Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas

dc.contributor.advisorGonzález Osorio, Fabio Augusto
dc.contributor.advisorGallego Mejia, Joseph Alejandro
dc.contributor.authorBustos-Briñez, Oscar Alberto
dc.contributor.orcid0000-0003-0704-9117spa
dc.contributor.researchgroupMindlabspa
dc.date.accessioned2023-11-29T14:42:39Z
dc.date.available2023-11-29T14:42:39Z
dc.date.issued2023
dc.description.abstractEsta tesis presenta un algoritmo innovador diseñado para realizar detección de anomalías en diversos conjuntos de datos. Este método, denominado Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integra estimación de densidad basada en kernels (en inglés Kernel Density Estimation o KDE) y aprendizaje de máquina (conocida como Machine Learning en inglés) con las matrices de densidad y la medición cuántica, dos prometedores conceptos provenientes del campo de la computación cuántica. Se establecen las bases teóricas y metodológicas que sustentan este método; asimismo, se presentan los detalles de su desarrollo e implementación. Se realiza una comparación sistemática del algoritmo propuesto contra doce métodos variados de detección de anomalías; AD-DMKDE muestra un rendimiento competitivo al ser aplicado sobre una selección de veinticuatro conjuntos de datos. Se establecen las fortalezas y limitaciones del algoritmo propuesto y, a partir del análisis estadístico de su rendimiento, se enuncian una serie de conclusiones y posibles líneas de trabajo futuro. (Texto tomado d la fuente)spa
dc.description.abstractThis thesis presents a novel algorithm designed to perform anomaly detection on multiple data sets. This method, called Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integrates Kernel Density Estimation (KDE) and Machine Learning with density matrices and quantum measurement, two promising concepts from quantum computing. The theoretical and methodological foundations that support this method are established, along with the details of its development and implementation. A systematic comparison of the proposed algorithm with twelve state-of-the-art anomaly detection methods is presented, and AD-DMKDE demonstrates competitive performance when applied on twenty-four benchmark data sets. The strengths and limitations of the proposed algorithm are identified, and based on a statistical analysis of its performance, a series of conclusions and possible lines of future work are stated.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaComputación Teóricaspa
dc.format.extentxiv, 52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85017
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAggarwal, Charu C. ; Aggarwal, Charu C.: An introduction to outlier analysis. Springer, 2017spa
dc.relation.referencesAgrawal, Shikha ; Agrawal, Jitendra: Survey on anomaly detection using data mining techniques. En: Procedia Computer Science 60 (2015), p. 708–713spa
dc.relation.referencesAhmed, Faruk ; Courville, Aaron: Detecting semantic anomalies. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, 2020, p. 3154–3162spa
dc.relation.referencesAlbuquerque Filho, JE ; Brand ̃ao, Laislla C. ; Fernandes, Bruno J. ; Maciel, Alexandre M.: A Review of Neural Networks for Anomaly Detection. En: IEEE Access (2022)spa
dc.relation.referencesAlloqmani, Ahad ; Abushark, Yoosef B. ; Khan, Asif I. ; Alsolami, Fawaz: Deep learning based anomaly detection in images: insights, challenges and recommendations. En: International Journal of Advanced Computer Science and Applications 12 (2021), Nr. 4spa
dc.relation.referencesAlpaydin, Ethem: Introduction to machine learning. MIT press, 2020spa
dc.relation.referencesAn, Jinwon ; Cho, Sungzoon: Variational autoencoder based anomaly detection using reconstruction probability. En: Special lecture on IE 2 (2015), Nr. 1, p. 1–18spa
dc.relation.referencesArshad, Kinza ; Ali, Rao F. ; Muneer, Amgad ; Aziz, Izzatdin A. ; Naseer, Sheraz ; Khan, Nabeel S. ; Taib, Shakirah M.: Deep Reinforcement Learning for Anomaly Detection: A Systematic Review. En: IEEE Access (2022)spa
dc.relation.referencesAsh, Robert B.: Information theory. Courier Corporation, 2012spa
dc.relation.referencesBreunig, Markus M. ; Kriegel, Hans-Peter ; Ng, Raymond T. ; Sander, J ̈org: LOF: identifying density-based local outliers. En: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, p. 93–104spa
dc.relation.referencesBrumer, Paul ; Gong, Jiangbin: Born rule in quantum and classical mechanics. En: Physical Review A 73 (2006), Nr. 5, p. 052109spa
dc.relation.referencesBurkard, Guido ; Ladd, Thaddeus D. ; Nichol, John M. ; Pan, Andrew ; Petta, Jason R.: Semiconductor spin qubits. En: arXiv preprint arXiv:2112.08863 (2021)spa
dc.relation.referencesChalapathy, Raghavendra ; Chawla, Sanjay: Deep learning for anomaly detection: A survey. En: arXiv preprint arXiv:1901.03407 (2019)spa
dc.relation.referencesChandola, Varun ; Banerjee, Arindam ; Kumar, Vipin: Anomaly detection: A survey. En: ACM computing surveys (CSUR) 41 (2009), Nr. 3, p. 1–58spa
dc.relation.referencesChen, Yen-Chi: A tutorial on kernel density estimation and recent advances. En: Biostatistics & Epidemiology 1 (2017), Nr. 1, p. 161–187spa
dc.relation.referencesEimann, Raimund E.: Network event detection with entropy measures, ResearchSpace@ Auckland, Tesis de Grado, 2008spa
dc.relation.referencesErhan, Laura ; Ndubuaku, M ; Di Mauro, Mario ; Song, Wei ; Chen, Min ; Fortino, Giancarlo ; Bagdasar, Ovidiu ; Liotta, Antonio: Smart anomaly detection in sensor systems: A multi-perspective review. En: Information Fusion 67 (2021), p. 64–79spa
dc.relation.referencesFilzmoser, Peter: A multivariate outlier detection method. Citeseer, 2004spa
dc.relation.referencesFraser, Katherine ; Homiller, Samuel ; Mishra, Rashmish K. ; Ostdiek, Bryan ; Schwartz, Matthew D.: Challenges for unsupervised anomaly detection in particle physics. En: Journal of High Energy Physics 2022 (2022), Nr. 3, p. 1–31spa
dc.relation.referencesGallego M, Joseph A. ; Gonz ́alez, Fabio A.: Quantum Adaptive Fourier Features for Neural Density Estimation. En: arXiv e-prints (2022), p. arXiv–2208spa
dc.relation.referencesBergmann, Paul ; Batzner, Kilian ; Fauser, Michael ; Sattlegger, David ; Steger, Carsten: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. En: International Journal of Computer Vision 129 (2021), Nr. 4, p. 1038–1059spa
dc.relation.referencesBrukner, ˇCaslav: On the quantum measurement problem. En: Quantum [Un] Speakables II: Half a Century of Bell’s Theorem (2017), p. 95–117spa
dc.relation.referencesBustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection through Density Matrices and Fourier Features. (2022spa
dc.relation.referencesBustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection Through Density Matrices and Fourier Features. En: Information Technology and Systems: ICITS 2023, Volume 1. Springer, 2023spa
dc.relation.referencesCiliberto, Carlo ; Herbster, Mark ; Ialongo, Alessandro D. ; Pontil, Massi- miliano ; Rocchetto, Andrea ; Severini, Simone ; Wossnig, Leonard: Quantum machine learning: a classical perspective. En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2018), Nr. 2209, p. 20170551spa
dc.relation.referencesDing, Kaize ; Zhou, Qinghai ; Tong, Hanghang ; Liu, Huan: Few-shot network anomaly detection via cross-network meta-learning. En: Proceedings of the Web Conference 2021, 2021, p. 2448–2456spa
dc.relation.referencesGallego-Mejia, Joseph ; Bustos-Brinez, Oscar ; Gonz ́alez, Fabio A.: LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection. En: arXiv pre-print arXiv:2211.08525 (2022)spa
dc.relation.referencesGallego-Mejia, Joseph A. ; Bustos-Brinez, Oscar A. ; Gonz ́alez, Fabio A.: InQMAD: Incremental Quantum Measurement Anomaly Detection. En: 2022 IEEE International Conference on Data Mining Workshops (ICDMW) IEEE, 2022, p. 787–796spa
dc.relation.referencesGoix, Nicolas ; Sabourin, Anne ; Cl ́emenc ̧on, St ́ephan: On anomaly ranking and excess-mass curves. En: Artificial Intelligence and Statistics PMLR, 2015, p. 287–295spa
dc.relation.referencesGonz ́alez, Fabio A. ; Gallego, Alejandro ; Toledo-Cort ́es, Santiago ; Vargas- Calder ́on, Vladimir: Learning with density matrices and random features. En: Quan- tum Machine Intelligence 4 (2022), Nr. 2spa
dc.relation.referencesGonz ́alez, Fabio A. ; Vargas-Calder ́on, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. En: Journal of the Physical Society of Japan 90 (2021), Nr. 4, p. 044002spa
dc.relation.referencesG ̈uhne, Otfried ; T ́oth, G ́eza: Entanglement detection. En: Physics Reports 474 (2009), Nr. 1-6, p. 1–75spa
dc.relation.referencesHagemann, Tanja ; Katsarou, Katerina: A systematic review on anomaly detection for cloud computing environments. En: 2020 3rd Artificial Intelligence and Cloud Computing Conference, 2020, p. 83–96spa
dc.relation.referencesHall, Brian C.: Systems and subsystems, multiple particles. En: Quantum theory for mathematicians. Springer, 2013, p. 419–440spa
dc.relation.referencesHarrou, Fouzi ; Kadri, Farid ; Chaabane, Sondes ; Tahon, Christian ; Sun, Ying: Improved principal component analysis for anomaly detection: Application to an emer- gency department. En: Computers & Industrial Engineering 88 (2015), p. 63–77spa
dc.relation.referencesHayashi, Masahito ; Ishizaka, Satoshi ; Kawachi, Akinori ; Kimura, Gen ; Ogawa, Tomohiro: Introduction to quantum information science. Springer, 2014spa
dc.relation.referencesHewitt, Joshua ; Gelfand, Alan E. ; Quick, Nicola J. ; Cioffi, William R. ; Southall, Brandon L. ; DeRuiter, Stacy L. ; Schick, Robert S.: Kernel density estimation of conditional distributions to detect responses in satellite tag data. En: Animal Biotelemetry 10 (2022), Nr. 1, p. 28spa
dc.relation.referencesJaeger, Gregg: Quantum information. Springer, 2007spa
dc.relation.referencesJanssens, J.H.M. ; Huszar, F. ; Postma, E.O. ; van den Herik, H.J.: Stochastic Outlier Selection. En: Tilburg centre for Creative Computing, techreport 1 (2012), p. 2012spa
dc.relation.referencesKalair, Kieran ; Connaughton, Colm: Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship. En: Transportation Research Part C: Emerging Technologies 127 (2021), p. 103178spa
dc.relation.referencesKalinichenko, Leonid ; Shanin, Ivan ; Taraban, Ilia: Methods for anomaly detection: A survey. En: CEUR workshop proceedings Vol. 1297, 2014, p. 2025spa
dc.relation.referencesKeyl, Michael: Fundamentals of quantum information theory. En: Physics reports 369 (2002), Nr. 5, p. 431–548spa
dc.relation.referencesKhan, Tariq M. ; Robles-Kelly, Antonio: Machine learning: Quantum vs classical. En: IEEE Access 8 (2020), p. 219275–219294spa
dc.relation.referencesKim, Junbong ; Jeong, Kwanghee ; Choi, Hyomin ; Seo, Kisung: GAN-based anomaly detection in imbalance problems. En: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 Springer, 2020, p. 128–145spa
dc.relation.referencesKingma, Diederik P. ; Welling, Max: Auto-encoding variational bayes. En: arXiv preprint arXiv:1312.6114 (2013)spa
dc.relation.referencesKnorr, Edwin M. ; Ng, Raymond T. ; Tucakov, Vladimir: Distance-based outliers: algorithms and applications. En: The VLDB Journal 8 (2000), Nr. 3, p. 237–253spa
dc.relation.referencesKok, Pieter ; Munro, William J. ; Nemoto, Kae ; Ralph, Timothy C. ; Dowling, Jonathan P. ; Milburn, Gerard J.: Linear optical quantum computing with photonic qubits. En: Reviews of modern physics 79 (2007), Nr. 1, p. 135spa
dc.relation.referencesKriegel, Hans-Peter ; Kr ̈oger, Peer ; Zimek, Arthur: Outlier detection techniques. En: Tutorial at KDD 10 (2010), p. 1–76spa
dc.relation.referencesKulkarni, Viraj ; Kulkarni, Milind ; Pant, Aniruddha: Quantum computing methods for supervised learning. En: Quantum Machine Intelligence 3 (2021), Nr. 2, p. 1–14spa
dc.relation.referencesLandsman, Nicolaas P.: Born rule and its interpretation. En: Compendium of quantum physics. Springer, 2009, p. 64–70spa
dc.relation.referencesLeggett, Anthony J.: The quantum measurement problem. En: Science 307 (2005), Nr. 5711, p. 871–872spa
dc.relation.referencesLi, Zheng ; Zhao, Yue ; Botta, Nicola ; Ionescu, Cezar ; Hu, Xiyang: COPOD: Copula-Based Outlier Detection, 2020. – ISSN 2374–8486, p. 1118–1123spa
dc.relation.referencesLindemann, Benjamin ; Maschler, Benjamin ; Sahlab, Nada ; Weyrich, Michael: A survey on anomaly detection for technical systems using LSTM networks. En: Computers in Industry 131 (2021), p. 103498spa
dc.relation.referencesLiu, Boyang ; Tan, Pang-Ning ; Zhou, Jiayu: Unsupervised anomaly detection by robust density estimation. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 36, 2022, p. 4101–4108spa
dc.relation.referencesLiu, Fei T. ; Ting, Kai M. ; Zhou, Zhi-Hua: Isolation forest. En: 2008 eighth ieee international conference on data mining IEEE, 2008, p. 413–422spa
dc.relation.referencesLv, Peng ; Yu, Yanwei ; Fan, Yangyang ; Tang, Xianfeng ; Tong, Xiangrong: Layer-constrained variational autoencoding kernel density estimation model for anomaly detection. En: Knowledge-Based Systems 196 (2020). – ISSN 09507051spa
dc.relation.referencesMa, Xiaoxiao ; Wu, Jia ; Xue, Shan ; Yang, Jian ; Zhou, Chuan ; Sheng, Quan Z. ; Xiong, Hui ; Akoglu, Leman: A comprehensive survey on graph anomaly detection with deep learning. En: IEEE Transactions on Knowledge and Data Engineering (2021)spa
dc.relation.referencesM ̈akel ̈a, H ; Messina, Antonino: N-qubit states as points on the Bloch sphere. En: Physica Scripta 2010 (2010), Nr. T140, p. 014054spa
dc.relation.referencesMishra, Sidharth P. ; Sarkar, Uttam ; Taraphder, Subhash ; Datta, Sanjay ; Swain, D ; Saikhom, Reshma ; Panda, Sasmita ; Laishram, Menalsh: Multivariate statistical data analysis-principal component analysis (PCA). En: International Journal of Livestock Research 7 (2017), Nr. 5, p. 60–78spa
dc.relation.referencesMoeller, John ; Srikumar, Vivek ; Swaminathan, Sarathkrishna ; Venkatasubramanian, Suresh ; Webb, Dustin: Continuous kernel learning. En: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II 16 Springer, 2016, p. 657–673spa
dc.relation.referencesNachman, Benjamin ; Shih, David: Anomaly detection with density estimation. En: Physical Review D 101 (2020), Nr. 7, p. 075042spa
dc.relation.referencesNassif, Ali B. ; Talib, Manar A. ; Nasir, Qassim ; Dakalbab, Fatima M.: Machine learning for anomaly detection: A systematic review. En: Ieee Access 9 (2021), p. 78658–78700spa
dc.relation.referencesNayak, Rashmiranjan ; Pati, Umesh C. ; Das, Santos K.: A comprehensive review on deep learning-based methods for video anomaly detection. En: Image and Vision Computing 106 (2021), p. 104078spa
dc.relation.referencesNielsen, Michael A. ; Chuang, Isaac L.: Quantum computation and Quantum information. 10th Anniversary edition. Cambridge University Press, 2010spa
dc.relation.referencesNowak-Brzezi ́nska, Agnieszka ; Hory ́n, Czeslaw: Outliers in rules-the comparision of LOF, COF and KMEANS algorithms. En: Procedia Computer Science 176 (2020), p. 1420–1429spa
dc.relation.referencesPang, Guansong ; Shen, Chunhua ; Cao, Longbing ; Hengel, Anton Van D.: Deep learning for anomaly detection: A review. En: ACM computing surveys (CSUR) 54 (2021), Nr. 2, p. 1–38spa
dc.relation.referencesPark, Cheong H.: A Comparative Study for Outlier Detection Methods in High Dimensional Text Data. En: Journal of Artificial Intelligence and Soft Computing Research 13 (2023), Nr. 1, p. 5–17spa
dc.relation.referencesPedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research 12 (2011), p. 2825–2830spa
dc.relation.referencesPevn ́y, Tom ́aˇs: Loda: Lightweight on-line detector of anomalies. En: Machine Learning 102 (2016), p. 275–304. – ISSN 1573–0565spa
dc.relation.referencesPierna, JA F. ; Wahl, F ; De Noord, OE ; Massart, DL: Methods for outlier detection in prediction. En: Chemometrics and Intelligent Laboratory Systems 63 (2002), Nr. 1, p. 27–39spa
dc.relation.referencesRahimi, Ali ; Recht, Benjamin: Random Features for Large-Scale Kernel Machines. En: Proceedings of the 20th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2007 (NIPS’07). – ISBN 9781605603520, p. 1177–1184spa
dc.relation.referencesRamaswamy, Sridhar ; Rastogi, Rajeev ; Shim, Kyuseok: Efficient Algorithms for Mining Outliers from Large Data Sets, Association for Computing Machinery, 2000. – ISBN 1581132174, p. 427438spa
dc.relation.referencesRamchoun, Hassan ; Ghanou, Youssef ; Ettaouil, Mohamed ; Janati Idrissi, Mohammed A.: Multilayer perceptron: Architecture optimization and training. (2016spa
dc.relation.referencesRayana, Shebuti. ODDS Library. 2016spa
dc.relation.referencesRettig, Laura ; Khayati, Mourad ; Cudr ́e-Mauroux, Philippe ; Pi ́orkowski, Michal: Online anomaly detection over big data streams. En: Applied Data Science: Lessons Learned for the Data-Driven Business (2019), p. 289–312spa
dc.relation.referencesReynolds, Douglas A. [u. a.]: Gaussian mixture models. En: Encyclopedia of biometrics 741 (2009), Nr. 659-663spa
dc.relation.referencesRousseeuw, Peter J. ; Driessen, Katrien V.: A fast algorithm for the minimum covariance determinant estimator. En: Technometrics 41 (1999), Nr. 3, p. 212–223spa
dc.relation.referencesRuff, L ; Kauffmann, J R. ; Vandermeulen, R A. ; Montavon, G ; Samek, W ; Kloft, M ; Dietterich, T G. ; Muller, K.-R.: A Unifying Review of Deep and Shallow Anomaly Detection. En: Proceedings of the IEEE 109 (2021), p. 756–795spa
dc.relation.referencesRuff, Lukas ; Vandermeulen, Robert ; Goernitz, Nico ; Deecke, Lucas ; Siddiqui, Shoaib A. ; Binder, Alexander ; M ̈uller, Emmanuel ; Kloft, Marius: Deep One-Class Classification, PMLR, 3 2018, p. 4393–4402spa
dc.relation.referencesSch ̈olkopf, Bernhard ; Platt, John C. ; Shawe-Taylor, John ; Smola, Alex J. ; Williamson, Robert C.: Estimating the support of a high-dimensional distribution. En: Neural computation (2001)spa
dc.relation.referencesShaukat, Kamran ; Alam, Talha M. ; Luo, Suhuai ; Shabbir, Shakir ; Hameed, Ibrahim A. ; Li, Jiaming ; Abbas, Syed K. ; Javed, Umair: A review of time-series anomaly detection techniques: A step to future perspectives. En: Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), Volume 1 Springer, 2021, p. 865–877spa
dc.relation.referencesSilverman, Bernard W.: Density estimation for statistics and data analysis. Vol. 26. CRC press, 1986spa
dc.relation.referencesSoh, Youngsung ; Hae, Yongsuk ; Mehmood, Aamer ; Ashraf, R H. ; Kim, Intaek [u. a.]: Performance evaluation of various functions for kernel density estimation. En: Open J Appl Sci 3 (2013), Nr. 1, p. 58–64spa
dc.relation.referencesStadelmann, Thilo ; Amirian, Mohammadreza ; Arabaci, Ismail ; Arnold, Marek ; Duivesteijn, Gilbert F. ; Elezi, Ismail ; Geiger, Melanie ; L ̈orwald, Stefan ; Meier, Benjamin B. ; Rombach, Katharina [u. a.]: Deep learning in the wild. En: Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8 Springer, 2018, p. 17–38spa
dc.relation.referencesSteinwart, Ingo ; Hush, Don ; Scovel, Clint: A Classification Framework for Anomaly Detection. En: Journal of Machine Learning Research 6 (2005), Nr. 2spa
dc.relation.referencesSun, Jiayu ; Wang, Xinzhou ; Xiong, Naixue ; Shao, Jie: Learning sparse representation with variational auto-encoder for anomaly detection. En: IEEE Access 6 (2018), p. 33353–33361spa
dc.relation.referencesTan, Pang-Ning ; Steinbach, Michael ; Kumar, Vipin: Introduction to data mining. Pearson Education India, 2016spa
dc.relation.referencesUseche, Diego H. ; Bustos-Brinez, Oscar A. ; Gallego, Joseph A. ; Gonz ́alez, Fabio A.: Computing expectation values of adaptive Fourier density matrices for quantum anomaly detection in NISQ devices. 2022spa
dc.relation.referencesWalczak, Steven: Artificial neural networks. En: Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction. IGI global, 2019, p. 40–53spa
dc.relation.referencesWarmuth, Manfred K. ; Kuzmin, Dima: Bayesian generalized probability calculus for density matrices. En: Machine learning 78 (2010), Nr. 1-2, p. 63spa
dc.relation.referencesWeglarczyk, Stanislaw: Kernel density estimation and its application. En: ITM Web of Conferences Vol. 23 EDP Sciences, 2018, p. 00037spa
dc.relation.referencesYang, Jie ; Xu, Ruijie ; Qi, Zhiquan ; Shi, Yong: Visual anomaly detection for images: A systematic survey. En: Procedia Computer Science 199 (2022), p. 471–478spa
dc.relation.referencesZenati, Houssam ; Romain, Manon ; Foo, Chuan-Sheng ; Lecouat, Bruno ; Chandrasekhar, Vijay: Adversarially learned anomaly detection. En: 2018 IEEE International conference on data mining (ICDM) IEEE, 2018, p. 727–736spa
dc.relation.referencesZhai, Shuangfei ; Cheng, Yu ; Lu, Weining ; Zhang, Zhongfei: Deep structured energy based models for anomaly detection. En: International conference on machine learning PMLR, 2016, p. 1100–1109spa
dc.relation.referencesZhao, Yue ; Nasrullah, Zain ; Li, Zheng: PyOD: A Python Toolbox for Scalable Outlier Detection. En: Journal of Machine Learning Research 20 (2019), Nr. 96, p. 1–7spa
dc.relation.referencesZhou, Fangrong ; Wen, Gang ; Ma, Yi ; Geng, Hao ; Huang, Ran ; Pei, Ling ; Yu, Wenxian ; Chu, Lei ; Qiu, Robert: A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data. En: Applied Sciences 12 (2022), Nr. 11, p. 5336spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembAlgoritmos (computadores)spa
dc.subject.lembComputer algorithmseng
dc.subject.proposalDetección de anomalíasspa
dc.subject.proposalAlgoritmos de aprendizaje automáticospa
dc.subject.proposalEstimación de densidadspa
dc.subject.proposalAprendizaje automático cuánticospa
dc.subject.proposalAnálisis de datosspa
dc.subject.proposalAnomaly detectioneng
dc.subject.proposalMachine learning algorithmseng
dc.subject.proposalDensity estimationeng
dc.subject.proposalQuantum machine learningeng
dc.subject.proposalData analysiseng
dc.titleDesarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticasspa
dc.title.translatedDevelopment of an anomaly detection algorithm based on kernel density estimation, density matrices and quantum measurementeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012433384.2023.pdf
Tamaño:
825.04 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: