Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.

dc.contributor.advisorMuñoz Acevedo, Juan Carlos
dc.contributor.advisorPabón Gelves, Elizabeth
dc.contributor.authorCardona González, Daniela
dc.contributor.researchgroupCiencia de Materiales Avanzadosspa
dc.date.accessioned2021-06-23T21:04:47Z
dc.date.available2021-06-23T21:04:47Z
dc.date.issued2021
dc.descriptionIlustracionesspa
dc.description.abstractLas redes metal-orgánicas (MOFs) son materiales porosos con aplicaciones en diversas áreas de la industria, tecnología y medio ambiente. El diseño molecular de MOFs ha estado ligado a la naturaleza química del centro metálico, al tipo de ligandos orgánicos, a la relación de la interacción metal-ligando y a su geometría, lo que implica que para garantizar la estabilidad y la supramolecularidad de la red es necesario explorar con ligandos, las condiciones con las cuales se puede obtener una estructura tipo MOF. Se sintetizaron redes metal-orgánicas por medio de una estrategia de ligandos mixtos heteroestructurales; usando los ácidos trans,trans-mucónico (MA) y sulfosuccínico (SSA), acompañados del conector 4,4’-bipiridina (4B) con metales como el Cu (II) y Zn (II). Los compuestos se prepararon por diversas rutas de síntesis a reflujo, solvotermal y agitación y se caracterizaron las propiedades morfológicas, estructurales, térmicas y superficiales por medio de microscopía óptica, FT-IR, XRPD y TGA. Adicionalmente se usó análisis de SC-XRD para la determinación estructural de una nueva estructura 1D de fórmula molecular [Cu(HSSA)(4B)(H2O)2]n·H2O con espacios entre las cadenas con alta polarizabilidad y por lo tanto promisorias para la adsorción selectiva de CO2. Tomado de la fuente)spa
dc.description.abstractMetal-organic frameworks (MOF) are porous materials with applications in diverse areas like industry, technology and environment. The molecular design of MOFs can be linked to the nature of the metal, organic linker, metal-linker interaction and geometry, implying that is necessary the exploration of synthetic conditions with the linkers to ensure the stability and supramolecularity of the framework. This work presents the synthesis of metal-organic frameworks via heterostructural mixed-linker strategy with trans,trans-muconic acid (MA), sulfosuccinic acid (SSA) and the auxiliary linker 4,4’-bipyridine (4B) coordinated to Cu (II) and Zn(II). The compounds have been synthesized by reflux, solvothermal and agitation conditions and the morphology, structure, thermic and surface area properties were characterized with optic microscopy, FT-IR, XRPD and TGA. SC-XRD analysis was additionally used to determinate the new 1D structure of molecurlar formula [Cu(HSSA)(4B)(H2O)2]n·H2O with free inter-chain spaces, high polarizability and potential selective adsorption properties for CO2 capture. (Tomdo de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMágister en Ciencias - Químicaspa
dc.description.researchareaSíntesis de materiales porososspa
dc.format.extent146 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79694
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science (80-. ). 341, (2013).spa
dc.relation.references2. Öhrström, L. Let’s Talk about MOFs—Topology and Terminology of Metal-Organic Frameworks and Why We Need Them. Crystals 5, 154–162 (2015).spa
dc.relation.references3. Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 20, 132–142 (2018).spa
dc.relation.references4. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L. & Su, C.-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).spa
dc.relation.references5. Müller-Buschbaum, K. Luminescent MOFs and Frameworks. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 1–20 (Elsevier, 2015). doi:10.1016/B978-0-12-409547-2.11493-3spa
dc.relation.references6. Tominaka, S. & Cheetham, A. K. Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv. 4, 54382–54387 (2014).spa
dc.relation.references7. Falcaro, P., Ricco, R., Doherty, C. M., Liang, K., Hill, A. J. & Styles, M. J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014).spa
dc.relation.references8. Wang, L., Han, Y., Feng, X., Zhou, J., Qi, P. & Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).spa
dc.relation.references9. Cai, H., Huang, Y. L. & Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. (2017). doi:10.1016/j.ccr.2017.12.003spa
dc.relation.references10. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).spa
dc.relation.references11. Yaghi, O. M., Li, H., Eddaoudi, M. & O’Keeffe, M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).spa
dc.relation.references12. Czaja, A. U., Trukhan, N. & Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).spa
dc.relation.references13. Li, B. & Chen, B. Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. in Structure and Bonding 119, 75–107 (2014).spa
dc.relation.references14. Bunck, D. N. & Dichtel, W. R. Mixed Linker Strategies for Organic Framework Functionalization. Chem. - A Eur. J. 19, 818–827 (2013).spa
dc.relation.references15. Bitzer, J. & Kleist, W. Synthetic Strategies and Structural Arrangements of Isoreticular Mixed‐Component Metal–Organic Frameworks. Chem. – A Eur. J. 25, 1866–1882 (2019).spa
dc.relation.references16. Pang, Q., Tu, B. & Li, Q. Metal–organic frameworks with multicomponents in order. Coord. Chem. Rev. 388, 107–125 (2019).spa
dc.relation.references17. Ali Akbar Razavi, S. & Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 399, 213023 (2019).spa
dc.relation.references18. Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M. & Zhou, H.-C. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).spa
dc.relation.references19. Ugale, B., Singh, D. & Nagaraja, C. M. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal-organic framework: In situ cleavage of S-S and C-S bonds. J. Solid State Chem. 226, 273–278 (2015).spa
dc.relation.references20. Qu, X.-L. & Yan, B. Ln(III)-Functionalized Metal–Organic Frameworks Hybrid System: Luminescence Properties and Sensor for trans , trans -Muconic Acid as a Biomarker of Benzene. Inorg. Chem. 57, 7815–7824 (2018).spa
dc.relation.references21. Ahmed, F., Roy, S., Naskar, K., Sinha, C., Alam, S. M., Kundu, S., Vittal, J. J. & Mir, M. H. Halogen···halogen interactions in the supramolecular assembly of 2D coordination polymers and the CO2sorption behavior. Cryst. Growth Des. 16, 5514–5519 (2016).spa
dc.relation.references22. Pletnev, M. Y. Chemestry of surfactants. (1996). doi:10.1016/S1383-7303(01)80062-4spa
dc.relation.references23. Fu, J.-H., Wang, Y.-L., Chen, Y., Hu, C.-H. & Tang, L. A one-dimensional heterometallic coordination polymer with a three-dimensional supramolecular framework: poly[μ 2 -aqua-diaqua(2,2′-bipyridyl)(μ 5 -2-sulfonatobutanedioato)copper(II)sodium(I)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 68, m209–m212 (2012).spa
dc.relation.references24. Bo, Q.-B., Sun, G.-X. & Geng, D.-L. Novel Three-Dimensional Pillared-Layer Ln(III)−Cu(I) Coordination Polymers Featuring Spindle-Shaped Heterometallic Building Units. Inorg. Chem. 49, 561–571 (2010).spa
dc.relation.references25. Schwedler, I., Henke, S., Wharmby, M. T., Bajpe, S. R., Cheetham, A. K. & Fischer, R. A. Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness. Dalt. Trans. 45, 4230–4241 (2016).spa
dc.relation.references26. Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Paik Suh, M. & Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013).spa
dc.relation.references27. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chemical Reviews 112, 673–674 (2012).spa
dc.relation.references28. Olajire, A. A. Synthesis chemistry of metal-organic frameworks for CO2capture and conversion for sustainable energy future. Renew. Sustain. Energy Rev. 92, 570–607 (2018).spa
dc.relation.references29. Roy, S., Chakraborty, A. & Maji, T. K. Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials. Coord. Chem. Rev. 273–274, 139–164 (2014).spa
dc.relation.references30. Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 358, 92–107 (2018).spa
dc.relation.references31. Wen, J., Fang, Y. & Zeng, G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere 201, 627–643 (2018).spa
dc.relation.references32. Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Acc. Chem. Res. 34, 319–330 (2001).spa
dc.relation.references33. Wang, H., Zhu, Q.-L., Zou, R. & Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2, 52–80 (2017).spa
dc.relation.references34. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).spa
dc.relation.references35. Van Vleet, M. J., Weng, T., Li, X. & Schmidt, J. R. In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. Chem. Rev. 118, 3681–3721 (2018).spa
dc.relation.references36. Bae, Y. S., Yazayd’n, A. Ö. & Snurr, R. Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain Ultra-Micropores. Langmuir 26, 5475–5483 (2010).spa
dc.relation.references37. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).spa
dc.relation.references38. Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008).spa
dc.relation.references39. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–72 (2002).spa
dc.relation.references40. Wang, X. L., Qin, C., Wu, S. X., Shao, K. Z., Lan, Y. Q., Wang, S., Zhu, D. X., Su, Z. M. & Wang, E. B. Bottom-up synthesis of porous coordination frameworks: Apical substitution of a pentanuclear tetrahedral precursor. Angew. Chemie - Int. Ed. 48, 5291–5295 (2009).spa
dc.relation.references41. Wuest, J. D. Engineering crystals by the strategy of molecular tectonics. Chem. Commun. 5830–5837 (2005). doi:10.1039/b512641jspa
dc.relation.references42. Hosseini, M. W. Molecular Tectonics: From Simple Tectons to Complex Molecular Networks. Acc. Chem. Res. 38, 313–323 (2005).spa
dc.relation.references43. Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400 (2009).spa
dc.relation.references44. Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 43, 6141–72 (2014).spa
dc.relation.references45. Li, J. R., Timmons, D. J. & Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009).spa
dc.relation.references46. Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coord. Chem. Rev. 358, 125–152 (2018).spa
dc.relation.references47. Wen, Y., Zhang, J., Xu, Q., Wu, X. T. & Zhu, Q. L. Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coord. Chem. Rev. 376, 248–276 (2018).spa
dc.relation.references48. Lee, Y. R., Kim, J. & Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 30, 1667–1680 (2013).spa
dc.relation.references49. Jhung, S. H., Lee, J. H., Forster, P. M., Férey, G., Cheetham, A. K. & Chang, J. S. Microwave synthesis of hybrid inorganic - Organic porous materials: phase-selective and rapid crystallization. Chem. - A Eur. J. 12, 7899–7905 (2006).spa
dc.relation.references50. Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Férey, G. & Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).spa
dc.relation.references51. Sargazi, G., Afzali, D., Daldosso, N., Kazemian, H., Chauhan, N. P. S., Sadeghian, Z., Tajerian, T., Ghafarinazari, A. & Mozafari, M. A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds. Ultrason. Sonochem. 27, 395–402 (2015).spa
dc.relation.references52. Jung, D. W., Yang, D. A., Kim, J., Kim, J. & Ahn, W. S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalt. Trans. 39, 2883–2887 (2010).spa
dc.relation.references53. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).spa
dc.relation.references54. Hartmann, M., Kunz, S., Himsl, D., Tangermann, O., Ernst, S. & Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 24, 8634–8642 (2008).spa
dc.relation.references55. Beldon, P. J., Fábián, L., Stein, R. S., Thirumurugan, A., Cheetham, A. K. & Friščić, T. Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angew. Chemie Int. Ed. 49, 9640–9643 (2010).spa
dc.relation.references56. Friščić, T., Reid, D. G., Halasz, I., Stein, R. S., Dinnebier, R. E. & Duer, M. J. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angew. Chemie - Int. Ed. 49, 712–715 (2010).spa
dc.relation.references57. Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Chen, Q., He, M.-Y., Cui, A.-J., Li, C., Liu, Q. & Du, M. Solvent-Controlled Assembly of Manganese(II) Tetrachloroterephthalates with 1D Chain, 2D Layer, and 3D Coordination Architectures. Cryst. Growth Des. 8, 3437–3445 (2008).spa
dc.relation.references58. Huang, X.-C., Li, D. & Chen, X.-M. Solvent-induced supramolecular isomerism in silver(i) 2-methylimidazolate. CrystEngComm 8, 3 51 (2006).spa
dc.relation.references59. Pedireddi, V. R. & Varughese, S. Solvent-Dependent Coordination Polymers: Cobalt Complexes of 3,5-Dinitrobenzoic Acid and 3,5-Dinitro-4-methylbenzoic Acid with 4,4′-Bipyrdine. Inorg. Chem. 43, 450–457 (2004).spa
dc.relation.references60. Wang, F.-K., Yang, S.-Y., Huang, R.-B., Zheng, L.-S. & Batten, S. R. Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture. CrystEngComm 10, 1211 (2008).spa
dc.relation.references61. Ma, L., Wang, L.-Y., Lu, D., Batten, S. R. & Wang, J. Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of Co(II)-H 2 tbip/bpp Mixed Ligands System. Cryst. Growth Des. 9, 1741–1749 (2009).spa
dc.relation.references62. Pan, L., Frydel, T., Sander, M. B., Huang, X. & Li, J. The Effect of pH on the Dimensionality of Coordination Polymers. Inorg. Chem. 40, 1271–1283 (2001).spa
dc.relation.references63. Fang, Q., Zhu, G., Xue, M., Sun, J., Tian, G., Wu, G. & Qiu, S. Influence of organic bases on constructing 3D photoluminescent open metal–organic polymeric frameworks. Dalt. Trans. 2202–2207 (2004). doi:10.1039/B402715Aspa
dc.relation.references64. Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F. & Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 117, 406–413 (2009).spa
dc.relation.references65. Muñoz Acevedo, J. C. Síntesis y carácterización de mallas lantánidos con acidos carboxílicos y aminas aromáticas. (Universidad de Antioquia, 2006).spa
dc.relation.references66. Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A. & Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC - Trends Anal. Chem. 118, 401–425 (2019). 67. Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. Solvent hydrolysis and templating effects in the synthesis of metal–organic frameworks. CrystEngComm 7, 548 (2005).spa
dc.relation.references68. Bauer, S., Bein, T. & Stock, N. High-Throughput Investigation and Characterization of Cobalt Carboxy Phosphonates. Inorg. Chem. 44, 5882–5889 (2005).spa
dc.relation.references69. Stock, N. & Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 112, 933–969 (2012).spa
dc.relation.references70. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M. & Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 130, 11650–11661 (2008).spa
dc.relation.references71. Kumar, G. & Gupta, R. Molecularly designed architectures – the metalloligand way. Chem. Soc. Rev. Chem. Soc. Rev 42, 9403–9453 (2013).spa
dc.relation.references72. Xiang, S., Li, L., Zhang, J., Tan, X., Cui, H., Shi, J., Hu, Y., Chen, L., Su, C.-Y. & James, S. L. Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J. Mater. Chem. 22, 1862 (2012).spa
dc.relation.references73. Lohe, M. R., Rose, M. & Kaskel, S. Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 6056 (2009). doi:10.1039/b910175fspa
dc.relation.references74. Ghorbani-Choghamarani, A., Darvishnejad, Z. & Tahmasbi, B. Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: As efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols. Inorganica Chim. Acta 435, 223–231 (2015).spa
dc.relation.references75. Tu, T. N., Nguyen, M. V., Nguyen, H. L., Yuliarto, B., Cordova, K. E. & Demir, S. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev. 364, 33–50 (2018).spa
dc.relation.references76. Su, J. & Chen, J. Lanthanide Metal-Organic Frameworks. Structure and Bonding 163, (Springer Berlin Heidelberg, 2015).spa
dc.relation.references77. Luo, F., Batten, S. R., Che, Y. & Zheng, J.-M. Synthesis, Structure, and Characterization of Three Series of 3d–4f Metal-Organic Frameworks Based on Rod-Shaped and (6,3)-Sheet Metal Carboxylate Substructures. Chem. - A Eur. J. 13, 4948–4955 (2007).spa
dc.relation.references78. Fordham, S., Wang, X., Bosch, M. & Zhou, H.-C. Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. in Structure and Bonding 119, 1–27 (2014).spa
dc.relation.references79. Zhang, S. & Cheng, P. Recent advances in the construction of lanthanide–copper heterometallic metal–organic frameworks. CrystEngComm 17, 4250–4271 (2015).spa
dc.relation.references80. Duan, H., Dan, W. & Fang, X. Zinc-coordinated MOFs complexes regulated by hydrogen bonds: Synthesis, structure and luminescence study toward broadband white-light emission. J. Solid State Chem. 260, 159–164 (2018).spa
dc.relation.references81. Peña-Rodríguez, R., Molina-González, J. A., Desirena-Enrriquez, H., Rivera-Villanueva, J. M. & Castillo-Blum, S. E. Tunable luminescence modulation and warm light emission of Zn-MOF (4,4′-bipyridyl and zinc acetate) doped with Eu3+ and Tb3+. Mater. Chem. Phys. 223, 494–502 (2018).spa
dc.relation.references82. Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O’Keeffe, M., Kim, J. & Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science (80-. ). 329, 424–428 (2010).spa
dc.relation.references83. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).spa
dc.relation.references84. Modak, A. & Jana, S. Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater. 276, 107–132 (2018).spa
dc.relation.references85. Cotton, S. Lanthanide and Actinide Chemistry - Cotton - Wiley Online Library. (John Wiley & Sons, Ltd, 2006).spa
dc.relation.references86. Mendiratta, S., Usman, M. & Lu, K. L. Expanding the dimensions of metal–organic framework research towards dielectrics. Coord. Chem. Rev. 360, 77–91 (2018).spa
dc.relation.references87. Tian, Y., Cong, J., Shen, S., Chai, Y., Yan, L., Wang, S. & Sun, Y. Electric control of magnetism in a multiferroic metal-organic framework. Phys. status solidi - Rapid Res. Lett. 8, 91–94 (2014).spa
dc.relation.references88. Abtab, S. M. T., Maity, M., Bhattacharya, K., Sañudo, E. C. & Chaudhury, M. Syntheses, Structures, and Magnetic Properties of a Family of Tetranuclear Hydroxido-Bridged Ni II 2 Ln III 2 (Ln = La, Gd, Tb, and Dy) Complexes: Display of Slow Magnetic Relaxation by the Zinc(II)–Dysprosium(III) Analogue. Inorg. Chem. 51, 10211–10221 (2012).spa
dc.relation.references89. Yang, R. T. Fundamental Factors for Designing Adsorbent. in Adsorbents: Fundamentals and Applications 8–16 (John Wiley & Sons, Inc., 2003). doi:10.1002/047144409X.ch2spa
dc.relation.references90. Pearson, G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).spa
dc.relation.references91. Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science (80-. ). 336, 1018–1023 (2012).spa
dc.relation.references92. Tian, Y.-Q., Chen, Z.-X., Weng, L.-H., Guo, H.-B., Gao, S. & Zhao, D. Y. Two Polymorphs of Cobalt(II) Imidazolate Polymers Synthesized Solvothermally by Using One Organic Template N , N -Dimethylacetamide. Inorg. Chem. 43, 4631–4635 (2004).spa
dc.relation.references93. Cai, H., Huang, Y.-L. & Li, D. Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2017).spa
dc.relation.references94. Carraher, J. M., Matthiesen, J. E. & Tessonnier, J. P. Comments on “Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range”. J. Mol. Liq. 224, 420–422 (2016).spa
dc.relation.references95. Matthiesen, J. E., Carraher, J. M., Vasiliu, M., Dixon, D. A. & Tessonnier, J. P. Electrochemical Conversion of Muconic Acid to Biobased Diacid Monomers. ACS Sustain. Chem. Eng. 4, 3575–3585 (2016).spa
dc.relation.references96. Khalil, I., Quintens, G., Junkers, T. & Dusselier, M. Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chem. 22, 1517–1541 (2020).spa
dc.relation.references97. Michaelides, A., Skoulika, S. & Siskos, M. G. 2D and 3D photoreactive lanthanide MOFs of trans,trans-muconic acid. Chem. Commun. 49, 1008–1010 (2013).spa
dc.relation.references98. Yoneda, K., Ohba, M., Shiga, T., Oshio, H. & Kitagawa, S. Three-dimensional Ferromagnetic Frameworks of Syn–Anti-type Carboxylate-bridged Ni II and Co II Coordination Polymers. Chem. Lett. 36, 1184–1185 (2007).spa
dc.relation.references99. Dimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. Microporous Rare Earth Coordination Polymers: Effect of Lanthanide Contraction on Crystal Architecture and Porosity. Chem. Mater. 14, 2616–2622 (2002). 100. Goel, N. & Kumar, N. Study of four new Cd(II) metal-organic frameworks: Syntheses, structures, and highly selective sensing for 4-nitrophenol. Inorganica Chim. Acta 503, 119352 (2020).spa
dc.relation.references101. Siddiqi, Z. A., Sharma, P. K., Shahid, M., Kumar, S., Anjuli & Siddique, A. Structural, electrochemical characterization and SOD mimic activities of 1D chain or 3D network encouraged by unique μ2-bridging by adipate ion in mixed ligand complexes containing α-diimine as auxiliary ligand. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93, 280–289 (2012).spa
dc.relation.references102. Long, L.-S., Wu, Y.-R., Huang, R.-B. & Zheng, L.-S. A Well-Resolved uudd Cyclic Water Tetramer in the Crystal Host of [Cu(adipate)(4,4-bipyridine)]·(H 2 O) 2. Inorg. Chem. 43, 3798–3800 (2004).spa
dc.relation.references103. Lin, J.-L. & Zheng, Y.-Q. catena -Poly[[μ-hexanedioato-1κ O 1 :2κ O 6 -bis[aqua(5-carboxypentanoato-κ O )copper(II)]]-di-μ-4,4′-bipyridine-1κ N :1′κ N ′;2κ N :2′κ N ′]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 61, m501–m503 (2005).spa
dc.relation.references104. Nagaraja, C. M., Ugale, B. & Chanthapally, A. Construction of 2D interwoven and 3D interpenetrated metal-organic frameworks of Zn(ii) by varying N,N′-donor spacers. CrystEngComm 16, 4805–4815 (2014).spa
dc.relation.references105. Mir, M. H. & Vittal, J. J. Muconate bridged coordination polymers of Cu(II): Effect of auxiliary ligand on their structural architectures. Inorganica Chim. Acta 403, 97–101 (2013).spa
dc.relation.references106. Chen, B., Jiang, F., Han, L., Wu, B., Yuan, D., Wu, M. & Hong, M. A novel chiral framework constructed through three-fold interpenetration of (4,4) nets of Ni(II)–muconate–4,4′-bipyridine. Inorg. Chem. Commun. 9, 371–374 (2006).spa
dc.relation.references107. Li, N., Feng, R., Zhu, J., Chang, Z. & Bu, X.-H. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev. 375, 558–586 (2018).spa
dc.relation.references108. Aljammal, N., Jabbour, C., Chaemchuen, S., Juzsakova, T. & Verpoort, F. Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts 9, 512 (2019).spa
dc.relation.references109. Liu, Q.-Y., Li, L.-Q., Wang, Y.-L., Yang, E.-L., Wei, J.-J. & Fu, J.-H. New heterometallic frameworks with flexible sulfonate-carboxylate ligand: syntheses, structures, and properties. CrystEngComm 13, 6150 (2011).spa
dc.relation.references110. Andruh, M. & Ruiz-Pérez, C. Crystal Engineering of Coordination Polymers. in Macromolecules Containing Metal and Metal-Like Elements 9, 451–511 (John Wiley & Sons, Inc., 2009).spa
dc.relation.references111. Desai, A. V., Sharma, S., Let, S. & Ghosh, S. K. N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord. Chem. Rev. 395, 146–192 (2019).spa
dc.relation.references112. Luo, F., Luo, M. B. & Liu, Y. H. Temperature-controlled structure diversity observed in the Zn(ii)-oxalate-4,4′-bipyridine three-member system. CrystEngComm 12, 1750–1753 (2010).spa
dc.relation.references113. Lu, J. Y., Lawandy, M. a, Li, J., Yuen, T. & Lin, C. L. A New Type of Two-Dimensional Metal Coordination Systems: Hydrothermal Synthesis and Properties of the First Oxalate−bpy Mixed-Ligand Framework [M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox = C 2 O 4 2- ; bpy = 4,4‘-bipyridine). Inorg. Chem. 38, 2695–2704 (1999).spa
dc.relation.references114. Wang, G.-L., Yang, X.-L., Liu, Y., Li, Y.-Z., Du, H.-B. & You, X.-Z. A 3d–3d heterometallic organic framework consisting of two cross-linked coordination polymers. Inorg. Chem. Commun. 11, 814–817 (2008).spa
dc.relation.references115. Rodríguez-Martín, Y., Hernández-Molina, M., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. Crystal structures and magnetic properties of two- and three-dimensional malonato-bridged manganese( II ) complexes. Dalt. Trans. 2359–2365 (2003). doi:10.1039/B300291Hspa
dc.relation.references116. Rodriguez-Martı́n, Y., Ruiz-Pérez*, C., Sanchiz, J., Lloret*, F. & Julve, M. Crystal structure and magnetic properties of the flexible self-assembled two-dimensional square network complex [Cu2(mal)2(H2O)2(4,4′-bpy)] (H2mal=malonic acid and 4,4′-bpy=4,4′-bipyridine). Inorganica Chim. Acta 318, 159–165 (2001).spa
dc.relation.references117. Pasán, J., Sanchiz, J., Lloret, F., Julve, M. & Ruiz-Pérez, C. Crystal engineering of 3-D coordination polymers by pillaring ferromagnetic copper( II)-methylmalonate layers. CrystEngComm 9, 478–487 (2007).spa
dc.relation.references118. Déniz, M., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lloret, F., Julve, M. & Ruiz-Pérez, C. Metal-organic coordination frameworks based on mixed methylmalonate and 4,4′-bipiridine ligands: synthesis, crystal structure and magnetic properties. New J. Chem. 34, 2515 (2010).spa
dc.relation.references119. Das, S., Maloth, S. & Pal, S. Nickel(II) coordination polymers-4,4′-bipyridine-connected six- and four-fold metal-succinate helices and their corresponding chiral and achiral networks. Eur. J. Inorg. Chem. 4270–4276 (2011). doi:10.1002/ejic.201100355spa
dc.relation.references120. Liu, Y., Feng, Y.-L. & Fu, W.-W. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties. Acta Crystallogr. Sect. C Struct. Chem. 72, 308–312 (2016).spa
dc.relation.references121. Ying, S. M., Mao, J. G., Sun, Y. Q., Zeng, H. Y. & Dong, Z. C. Syntheses and crystal structures of three open-frameworks of metal succinates containing a 4,4′-bipyridine ligand. Polyhedron 22, 3097–3103 (2003).spa
dc.relation.references122. Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. Coordination Polymers Based on Cobridging of Rigid and Flexible Spacer Ligands: Syntheses, Crystal Structures, and Magnetic Properties of [Mn(bpy)(H 2 O)(C 4 H 4 O 4 )]·0.5bpy, Mn(bpy)(C 5 H 6 O 4 ), and Mn(bpy)(C 6 H 8 O 4 ). Inorg. Chem. 43, 2590–2596 (2004).spa
dc.relation.references123. Lyons, E. M., Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. An acentric luminescent cadmium dimethylsuccinate/bipyridine coordination polymer with an uncommon three-dimensional CdSO4 topology. Inorg. Chem. Commun. 11, 855–858 (2008).spa
dc.relation.references124. Vaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. A Family of Nanoporous Materials Based on an Amino Acid Backbone. Angew. Chemie Int. Ed. 45, 6495–6499 (2006).spa
dc.relation.references125. Shi, Z., Zhang, L., Gao, S., Yang, G., Hua, J., Gao, L. & Feng, S. Coordination Polymers: Structural Transformation from Two to Three Dimensions through Ligand Conformation Change. Inorg. Chem. 39, 1990–1993 (2000).spa
dc.relation.references126. Ma, B.-Q., Mulfort, K. L. & Hupp, J. T. Microporous Pillared Paddle-Wheel Frameworks Based on Mixed-Ligand Coordination of Zinc Ions. Inorg. Chem. 44, 4912–4914 (2005).spa
dc.relation.references127. Fujii, K., Garay, A. L., Hill, J., Sbircea, E., Pan, Z., Xu, M., Apperley, D. C., James, S. L. & Harris, K. D. M. Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chem. Commun. 46, 7572 (2010).spa
dc.relation.references128. Batool, M., Ibrahim, S., Iqbal, B., Ali, S., Badshah, A., Abbas, S., Turner, D. R. & Nadeem, M. A. Novel cobalt-fumarate framework as a robust and efficient electrocatalyst for water oxidation at neutral pH. Electrochim. Acta 298, 248–253 (2019).spa
dc.relation.references129. Lah, N., Cigić, I. K. & Leban, I. Solvothermal synthesis of a novel mixed valence Cu(I)/Cu(II) complex containing sulphate, malate and 4,4′-bipyridine, [CuICu 2II(mal)(SO4)(bpy)2·H 2O]n. Unique binding mode of the malate anion. Inorg. Chem. Commun. 6, 1441–1444 (2003).spa
dc.relation.references130. Zavakhina, M. S., Samsonenko, D. G., Virovets, A. V., Dybtsev, D. N. & Fedin, V. P. Homochiral Cu(II) and Ni(II) malates with tunable structural features. J. Solid State Chem. 210, 125–129 (2014).spa
dc.relation.references131. Duan, L.-M., Xie, F.-T., Chen, X.-Y., Chen, Y., Lu, Y.-K., Cheng, P. & Xu, J.-Q. Syntheses, Structures, and Magnetic Properties of Three Novel Metal−Malate−Bipyridine Coordination Polymers with Layered and Pillared Topology. Cryst. Growth Des. 6, 1101–1106 (2006).spa
dc.relation.references132. Zingiryan, A., Zhang, J. & Bu, X. Cooperative Self-Assembly of Chiral L-Malate and Achiral Succinate in the Formation of a Three-Dimensional Homochiral Framework. Inorg. Chem. 47, 8607–8609 (2008).spa
dc.relation.references133. Rather, B. & Zaworotko, M. J. A 3D metal-organic network, [Cu2(glutarate)2(4,4′-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydrationElectronic supplementary information (ESI) available: experimental details, IR, TGA and XRPD of all compounds. See ht. Chem. Commun. 2, 830–831 (2003).spa
dc.relation.references134. Zheng, Y.-Q. & Ying, E.-B. New α,ω-dicarboxylate coordination polymers with 4,4′-bipyridine: Cu(bpy)(C5H6O4), Zn(bpy)(C5H6O4), Zn(bpy)(C6H8O4) and Mn(bpy)(C8H12O4)·H2O. Polyhedron 24, 397–406 (2005).spa
dc.relation.references135. Chen, B., Ji, Y., Xue, M., Fronczek, F. R., Hurtado, E. J., Mondal, J. U., Liang, C. & Dai, S. Metal−Organic Framework with Rationally Tuned Micropores for Selective Adsorption of Water over Methanol. Inorg. Chem. 47, 5543–5545 (2008).spa
dc.relation.references136. Borkowski, L. A. & Cahill, C. L. Crystal Engineering with the Uranyl Cation II. Mixed Aliphatic Carboxylate/Aromatic Pyridyl Coordination Polymers: Synthesis, Crystal Structures, and Sensitized Luminescence. Cryst. Growth Des. 6, 2248–2259 (2006).spa
dc.relation.references137. Nettleman, J. H., Supkowski, R. M. & LaDuca, R. L. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4′-bipyridine. J. Solid State Chem. 183, 291–303 (2010).spa
dc.relation.references138. Wang, B., Xie, L.-H., Wang, X., Liu, X.-M., Li, J. & Li, J.-R. Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy Environ. 3, 191–228 (2018).spa
dc.relation.references139. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F. & Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 307, 147–187 (2016).spa
dc.relation.references140. Banerjee, R., Day, G. M., Friščić, T. & Zhang, H. 2016 New talent: crystal engineering at its biggest and strongest. CrystEngComm 18, 3963–3967 (2016).spa
dc.relation.references141. Trickett, C. A., Helal, A., Al-Maythalony, B. A., Yamani, Z. H., Cordova, K. E. & Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017).spa
dc.relation.references142. Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and Reversible Ammonia Uptake in Mesoporous Azolate Metal–Organic Frameworks with Open Mn, Co, and Ni Sites. J. Am. Chem. Soc. 138, 9401–9404 (2016).spa
dc.relation.references143. Bhatt, P. M., Belmabkhout, Y., Assen, A. H., Weseliński, Ł. J., Jiang, H., Cadiau, A., Xue, D.-X. & Eddaoudi, M. Isoreticular rare earth fcu -MOFs for the selective removal of H 2 S from CO 2 containing gases. Chem. Eng. J. 324, 392–396 (2017).spa
dc.relation.references144. Solovyeva, M. V., Gordeeva, L. G., Krieger, T. A. & Aristov, Y. I. MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption. Energy Convers. Manag. 174, 356–363 (2018).spa
dc.relation.references145. Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 5436 (2009). doi:10.1039/b910228kspa
dc.relation.references146. Dinča, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006).spa
dc.relation.references147. Mason, J. A., Oktawiec, J., Taylor, M. K., Hudson, M. R., Rodriguez, J., Bachman, J. E., Gonzalez, M. I., Cervellino, A., Guagliardi, A., Brown, C. M., Llewellyn, P. L., Masciocchi, N. & Long, J. R. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).spa
dc.relation.references148. Schlichte, K., Kratzke, T. & Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 73, 81–88 (2004).spa
dc.relation.references149. Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A. & De Vos, D. E. Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chem. - A Eur. J. 12, 7353–7363 (2006).spa
dc.relation.references150. Corma, A., Iglesias, M., Llabrés i Xamena, F. X. & Sánchez, F. Cu and Au Metal-Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chem. - A Eur. J. 16, 9789–9795 (2010).spa
dc.relation.references151. Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P. & Čejka, J. Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalt. Trans. 41, 4036 (2012).spa
dc.relation.references152. Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H. & Čejka, J. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3, 500–507 (2013).spa
dc.relation.references153. Phan, N. T. S., Vu, P. H. L. & Nguyen, T. T. Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. J. Catal. 306, 38–46 (2013). 154. Feldblyum, J. I., Keenan, E. A., Matzger, A. J. & Maldonado, S. Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. J. Phys. Chem. C 116, 3112–3121 (2012).spa
dc.relation.references155. Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655 (2013).spa
dc.relation.references156. Münch, A. S., Seidel, J., Obst, A., Weber, E. & Mertens, F. O. R. L. High-Separation Performance of Chromatographic Capillaries Coated with MOF-5 by the Controlled SBU Approach. Chem. - A Eur. J. 17, 10958–10964 (2011).spa
dc.relation.references157. Lu, G., Farha, O. K., Zhang, W., Huo, F. & Hupp, J. T. Engineering ZIF-8 Thin Films for Hybrid MOF-Based Devices. Adv. Mater. 24, 3970–3974 (2012).spa
dc.relation.references158. Cui, Y., Xu, H., Yue, Y., Guo, Z., Yu, J., Chen, Z., Gao, J., Yang, Y., Qian, G. & Chen, B. A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. J. Am. Chem. Soc. 134, 3979–3982 (2012).spa
dc.relation.references159. Díaz, R., Orcajo, M. G., Botas, J. A., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126–128 (2012).spa
dc.relation.references160. An, J., Farha, O. K., Hupp, J. T., Pohl, E., Yeh, J. I. & Rosi, N. L. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 3, 604–606 (2012).spa
dc.relation.references161. Cai, H., Xu, L.-L., Lai, H.-Y., Liu, J.-Y., Ng, S. W. & Li, D. A highly emissive and stable zinc(ii) metal–organic framework as a host–guest chemopalette for approaching white-light-emission. Chem. Commun. 53, 7917–7920 (2017).spa
dc.relation.references162. Sontz, P. A., Bailey, J. B., Ahn, S. & Tezcan, F. A. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. J. Am. Chem. Soc. 137, 11598–11601 (2015).spa
dc.relation.references163. Zhao, M. & Wu, C.-D. Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Co-catalyst Platform. ChemCatChem 9, 1192–1196 (2017).spa
dc.relation.references164. Hansen, J., Ruedy, R., Sato, M. & Lo, K. GLOBAL SURFACE TEMPERATURE CHANGE. Rev. Geophys. 48, RG4004 (2010).spa
dc.relation.references165. Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011).spa
dc.relation.references166. Ben-Mansour, R., Habib, M. A. A., Bamidele, O. E. E., Basha, M., Qasem, N. A. A. A. A., Peedikakkal, A., Laoui, T. & Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review. Appl. Energy 161, 225–255 (2016).spa
dc.relation.references167. Pearce, C. K., Grosse, D. W. & Hessel, W. Effect of molecular structure on infrared spectra of six isomers of bipyridine. J. Chem. Eng. Data 15, 567–570 (1970).spa
dc.relation.references168. Topacli, Ar. & Akyüz, S. 4,4’-Bipyridyl: vibrational assignments and force field. Spectrochim. Acta 51A, 633–641 (1995).spa
dc.relation.references169. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Journal of Chemical Education 77, (John Wiley & Sons, Inc., 2008).spa
dc.relation.references170. Liu, B. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications. Nanoscale 4, 7194 (2012).spa
dc.relation.references171. Ferraro, J. R. & Walker, W. R. Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds. Inorg. Chem. 4, 1382–1386 (1965).spa
dc.relation.references172. Xiu-min, S. H. I., Hai-yan, W., Yan-bing, L. I., Jing-xiu, Y., Lei, C., Ge, H. U. I., Wei-qing, X. U. & Bing, Z. Spectroscopic Studies on Co ( II ), Ni ( II ), Zn ( II ) Complexes with 4 , 4 ′ -Bipyridine. Chem. Res. Chinese Univ. 26, 1011–1015 (2010).spa
dc.relation.references173. Czakis-Sulikowska, D. & Czylkowska, A. Complexes of Mn(II), Co(II), Ni(II) and Cu(II) with 4,4′-bipyridine and dichloroacetates. Synthesis, thermal and other properties. J. Therm. Anal. Calorim. 71, 395–405 (2003).spa
dc.relation.references174. Seguel, G. V., Rivas, B. L. & Órdenes, P. Syntheses and characterizations of copper complexes: Interaction of copper acetate dihydrate with 4,4’-bipyridine. J. Chil. Chem. Soc. 60, 3080–3082 (2015).spa
dc.relation.references175. Guerriero, P., Casellato, U., Tamburini, S., Vigato, P. A. & Graziani, R. Lanthanide complexes with compartmental schiff bases. Inorganica Chim. Acta 129, 127–138 (1987).spa
dc.relation.references176. Carnall, W. T., Siegel, S., Ferraro, J. R., Tani, B. & Gebert, E. A New Series of Anhydrous Double Nitrate Salts of the Lanthanides. Structural and Spectral Characterization1. Inorg. Chem. 12, 560–564 (1973).spa
dc.relation.references177. Musgrave, T. R. & Mattson, C. E. Coordination chemistry of 4,4’-bipyridine. Inorg. Chem. 7, 1433–1436 (1968).spa
dc.relation.references178. Langford, J. I. & Wilson, A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978).spa
dc.relation.references179. Ahuja, I. S. & Tripathi, S. X–Ray Diffraction Studies on 4,4′-Bipyridyl Complexes with Cobalt(II)-, Nickel(II)-, Zinc(II),- and Cadmium(II) Nitrates. Cryst. Res. Technol. 26, K92–K96 (1991).spa
dc.relation.references180. Chohan, Z. H., Praveen, M. & Ghaffaf, A. Synthesis, Characterisation and Biological Role of Anions (Nitrate, Sulphate, Oxalate and Acetate) in Co(II), Cu(II) and Ni(II) Metal Chelates of Some Schiff Base Derived Amino Acids. Synth. React. Inorg. Met. Chem. 28, 1673–1687 (1998).spa
dc.relation.references181. Morita, M., Takahashi, H., Yabushita, S. & Takahashi, K. Why does the IR spectrum of hydroxide stretching vibration weaken with increase in hydration? Phys. Chem. Chem. Phys. 16, 23143–23149 (2014).spa
dc.relation.references182. Brusau, E. V., Pedregosa, J. C., Narda, G. E., Echeverria, G. & Punte, G. Seven-Coordinated Diaquasuccinatocadmium(II) Bidimensional Polymer: Crystal Structure and Vibrational and Thermal Behavior. J. Solid State Chem. 153, 1–8 (2000).spa
dc.relation.references183. Dianu, M. L., Kriza, A., Stanica, N. & Musuc, A. M. Transition metal M(II) complexes with isonicotinoylhydrazone-9-anthraldehyde. J. Serbian Chem. Soc. 75, 1515–1531 (2010).spa
dc.relation.references184. Barbooti, M. M. Thermal behaviour of copper oxides and copper sulphate in the presence of carbon. Sol. Energy Mater. 10, 35–40 (1984).spa
dc.relation.references185. Baimuratova, R. K., Dzhardimalieva, G. I., Golubeva, N. D., Dremova, N. N. & Ivanov, A. V. Coordination polymers based on trans, trans -muconic acid: synthesis, structure, adsorption and thermal properties. Pure Appl. Chem. 92, 859–870 (2020).spa
dc.relation.references186. Tilley, R. J. D. Crystals and Crystal Structures. (John Wiley & Sons, Ltd, 2006).spa
dc.relation.references187. Côté, A. P. & Shimizu, G. K. H. The supramolecular chemistry of the sulfonate group in extended solids. Coord. Chem. Rev. 245, 49–64 (2003).spa
dc.relation.references188. Xu, Z. P. & Braterman, P. S. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J. Mater. Chem. 13, 268–273 (2003).spa
dc.relation.references189. Evanson, K. W., Thorstenson, T. A. & Urban, M. W. Surface and interfacial FTIR spectroscopic studies of latexes. II. Surfactant–copolymer compatibility and mobility of surfactants. J. Appl. Polym. Sci. 42, 2297–2307 (1991).spa
dc.relation.references190. Mohamed, G. G., El-Gamel, N. E. A. & Nour El-Dien, F. A. Preparation, chemical characterization, and electronic spectra of 6-(2-pyridylazo)-3-acetamidophenol and its metal complexes. Synth. React. Inorg. Met. Chem. 31, 347–358 (2001).spa
dc.relation.references191. Gimenez, P. & Fereres, S. Effect of Heating Rates and Composition on the Thermal Decomposition of Nitrate Based Molten Salts. Energy Procedia 69, 654–662 (2015).spa
dc.relation.references192. Moore, W. J. & Williams, E. L. Decomposition of Zinc Oxide by Zinc Vapor. J. Phys. Chem. 63, 1516–1517 (1959).spa
dc.relation.references193. Elliott, N. A Redetermination of the Carbon—Oxygen Distance in Calcite and the Nitrogen—Oxygen Distance in Sodium Nitrate. J. Am. Chem. Soc. 59, 1380–1382 (1937).spa
dc.relation.references194. Michaelides, A., Skoulika, S. & Siskos, M. G. Photoreactive 3D microporous lanthanide MOFs: formation of a strained ladderane in a partial single crystal-to-single crystal manner. Chem. Commun. 47, 7140 (2011).spa
dc.relation.references195. Yuvakkumar, R. & Hong, S. I. Nd2O3: novel synthesis and characterization. J. Sol-Gel Sci. Technol. 73, 511–517 (2015).spa
dc.relation.references196. Tunell, G., Posnjak, Ε. & Ksanda, C. J. Geometrical and Optical Properties, and Crystal Structure of Tenorite. Zeitschrift für Krist. - Cryst. Mater. 90, (1935).spa
dc.relation.references197. Gilmore, C. J., Kaduk, J. A. & Schenk, H. International Tables for Crystallography Volume H: Powder diffraction. International Tables for Crystallography H, (International Union of Crystallography, 2019).spa
dc.relation.references198. Yang, Q., Wiersum, A. D., Llewellyn, P. L., Guillerm, V., Serre, C. & Maurin, G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem. Commun. 47, 9603 (2011).spa
dc.relation.references199. Constable, E. C., Housecroft, C. E., Price, J. R. & Zampese, J. A. When five are six: the myth of five-coordinate copper(ii) in supramolecular chemistry. CrystEngComm 12, 3163 (2010).spa
dc.relation.references200. Arduini, A. L., Garnett, M., Thompson, R. C. & Wong, T. C. T. Magnetic and Spectral Studies on Cobalt(II) and Copper(II) Salts of Methylsulfuric, Trifluoromethylsulfuric, and Paratolylsulfuric Acids. Can. J. Chem. 53, 3812–3819 (1975).spa
dc.relation.references201. Aminoff, G. XXIV. Über Lauephotogramme und Struktur von Zinkit. Zeitschrift für Krist. - Cryst. Mater. 56, (1921).spa
dc.relation.references202. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).spa
dc.relation.references203. Lide, D. R. CRC Handbook of Chemistry and Physics. Review of Scientific Instruments (2005).spa
dc.relation.references204. Yampolskii, Y., Pinnau, I. & Freeman, B. Materials Science of Membranes for Gas and Vapor Separation Materials Science of Membranes for Gas and Vapor Separation. Membrane Technology (2006). doi:10.1002/047002903Xspa
dc.relation.references205. Belmabkhout, Y., Guillerm, V. & Eddaoudi, M. Low concentration CO 2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? Chem. Eng. J. 296, 386–397 (2016).spa
dc.relation.references206. Yang, R. T. Adsorbents: Fundamentals and Applications. America (John Wiley & Sons, Inc., 2003).spa
dc.relation.references207. D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chemie - Int. Ed. 49, 6058–6082 (2010).spa
dc.relation.references208. Zhao, R. L., Yue, K. F., Zhou, C. S., Cheng, Q. D. M., Shi, J. T., Liu, Y. L. & Wang, Y. Y. A study of zinc(II) coordination polymers with identical meso-helix based on 1,4-bis(2-methyl-imidazol-1-yl)butane. Inorganica Chim. Acta 402, 25–32 (2013).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.lembMetales - Características físico-químicas
dc.subject.proposalMOFeng
dc.subject.proposalRedes metal-orgánicasspa
dc.subject.proposalPorosidadspa
dc.subject.proposalPorosidadeng
dc.subject.proposalMetal-organic frameworkseng
dc.subject.proposalAdsorptioneng
dc.subject.proposalAdsorciónspa
dc.titleSíntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.spa
dc.title.translatedSynthesis of heterostructural mixed-ligand metal-organic frameworkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadospa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152447599.2021.pdf
Tamaño:
4.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: