.references[55] M. Mora, W. Aperador, O. Fern´andez, E. V. Fısico, P. Asociado, y C. Ortiz, “IMPLEMENTACION DE LA TECNICA DE MODULACI ´ ON DE FRECUENCIA ELECTRO- QUIMICA (EFM), MEDIANTE INSTRUMENTACION VIRTUAL PARA EVALUACIÓN DE PARAMETROS DE CORROSI ´ ON Electrochemical Frequency Modulation (EFM) Tech- nical Implementation, by Means of Virtual Instrumenta”, Sci. Tech. A˜no XIII, vol. 36, n´um.36, pp. 567–571, 2007spa
dc.relation.references[56] M. Atapour, C. Blawert, y M. L. Zheludkevich, “The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy”,Surf. Coatings Technol., vol. 357, n´um. October 2018, pp. 626–637, 2019, doi: 10.1016/j. surfcoat.2018.10.033.spa
dc.relation.references[57] K. Rokosz, T. Hryniewicz, S. Raaen, P. Chapon, y F. Prima, “Development of copperenriched porous coatings on ternary Ti-Nb-Zr alloy by plasma electrolytic oxidation”, Int. J. Adv. Manuf. Technol., vol. 89, n´um. 9–12, pp. 2953–2965, 2017, doi: 10.1007/s00170-016-9206-z.spa
dc.relation.references[58] C. N. Elias, M. A. Meyers, R. Z. Valiev, y S. N. Monteiro, “Ultrafine grained titanium for biomedical applications: An overview of performance”, J. Mater. Res. Technol., vol. 2, n´um. 4, pp. 340–350, 2013, doi: 10.1016/j.jmrt.2013.07.003.spa
dc.relation.references[59] N. J. Reddy, D. Nagoor Vali, M. Rani, y S. S. Rani, “Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit”, Mater. Sci. Eng. C, vol. 34, n´um. 1, pp. 115–122, 2014, doi: 10.1016/j.msec.2013.08.039.spa
dc.relation.references[60] M. Valodkar, P. S. Rathore, R. N. Jadeja, M. Thounaojam, R. V. Devkar, y S. Thakore, “Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles”, J. Hazard. Mater., vol. 201–202, pp. 244–249, 2012, doi: 10.1016/j.jhazmat.2011.11.077spa
dc.relation.references61] Y. Song, R. Guan, F. Lyu, T. Kang, Y. Wu, y X. Chen, “In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells”, Mutat. Res. - Fundam. Mol. Mech. Mutagen., vol. 769, pp. 113–118, 2014, doi: 10.1016/j.mrfmmm.2014.08.001spa
dc.relation.references62] C. Caparr´os, J. Guillem-Mart´ı, M. Molmeneu, M. Punset, J. A. Calero, y F. J. Gil, “Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants”, J. Mech. Behav. Biomed. Mater., vol. 39, pp. 79–86, 2014, doi: 10.1016/j.jmbbm.2014.05.029.spa
dc.relation.references[63] M. Thukkaram et al., “Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation”, Appl. Surf. Sci., vol. 500, n´um. September 2019, p. 144235, 2020, doi: 10.1016/j.apsusc.2019.144235.spa
dc.relation.references[64] X. Lu et al., “Plasma electrolytic oxidation coatings with particle additions – A review”, Surf. Coatings Technol., vol. 307, pp. 1165–1182, 2016, doi: 10.1016/j.surfcoat.2016.08.055.spa
dc.relation.references[65] E. Matykina, A. Berkani, P. Skeldon, y G. E. Thompson, “Real-time imaging of coating growth during plasma electrolytic oxidation of titanium”, Electrochim. Acta, vol. 53, n´um. 4, pp. 1987–1994, 2007, doi: 10.1016/j.electacta.2007.08.074.spa
dc.relation.references66] K. R. Shin, Y. S. Kim, G. W. Kim, H. W. Yang, Y. G. Ko, y D. H. Shin, “Effects of oncentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation”, Appl. Surf. Sci., vol. 347, pp. 574–582, 2015, doi: 10.1016/j.apsusc.2015.04.161.spa
dc.relation.references[67] T. Yang, S. Qian, Y. Qiao, y X. Liu, “Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles”, Colloids Surfaces B Biointerfaces, vol. 145, pp. 597–606, 2016, doi: 10.1016/j.colsurfb.2016.05.073.spa
dc.relation.references[68] J. Yang, X. Lu, C. Blawert, S. Di, y M. L. Zheludkevich, “Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation”, Surf. Coatings Technol., vol. 319, pp. 359–369, 2017, doi: 10.1016/j.surfcoat.2017.04.001.spa
dc.relation.references69] H. Fakhr Nabavi, M. Aliofkhazraei, y A. Sabour Rouhaghdam, “Morphology and corrosion resistance of hybrid plasma electrolytic oxidation on CP-Ti”, Surf. Coatings Technol., vol. 322, n´um. September, pp. 59–69, 2017, doi: 10.1016/j.surfcoat.2017.05.035.spa
dc.relation.references[70] F. DAVOODI, M. ATAPOUR, C. BLAWERT, y M. ZHELUDKEVICH, “Wear and corrosion behavior of clay containing coating on AM 50 magnesium alloy produced by aluminate-based plasma electrolytic oxidation”, Trans. Nonferrous Met. Soc. China (English Ed., vol. 31, n´um. 12, pp. 3719–3738, 2021, doi: 10.1016/S1003-6326(21)65759-X.spa
dc.relation.references[71] T. Kokubo y H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials, vol. 27, n´um. 15, pp. 2907–2915, 2006, doi: 10.1016/j.biomaterials.2006.01.017. [72] “ASTM G119 - 09: Standard guide for determining synergism between wear and corrosion, ASTM International, West Conshohocken, PA”, 2016.spa
dc.relation.references[73] ASTM G102, “Standard Practice for from Electrochemical Measurements”, Astm, vol. 89, n´um. Reapproved 2015, pp. 1–7, 2015, doi: 10.1520/G0102-89R15E01.2.spa
dc.relation.references[74] American Public Health Association, “American Water Works Association (Awwa) Water Enviorement Federation”, pp. 7–10, 2005.spa
dc.relation.references[75] J. R. Macdonald y a J. Wiley, Theory , Experiment , and. .spa
dc.relation.references[76] V. Amendola y M. Meneghetti, “Size evaluation of gold nanoparticles by UV-vis spectroscopy”, J. Phys. Chem. C, vol. 113, n´um. 11, pp. 4277–4285, 2009, doi: 10.1021/jp8082425.spa
dc.relation.references[77] M. Zimbone, L. Calcagno, G. Messina, P. Baeri, y G. Compagnini, “Dynamic light scattering and UV-vis spectroscopy of gold nanoparticles solution”, Mater. Lett., vol. 65, n´um. 19–20, pp. 2906–2909, 2011, doi: 10.1016/j.matlet.2011.06.054.spa
dc.relation.references[78] W. Haiss, N. T. K. Thanh, J. Aveyard, y D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-Vis spectra”, Anal. Chem., vol. 79, n´um. 11, pp. 4215–4221, 2007, doi: 10.1021/ac0702084.spa
dc.relation.references[79] H. Bar et al., “Synthesis of gold nanoparticles of variable morphologies using aqueous leaf extracts of Cocculus hirsutus”, J. Exp. Nanosci., vol. 7, n´um. 1, pp. 109–119, 2012, doi: 10.1080/17458080.2010.509875spa
dc.relation.references[80] S. Chan Park, H. Ki Son, G. Sharma, y J. C. Kim, “Preparation of gold nanoparticles using monoolein cubic phase as a template”, J. Ind. Eng. Chem., vol. 121, pp. 132–141, 2023, doi: 10.1016/j.jiec.2023.01.017.spa
dc.relation.references81] A. Daulay, Andriayani, Marpongahtun, y S. Gea, “Synthesis Si nanoparticles from rice husk as material active electrode on secondary cell battery with X-Ray diffraction analysis”, South African J. Chem. Eng., vol. 42, n´um. June, pp. 32–41, 2022, doi: https: //doi.org/10.1016/j.sajce.2022.07.004.spa
dc.relation.references82] J. Louis-Jean, A. J. Swift, D. W. Hatchett, y F. Poineau, “Conversion of (NH4)2[ReF6] into ReO2 mixed phases: A thermal analysis study”, Inorg. Chem. Commun., vol. 140, n´um. February, 2022, doi: 10.1016/j.inoche.2022.109482.spa
dc.relation.references[83] A. G. Rakoch, V. V. Khokhlov, V. A. Bautin, N. A. Lebedeva, Y. V. Magurova, y I. V. Bardin, “Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process”, Prot. Met., vol. 42, n´um. 2, pp. 158–169, 2006, doi: 10.1134/S003317320602010X.spa
dc.relation.references[84] C. Oliveira et al., “Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and ab initio calculations”, J. Mater. Res. Technol., vol. 15, pp. 768–776, 2021, doi: 10.1016/j.jmrt.2021.08.059.spa
dc.relation.references[85] V. K. William Grips, H. C. Barshilia, V. E. Selvi, Kalavati, y K. S. Rajam, “Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering”, Thin Solid Films, vol. 514, n´um. 1–2, pp. 204–211, 2006, doi: 10.1016/j.tsf.2006.03.008.spa
dc.relation.references[86] D. A. Pineda Hern´andez, E. Restrepo Parra, P. J. Arango Arango, B. Segura Giraldo, y C. D. Acosta Medina, “Article innovative method for coating of natural corrosion inhibitor based on artemisia vulgaris”, Materials (Basel)., vol. 14, n´um. 9, pp. 1–13, 2021, doi: 10.3390/ma14092234.spa
dc.relation.references87] M. Nadimi y C. Dehghanian, “Incorporation of ZnO–ZrO2 nanoparticles into TiO2 coatings obtained by PEO on Ti–6Al–4V substrate and evaluation of its corrosion behavior, microstructural and antibacterial effects exposed to SBF solution”, Ceram. Int., vol. 47, n´um. 23, pp. 33413–33425, 2021, doi: 10.1016/j.ceramint.2021.08.248spa
dc.relation.references[88] A. Hoseini, B. Yarmand, y A. Kolahi, “Inhibitory effects of hematite nanoparticles on corrosion protection function of TiO2 coating prepared by plasma electrolytic oxidation”, Surf. Coatings Technol., vol. 409, n´um. November 2020, p. 126938, 2021, doi: https: //doi.org/10.1016/j.surfcoat.2021.126938 .spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalTécnica OEPspa
dc.subject.proposalTitaniospa
dc.subject.proposalNanopartículas de orospa
dc.subject.proposalCorrosiónspa
dc.subject.proposalBiocompatibilidadspa
dc.subject.proposalOEP techniqueeng
dc.subject.proposalTitaniumeng
dc.subject.proposalGold nanoparticleseng
dc.subject.proposalCorrosioneng
dc.subject.proposalBiocompatibilityeng
dc.titleInfluencia de la incorporación de nanopartículas de Au en procesos de corrosión en recubrimientos de TiO2 obtenidos por OEPspa
dc.title.translatedInfluence of the incorporation of Au nanoparticles on corrosion processes in TiO2 coatings obtained by PEOeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053792270.2023.pdf
Tamaño:
4.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Maestría en Ciencia - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: