Microdosimetría de la radioterapia con protones usando nano-partículas de oro como agentes sensibilizadores

dc.contributor.advisorCastro Serrato, Héctor Fabiospa
dc.contributor.authorSevilla Moreno, Andrés Camilospa
dc.contributor.researchgroupFisica de Bajas Temperaturas y Magnetismo Cryomagspa
dc.date.accessioned2022-06-01T18:47:52Z
dc.date.available2022-06-01T18:47:52Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa radioterapia con protones es uno de los enfoques más prometedores para el tratamiento del cáncer. En comparación con las técnicas modernas de radioterapia con fotones, como lo son la radioterapia de intensidad modulada (IMRT) y la arcoterapia volumétrica (VMAT), con esta técnica se alcanza una mejor conformación de la dosis en el tejido tumoral al mismo tiempo que se disminuye la dosis en estructuras a riesgo cercanas y tejido sano circundante. De forma semejante, desde principios de los años 2000, experimentos de irradiación de líneas celulares (in-vitro) y tumores en pequeños animales (in-vivo), han demostrado el potencial de las nano-partículas de oro (GNP) para ser utilizadas como agentes sensibilizadores en tratamientos de radioterapia con fotones. Al respecto, durante los años recientes la comunidad científica ha dirigido su interés hacia una tercera opción potencial para el mejoramiento de la radioterapia, en donde las dos alternativas anteriores convergen, ahora se estudia el incremento del efecto biológico resultado del uso de las GNP en la irradiación con protones. Investigaciones pioneras en las que se irradian lineas celulares (in-vitro) han reportado incrementos hasta del 20 % en la efectividad de la protonterapia para producir la muerte de células tumorales cuando en el medio se encuentran GNP. En este trabajo se estudia la dosimetría de un haz de protones interactuando en un medio acuoso con nano-partículas de oro (GNP), y se analiza tanto el incremento local de dosis, y el incremento del LET como factores que contribuyen significativamente a esta mejora. Para este fin, fue construida una simulación, usando el código Montecarlo Geant4-DNA, por medio de la cual se modela un haz de protones de uso clínico que interactúa con un maniquí de agua y diferentes concentraciones de GNP de forma esférica. Como resultado se cuantifica la energía depositada, la longitud de la trayectoria recorrida y el LET promedio de los protones en agua, se comparan los resultados variando los valores de diámetro de las GNP en el rango de 1 - 20 nm y las concentraciones de oro en el rango de 5 - 25 mg/ml. Se encuentra que las nano-partículas de oro en el medio acuoso actúan como moderadores del haz de protones, de manera tal que se alcanza la región de dosis máxima (Pico de Bragg) en una trayectoria más corta de los protones. Se estiman incrementos en el LET, al final del recorrido, de entre 7 % y 38 % para concentraciones de oro de 5 y 25 mg/ml respectivamente, como consecuencia se evidencian incrementos de la dosis absorbida hasta del 10 %. (Texto tomado de la fuente).spa
dc.description.abstractProton radiation therapy is one of the most promising approaches to treating cancer. Compared to modern photon radiotherapy techniques, such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT), this technique achieves better dose conformation in the tumor tissue, at the same time, the dose in nearby structures at risk and surrounding healthy tissue is reduced. Similarly, since the early 2000s, in irradiation experiments of cell lines (in-vitro) and tumors in small animals (in-vivo), the potential of gold nanoparticles (GNP) has been demonstrated to be used as sensitizing agents in photon radiotherapy treatments. In this regard, during recent years the scientific community has focused its interest towards a third potential option for the radiotherapy improvement, where the two previous alternatives converge, the increase in the biological effect resulting from the use of GNP in proton irradiation is now being studied. Pioneering researchs in which cell lines are irradiated (in-vitro) have reported increases of up to 20 % in the effectiveness of proton therapy to produce tumor cell death when GNP is deposited in the medium. In this work, the dosimetry of a proton beam interacting in an aqueous medium with gold nanoparticles (GNP) is studied, and both the local dose and the LET increases in the Bragg peak region are analyzed as contributing factors to this improvement. For this purpose, a simulation was built, using the Montecarlo Geant4-DNA code, by means of which a beam of protons for clinical use is modeled that interacts with a phantom of water and different concentrations of spherical GNP. As results, the energy deposited, path length and LET average of protons in water are estimated. The results are compared by varying the diameter values of the GNP in the range of 1 - 20 nm and the concentrations of gold in the range of 5 - 25 mg/ml. Gold nanoparticles in the aqueous medium are found to moderate the proton beam, such that the region of maximum dose (Bragg peak) is reached in a shorter proton path. Increases in the LET, at the end of the run, between 7 % and 38 % are estimated for gold concentrations of 5 and 25 mg/ml respectively, as a consequence, increases in the absorbed dose of up to 10 % are evidenced.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.researchareaRadioterapiaspa
dc.format.extentxiv, 55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81476
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.indexedBiremespa
dc.relation.referencesRelative Biological Effectiveness in Ion Beam Therapy. Number 461 in Technical Reports Series. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2008.spa
dc.relation.referencesPedro Andreo, David T. Burns, Alan E. Nahum, Jan Seuntjens, and Frank Herbert Attix. Fundamentals of ionizing radiation dosimetry - Pedro Andreo.spa
dc.relation.referencesChafika Belamri, Anis Samy Amine Dib, and Ahmed H. Belbachir. Monte Carlo simulation of proton therapy using bio-nanomaterials. Journal of Radiotherapy in Practice, 15(3):290–295, 2016.spa
dc.relation.referencesM.J. Berger, J.S. Coursey, M.A. Zucker, and J. Chang. Stopping-Power Range Tables for Electrons, Protons, and Helium Ions. NIST Standard Reference Database 124, 2017.spa
dc.relation.referencesJohn C Blasko, Peter D Grimm, John E Sylsvester, and William Cavanagh. The role of external beam radiotherapy with I-125/Pd-103 brachytherapy for prostate carcinoma. Radiotherapy and Oncology, 57(3):273–278, dec 2000.spa
dc.relation.referencesGöran Borghede, Hans Hedelin, Sten Holmäng, Karl Axel Johansson, Frank Aldenborg, Silas Pettersson, Göran Sernbo, Arne Wallgren, and Claes Mercke. Combined treatment with temporary short-term high dose rate Iridium-192 brachytherapy and external beam radiotherapy for irradiation of localized prostatic carcinoma. Radiotherapy and Oncology, 44(3):237–244, sep 1997.spa
dc.relation.referencesMark J. Carvlin. An Introduction to Radiobiology, 1991.spa
dc.relation.referencesSang Hyun Cho. Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Physics in Medicine and Biology, 50(15), 2005.spa
dc.relation.referencesLeo Y.T. Chou and Warren C.W. Chan. Fluorescence-Tagged Gold Nanoparticles for Rapidly Characterizing the Size-Dependent Biodistribution in Tumor Models. Advanced Healthcare Materials, 1(6):714–721, 2012.spa
dc.relation.referencesMichael Chuong, Shahed N. Badiyan, Man Yam, Zuofeng Li, Katja Langen, William Regine, Christopher Morris, James Snider, Minesh Mehta, Soon Huh, Michael Rutenberg, and Romaine C. Nichols. Pencil beam scanning versus passively scattered proton therapy for unresectable pancreatic cancer. Journal of Gastrointestinal Oncology, 9(4):687–693, 2018.spa
dc.relation.referencesMichael Dattoli, Kent Wallner, Richard Sorace, John Koval, Jennifer Cash, Rudolph Acosta, Charles Brown, James Etheridge, Michael Binder, Richard Brunelle, Novelle Kirwan, Servando Sanchez, Douglas Stein, and Stuart Wasserman. 103Pd brachytherapy and external beam irradiation for clinically localized, high-risk prostatic carcinoma. International Journal of Radiation Oncology*Biology*Physics, 35(5):875–879, jul 1996.spa
dc.relation.referencesRémi Dendale, Livia Lumbroso-Le Rouic, Georges Noel, Loïc Feuvret, Christine Levy, Sabine Delacroix, Anne Meyer, Catherine Nauraye, Alejandro Mazal, Hamid Mammar, Paul Garcia, François D’Hermies, Eric Frau, Corine Plancher, Bernard Asselain, Pierre Schlienger, Jean Jacques Mazeron, and Laurence Desjardins. Proton beam radiotherapy for uveal melanoma: Results of Curie Institut–Orsay Proton Therapy Center (ICPO). International Journal of Radiation Oncology*Biology*Physics, 65(3):780–787, jul 2006.spa
dc.relation.referencesMichael Dickson and Jean Paul Gagnon. Key factors in the rising cost of new drug discovery and development. Nature Reviews Drug Discovery, 3(5):417–429, 2004.spa
dc.relation.referencesRichard P. Feynman. There’s Plenty of Room at the Bottom. In Engineering Science, pages 22–36. 1960.spa
dc.relation.referencesJonas Fontenot, Phillip Taddei, Yuanshui Zheng, Dragan Mirkovic, Thomas Jordan, and Wayne Newhauser. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer. Physics in Medicine and Biology, 53(6):1677–1688, 2008spa
dc.relation.referencesEvangelos S. Gragoudas. Proton Beam Irradiation of Uveal Melanomas. Archives of Ophthalmology, 100(6):928, jun 1982.spa
dc.relation.referencesJames F. Hainfeld, F. Avraham Dilmanian, Zhong Zhong, Daniel N. Slatkin, John A. Kalef-Ezra, and Henry M. Smilowitz. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics in Medicine and Biology, 55(11):3045–3059, jun 2010.spa
dc.relation.referencesHooshang Nikjoo, Shuzo Uehara, and Dimitris Emfietzoglou. Interaction of Radiation with Matter. 2012.spa
dc.relation.referencesR N Kjellberg, W H Sweet, W M Preston, and A M Koehler. The bragg peak of a proton beam in intracranial therapy of tumors. Transactions of the American Neurological Association (U.S.).spa
dc.relation.referencesR.N. Kjellberg, A.M. Koehler, W.M. Preston, and W.H. Sweet. Stereotaxic Instrument for Use with the Bragg Peak of a Proton Beam. Stereotactic and Functional Neurosurgery, 22(3-5):183–189, 1962.spa
dc.relation.referencesGennadii I. Klenov and Vladimir S. Khoroshkov. Hadron therapy: history, status, prospects. Physics-Uspekhi, 59(8):807–825, aug 2016.spa
dc.relation.referencesA. M. Koehler, R. J. Schneider, and J. M. Sisterson. Flattening of proton dose distributions for large field radiotherapy. Medical Physics, 4(4):297–301, 1977.spa
dc.relation.referencesSophie Laurent, Delphine Forge, Marc Port, Alain Roch, Caroline Robic, Luce Vander Elst, and Robert N. Muller. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108(6):2064– 2110, jun 2008.spa
dc.relation.referencesWilliam R. Leo and David G. Haase. Techniques for Nuclear and Particle Physics Experiments , volume 58. 1990.spa
dc.relation.referencesMichael K.K. Leung, James C.L. Chow, B. Devika Chithrani, Martin J.G. Lee, Barbara Oms, and David A. Jaffray. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Medical Physics, 38(2):624–631, 2011.spa
dc.relation.referencesM. P. Little. Risks associated with ionizing radiation. British Medical Bulletin, 68:259–275, 2003spa
dc.relation.referencesA. J. Lomax, T. Boehringer, A. Coray, E. Egger, G. Goitein, M. Grossmann, P. Juelke, S. Lin, E. Pedroni, B. Rohrer, W. Roser, B. Rossi, B. Siegenthaler, O. Stadelmann, H. Stauble, C. Vetter, and L. Wisser. Intensity modulated proton therapy: A clinical example. Medical Physics, 28(3):317– 324, 2001.spa
dc.relation.referencesAnthony John Lomax, Michael Goitein, and Judy Adams. Intensity modulation in radiotherapy: Photons versus protons in the paranasal sinus. Radiotherapy and Oncology, 66(1):11–18, 2003.spa
dc.relation.referencesAntony J. Lomax, Laura Cella, Damien Weber, John M. Kurtz, and Raymond Miralbell. Potential role of intensity-modulated photons and protons in the treatment of the breast and regional nodes. International Journal of Radiation Oncology*Biology*Physics, 55(3):785–792, mar 2003.spa
dc.relation.referencesB. Ludewigt, J. Siebers, D. Lesyna, D. Miller, J. Nusbaum, J. Slater, J. Johanning, and J. Miranda. A prototype beam delivery system for the proton medical accelerator at Loma Linda. Medical Physics, 18(6):1093–1099, 1991.spa
dc.relation.referencesD. M. Herold, I. J. Das, C. C. Stobbe,. Gold microspheres: a selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76(10):1357– 1364, jan 2000.spa
dc.relation.referencesShannon M. MacDonald, Sairos Safai, Alexei Trofimov, John Wolfgang, Barbara Fullerton, Beow Y. Yeap, Thomas Bortfeld, Nancy J. Tarbell, and Torunn Yock. Proton Radiotherapy for Childhood Ependymoma: Initial Clinical Outcomes and Dose Comparisons. International Journal of Radiation Oncology*Biology*Physics, 71(4):979–986, jul 2008.spa
dc.relation.referencesI. Martínez-Rovira and Y. Prezado. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Medical Physics, 42(11):6703–6710, 2015.spa
dc.relation.referencesPriyabrata Mukherjee, Resham Bhattacharya, Ping Wang, Ling Wang, Sujit Basu, Janice A. Nagy, Anthony Atala, Debabrata Mukhopadhyay, and Shay Soker. Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, 11(9):3530–3534, 2005.spa
dc.relation.referencesHarald Paganetti. Proton therapy physics. Proton Therapy Physics. Series: Series in Medical Physics and Biomedical Engineering, ISBN: 978-1-4398-3644-6. CRC Press, Edited by Harald Paganetti, 12 2011.spa
dc.relation.referencesYu Pan, Annika Leifert, David Ruau, Sabine Neuss, Jörg Bornemann, Günter Schmid, Wolfgang Brandau, Ulrich Simon, and Willi Jahnen-Dechent. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18):2067–2076, 2009.spa
dc.relation.referencesSteven D. Perrault, Carl Walkey, Travis Jennings, Hans C. Fischer, and Warren C.W. Chan. Mediating tumor targeting efficiency of nanoparticles through design. Nano Letters, 9(5):1909–1915, 2009.spa
dc.relation.referencesJerimy C. Polf, Lawrence F. Bronk, Wouter H.P. Driessen, Wadih Arap, Renata Pasqualini, and Michael Gillin. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Applied Physics Letters, 98(19):18–21, 2011.spa
dc.relation.referencesJames L. Robar, Silvia A. Riccio, and M. A. Martin. Tumour dose enhancement using modified megavoltage photon beams and contrast media. Physics in Medicine and Biology, 47(14):305, jul 2002.spa
dc.relation.referencesMacro Schippers. Beam Delivery Systems for Particle Therapy: Current Status and Recent Developments. Proton and Carbon Ion Therapy, 2:29–48, 2012.spa
dc.relation.referencesJan Schuemann, Ross Berbeco, Devika B. Chithrani, Sang Hyun Cho, Rajiv Kumar, Stephen J. McMahon, Srinivas Sridhar, and Sunil Krishnan. Roadmap to clinical use of gold nanoparticles for radiation sensitization. International Journal of Radiation Oncology Biology Physics, 94(1):189– 205, 2016.spa
dc.relation.referencesAntonio Brosed Serreta. Fundamentos de Física Médica.spa
dc.relation.referencesW. H. St. Clair, J. A. Adams, M. Bues, B. C. Fullerton, Sean La Shell, H. M. Kooy, J. S. Loeffler, and N. J. Tarbell. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. International Journal of Radiation Oncology Biology Physics, 58(3):727–734, 2004.spa
dc.relation.referencesMarloes Steneker, Antony Lomax, and Uwe Schneider. Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiotherapy and Oncology, 80(2):263–267, aug 2006.spa
dc.relation.referencesEdward A. Sykes, Juan Chen, Gang Zheng, and Warren C.W. Chan. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano, 8(6):5696–5706, 2014.spa
dc.relation.referencesC. A. Tobias, J. H. Lawrence, J. L. Born, R. K. Mccombs, J. E. Roberts, H. O. Anger, B. V.A. Low-Beer, and C. B. Huggins. Pituitary Irradiation with High-Energy Proton Beams A Preliminary Report. Cancer Research, 18(2):121–134, 1958.spa
dc.relation.referencesH. N. Tran, M. Karamitros, V. N. Ivanchenko, S. Guatelli, S. McKinnon, K. Murakami, T. Sasaki, S. Okada, M. C. Bordage, Z. Francis, Z. El Bitar, M. A. Bernal, J. I. Shin, S. B. Lee, Ph Barberet, T. T. Tran, J. M.C. Brown, T. V. Nhan Hao, and S. Incerti. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 373:126–139, 2016.spa
dc.relation.referencesAlexei Trofimov, Paul L. Nguyen, John J. Coen, Karen P. Doppke, Robert J. Schneider, Judith A. Adams, Thomas R. Bortfeld, Anthony L. Zietman, Thomas F. DeLaney, and William U. Shipley. Radiotherapy Treatment of Early-Stage Prostate Cancer with IMRT and Protons: A Treatment Planning Comparison. International Journal of Radiation Oncology*Biology*Physics, 69(2):444– 453, oct 2007.spa
dc.relation.referencesDongxu Wang, Blake Dirksen, Daniel E. Hyer, John M. Buatti, Arshin Sheybani, Eric Dinges, Nicole Felderman, Mindi Tennapel, John E. Bayouth, and Ryan T. Flynn. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions. Medical Physics, 41(12):1–10, 2014.spa
dc.relation.referencesLiming Wang, Ying Liu, Wei Li, Xiumei Jiang, Yinglu Ji, Xiaochun Wu, Ligeng Xu, Yang Qiu, Kai Zhao, Taotao Wei, Yufeng Li, Yuliang Zhao, and Chunying Chen. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Letters, 11(2):772–780, 2011.spa
dc.relation.referencesR. R. WILSON. Radiological use of fast protons. Radiology, 47(5):487–491, 1946.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.lembRadiation - dosageeng
dc.subject.lembDosimetría (Radiación)spa
dc.subject.lembRadiotherapyeng
dc.subject.lembRadioterapiaspa
dc.subject.lembNanoparticleseng
dc.subject.lembNanopartículasspa
dc.subject.proposalRadioterapiaspa
dc.subject.proposalProtonterapiaspa
dc.subject.proposalNano-partículasspa
dc.subject.proposalSimulación computacionalspa
dc.subject.proposalGeant4-DNAspa
dc.subject.proposalRadiotherapyeng
dc.subject.proposalProtontherapyeng
dc.subject.proposalNano-particleseng
dc.subject.proposalComputational simulationeng
dc.subject.proposalGeant4-DNAeng
dc.titleMicrodosimetría de la radioterapia con protones usando nano-partículas de oro como agentes sensibilizadoresspa
dc.title.translatedMicrodosimetry of proton radiotherapy using gold nanoparticles as sensitizing agentseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo final de Maestría en Física Médica ACSM.pdf
Tamaño:
5.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: