Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas
dc.contributor.advisor | González Osorio, Fabio Augusto | |
dc.contributor.advisor | Gallego Mejia, Joseph Alejandro | |
dc.contributor.author | Bustos-Briñez, Oscar Alberto | |
dc.contributor.orcid | 0000-0003-0704-9117 | spa |
dc.contributor.researchgroup | Mindlab | spa |
dc.date.accessioned | 2023-11-29T14:42:39Z | |
dc.date.available | 2023-11-29T14:42:39Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Esta tesis presenta un algoritmo innovador diseñado para realizar detección de anomalías en diversos conjuntos de datos. Este método, denominado Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integra estimación de densidad basada en kernels (en inglés Kernel Density Estimation o KDE) y aprendizaje de máquina (conocida como Machine Learning en inglés) con las matrices de densidad y la medición cuántica, dos prometedores conceptos provenientes del campo de la computación cuántica. Se establecen las bases teóricas y metodológicas que sustentan este método; asimismo, se presentan los detalles de su desarrollo e implementación. Se realiza una comparación sistemática del algoritmo propuesto contra doce métodos variados de detección de anomalías; AD-DMKDE muestra un rendimiento competitivo al ser aplicado sobre una selección de veinticuatro conjuntos de datos. Se establecen las fortalezas y limitaciones del algoritmo propuesto y, a partir del análisis estadístico de su rendimiento, se enuncian una serie de conclusiones y posibles líneas de trabajo futuro. (Texto tomado d la fuente) | spa |
dc.description.abstract | This thesis presents a novel algorithm designed to perform anomaly detection on multiple data sets. This method, called Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integrates Kernel Density Estimation (KDE) and Machine Learning with density matrices and quantum measurement, two promising concepts from quantum computing. The theoretical and methodological foundations that support this method are established, along with the details of its development and implementation. A systematic comparison of the proposed algorithm with twelve state-of-the-art anomaly detection methods is presented, and AD-DMKDE demonstrates competitive performance when applied on twenty-four benchmark data sets. The strengths and limitations of the proposed algorithm are identified, and based on a statistical analysis of its performance, a series of conclusions and possible lines of future work are stated. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Computación Teórica | spa |
dc.format.extent | xiv, 52 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85017 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.relation.references | Aggarwal, Charu C. ; Aggarwal, Charu C.: An introduction to outlier analysis. Springer, 2017 | spa |
dc.relation.references | Agrawal, Shikha ; Agrawal, Jitendra: Survey on anomaly detection using data mining techniques. En: Procedia Computer Science 60 (2015), p. 708–713 | spa |
dc.relation.references | Ahmed, Faruk ; Courville, Aaron: Detecting semantic anomalies. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, 2020, p. 3154–3162 | spa |
dc.relation.references | Albuquerque Filho, JE ; Brand ̃ao, Laislla C. ; Fernandes, Bruno J. ; Maciel, Alexandre M.: A Review of Neural Networks for Anomaly Detection. En: IEEE Access (2022) | spa |
dc.relation.references | Alloqmani, Ahad ; Abushark, Yoosef B. ; Khan, Asif I. ; Alsolami, Fawaz: Deep learning based anomaly detection in images: insights, challenges and recommendations. En: International Journal of Advanced Computer Science and Applications 12 (2021), Nr. 4 | spa |
dc.relation.references | Alpaydin, Ethem: Introduction to machine learning. MIT press, 2020 | spa |
dc.relation.references | An, Jinwon ; Cho, Sungzoon: Variational autoencoder based anomaly detection using reconstruction probability. En: Special lecture on IE 2 (2015), Nr. 1, p. 1–18 | spa |
dc.relation.references | Arshad, Kinza ; Ali, Rao F. ; Muneer, Amgad ; Aziz, Izzatdin A. ; Naseer, Sheraz ; Khan, Nabeel S. ; Taib, Shakirah M.: Deep Reinforcement Learning for Anomaly Detection: A Systematic Review. En: IEEE Access (2022) | spa |
dc.relation.references | Ash, Robert B.: Information theory. Courier Corporation, 2012 | spa |
dc.relation.references | Breunig, Markus M. ; Kriegel, Hans-Peter ; Ng, Raymond T. ; Sander, J ̈org: LOF: identifying density-based local outliers. En: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, p. 93–104 | spa |
dc.relation.references | Brumer, Paul ; Gong, Jiangbin: Born rule in quantum and classical mechanics. En: Physical Review A 73 (2006), Nr. 5, p. 052109 | spa |
dc.relation.references | Burkard, Guido ; Ladd, Thaddeus D. ; Nichol, John M. ; Pan, Andrew ; Petta, Jason R.: Semiconductor spin qubits. En: arXiv preprint arXiv:2112.08863 (2021) | spa |
dc.relation.references | Chalapathy, Raghavendra ; Chawla, Sanjay: Deep learning for anomaly detection: A survey. En: arXiv preprint arXiv:1901.03407 (2019) | spa |
dc.relation.references | Chandola, Varun ; Banerjee, Arindam ; Kumar, Vipin: Anomaly detection: A survey. En: ACM computing surveys (CSUR) 41 (2009), Nr. 3, p. 1–58 | spa |
dc.relation.references | Chen, Yen-Chi: A tutorial on kernel density estimation and recent advances. En: Biostatistics & Epidemiology 1 (2017), Nr. 1, p. 161–187 | spa |
dc.relation.references | Eimann, Raimund E.: Network event detection with entropy measures, ResearchSpace@ Auckland, Tesis de Grado, 2008 | spa |
dc.relation.references | Erhan, Laura ; Ndubuaku, M ; Di Mauro, Mario ; Song, Wei ; Chen, Min ; Fortino, Giancarlo ; Bagdasar, Ovidiu ; Liotta, Antonio: Smart anomaly detection in sensor systems: A multi-perspective review. En: Information Fusion 67 (2021), p. 64–79 | spa |
dc.relation.references | Filzmoser, Peter: A multivariate outlier detection method. Citeseer, 2004 | spa |
dc.relation.references | Fraser, Katherine ; Homiller, Samuel ; Mishra, Rashmish K. ; Ostdiek, Bryan ; Schwartz, Matthew D.: Challenges for unsupervised anomaly detection in particle physics. En: Journal of High Energy Physics 2022 (2022), Nr. 3, p. 1–31 | spa |
dc.relation.references | Gallego M, Joseph A. ; Gonz ́alez, Fabio A.: Quantum Adaptive Fourier Features for Neural Density Estimation. En: arXiv e-prints (2022), p. arXiv–2208 | spa |
dc.relation.references | Bergmann, Paul ; Batzner, Kilian ; Fauser, Michael ; Sattlegger, David ; Steger, Carsten: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. En: International Journal of Computer Vision 129 (2021), Nr. 4, p. 1038–1059 | spa |
dc.relation.references | Brukner, ˇCaslav: On the quantum measurement problem. En: Quantum [Un] Speakables II: Half a Century of Bell’s Theorem (2017), p. 95–117 | spa |
dc.relation.references | Bustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection through Density Matrices and Fourier Features. (2022 | spa |
dc.relation.references | Bustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection Through Density Matrices and Fourier Features. En: Information Technology and Systems: ICITS 2023, Volume 1. Springer, 2023 | spa |
dc.relation.references | Ciliberto, Carlo ; Herbster, Mark ; Ialongo, Alessandro D. ; Pontil, Massi- miliano ; Rocchetto, Andrea ; Severini, Simone ; Wossnig, Leonard: Quantum machine learning: a classical perspective. En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2018), Nr. 2209, p. 20170551 | spa |
dc.relation.references | Ding, Kaize ; Zhou, Qinghai ; Tong, Hanghang ; Liu, Huan: Few-shot network anomaly detection via cross-network meta-learning. En: Proceedings of the Web Conference 2021, 2021, p. 2448–2456 | spa |
dc.relation.references | Gallego-Mejia, Joseph ; Bustos-Brinez, Oscar ; Gonz ́alez, Fabio A.: LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection. En: arXiv pre-print arXiv:2211.08525 (2022) | spa |
dc.relation.references | Gallego-Mejia, Joseph A. ; Bustos-Brinez, Oscar A. ; Gonz ́alez, Fabio A.: InQMAD: Incremental Quantum Measurement Anomaly Detection. En: 2022 IEEE International Conference on Data Mining Workshops (ICDMW) IEEE, 2022, p. 787–796 | spa |
dc.relation.references | Goix, Nicolas ; Sabourin, Anne ; Cl ́emenc ̧on, St ́ephan: On anomaly ranking and excess-mass curves. En: Artificial Intelligence and Statistics PMLR, 2015, p. 287–295 | spa |
dc.relation.references | Gonz ́alez, Fabio A. ; Gallego, Alejandro ; Toledo-Cort ́es, Santiago ; Vargas- Calder ́on, Vladimir: Learning with density matrices and random features. En: Quan- tum Machine Intelligence 4 (2022), Nr. 2 | spa |
dc.relation.references | Gonz ́alez, Fabio A. ; Vargas-Calder ́on, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. En: Journal of the Physical Society of Japan 90 (2021), Nr. 4, p. 044002 | spa |
dc.relation.references | G ̈uhne, Otfried ; T ́oth, G ́eza: Entanglement detection. En: Physics Reports 474 (2009), Nr. 1-6, p. 1–75 | spa |
dc.relation.references | Hagemann, Tanja ; Katsarou, Katerina: A systematic review on anomaly detection for cloud computing environments. En: 2020 3rd Artificial Intelligence and Cloud Computing Conference, 2020, p. 83–96 | spa |
dc.relation.references | Hall, Brian C.: Systems and subsystems, multiple particles. En: Quantum theory for mathematicians. Springer, 2013, p. 419–440 | spa |
dc.relation.references | Harrou, Fouzi ; Kadri, Farid ; Chaabane, Sondes ; Tahon, Christian ; Sun, Ying: Improved principal component analysis for anomaly detection: Application to an emer- gency department. En: Computers & Industrial Engineering 88 (2015), p. 63–77 | spa |
dc.relation.references | Hayashi, Masahito ; Ishizaka, Satoshi ; Kawachi, Akinori ; Kimura, Gen ; Ogawa, Tomohiro: Introduction to quantum information science. Springer, 2014 | spa |
dc.relation.references | Hewitt, Joshua ; Gelfand, Alan E. ; Quick, Nicola J. ; Cioffi, William R. ; Southall, Brandon L. ; DeRuiter, Stacy L. ; Schick, Robert S.: Kernel density estimation of conditional distributions to detect responses in satellite tag data. En: Animal Biotelemetry 10 (2022), Nr. 1, p. 28 | spa |
dc.relation.references | Jaeger, Gregg: Quantum information. Springer, 2007 | spa |
dc.relation.references | Janssens, J.H.M. ; Huszar, F. ; Postma, E.O. ; van den Herik, H.J.: Stochastic Outlier Selection. En: Tilburg centre for Creative Computing, techreport 1 (2012), p. 2012 | spa |
dc.relation.references | Kalair, Kieran ; Connaughton, Colm: Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship. En: Transportation Research Part C: Emerging Technologies 127 (2021), p. 103178 | spa |
dc.relation.references | Kalinichenko, Leonid ; Shanin, Ivan ; Taraban, Ilia: Methods for anomaly detection: A survey. En: CEUR workshop proceedings Vol. 1297, 2014, p. 2025 | spa |
dc.relation.references | Keyl, Michael: Fundamentals of quantum information theory. En: Physics reports 369 (2002), Nr. 5, p. 431–548 | spa |
dc.relation.references | Khan, Tariq M. ; Robles-Kelly, Antonio: Machine learning: Quantum vs classical. En: IEEE Access 8 (2020), p. 219275–219294 | spa |
dc.relation.references | Kim, Junbong ; Jeong, Kwanghee ; Choi, Hyomin ; Seo, Kisung: GAN-based anomaly detection in imbalance problems. En: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 Springer, 2020, p. 128–145 | spa |
dc.relation.references | Kingma, Diederik P. ; Welling, Max: Auto-encoding variational bayes. En: arXiv preprint arXiv:1312.6114 (2013) | spa |
dc.relation.references | Knorr, Edwin M. ; Ng, Raymond T. ; Tucakov, Vladimir: Distance-based outliers: algorithms and applications. En: The VLDB Journal 8 (2000), Nr. 3, p. 237–253 | spa |
dc.relation.references | Kok, Pieter ; Munro, William J. ; Nemoto, Kae ; Ralph, Timothy C. ; Dowling, Jonathan P. ; Milburn, Gerard J.: Linear optical quantum computing with photonic qubits. En: Reviews of modern physics 79 (2007), Nr. 1, p. 135 | spa |
dc.relation.references | Kriegel, Hans-Peter ; Kr ̈oger, Peer ; Zimek, Arthur: Outlier detection techniques. En: Tutorial at KDD 10 (2010), p. 1–76 | spa |
dc.relation.references | Kulkarni, Viraj ; Kulkarni, Milind ; Pant, Aniruddha: Quantum computing methods for supervised learning. En: Quantum Machine Intelligence 3 (2021), Nr. 2, p. 1–14 | spa |
dc.relation.references | Landsman, Nicolaas P.: Born rule and its interpretation. En: Compendium of quantum physics. Springer, 2009, p. 64–70 | spa |
dc.relation.references | Leggett, Anthony J.: The quantum measurement problem. En: Science 307 (2005), Nr. 5711, p. 871–872 | spa |
dc.relation.references | Li, Zheng ; Zhao, Yue ; Botta, Nicola ; Ionescu, Cezar ; Hu, Xiyang: COPOD: Copula-Based Outlier Detection, 2020. – ISSN 2374–8486, p. 1118–1123 | spa |
dc.relation.references | Lindemann, Benjamin ; Maschler, Benjamin ; Sahlab, Nada ; Weyrich, Michael: A survey on anomaly detection for technical systems using LSTM networks. En: Computers in Industry 131 (2021), p. 103498 | spa |
dc.relation.references | Liu, Boyang ; Tan, Pang-Ning ; Zhou, Jiayu: Unsupervised anomaly detection by robust density estimation. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 36, 2022, p. 4101–4108 | spa |
dc.relation.references | Liu, Fei T. ; Ting, Kai M. ; Zhou, Zhi-Hua: Isolation forest. En: 2008 eighth ieee international conference on data mining IEEE, 2008, p. 413–422 | spa |
dc.relation.references | Lv, Peng ; Yu, Yanwei ; Fan, Yangyang ; Tang, Xianfeng ; Tong, Xiangrong: Layer-constrained variational autoencoding kernel density estimation model for anomaly detection. En: Knowledge-Based Systems 196 (2020). – ISSN 09507051 | spa |
dc.relation.references | Ma, Xiaoxiao ; Wu, Jia ; Xue, Shan ; Yang, Jian ; Zhou, Chuan ; Sheng, Quan Z. ; Xiong, Hui ; Akoglu, Leman: A comprehensive survey on graph anomaly detection with deep learning. En: IEEE Transactions on Knowledge and Data Engineering (2021) | spa |
dc.relation.references | M ̈akel ̈a, H ; Messina, Antonino: N-qubit states as points on the Bloch sphere. En: Physica Scripta 2010 (2010), Nr. T140, p. 014054 | spa |
dc.relation.references | Mishra, Sidharth P. ; Sarkar, Uttam ; Taraphder, Subhash ; Datta, Sanjay ; Swain, D ; Saikhom, Reshma ; Panda, Sasmita ; Laishram, Menalsh: Multivariate statistical data analysis-principal component analysis (PCA). En: International Journal of Livestock Research 7 (2017), Nr. 5, p. 60–78 | spa |
dc.relation.references | Moeller, John ; Srikumar, Vivek ; Swaminathan, Sarathkrishna ; Venkatasubramanian, Suresh ; Webb, Dustin: Continuous kernel learning. En: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II 16 Springer, 2016, p. 657–673 | spa |
dc.relation.references | Nachman, Benjamin ; Shih, David: Anomaly detection with density estimation. En: Physical Review D 101 (2020), Nr. 7, p. 075042 | spa |
dc.relation.references | Nassif, Ali B. ; Talib, Manar A. ; Nasir, Qassim ; Dakalbab, Fatima M.: Machine learning for anomaly detection: A systematic review. En: Ieee Access 9 (2021), p. 78658–78700 | spa |
dc.relation.references | Nayak, Rashmiranjan ; Pati, Umesh C. ; Das, Santos K.: A comprehensive review on deep learning-based methods for video anomaly detection. En: Image and Vision Computing 106 (2021), p. 104078 | spa |
dc.relation.references | Nielsen, Michael A. ; Chuang, Isaac L.: Quantum computation and Quantum information. 10th Anniversary edition. Cambridge University Press, 2010 | spa |
dc.relation.references | Nowak-Brzezi ́nska, Agnieszka ; Hory ́n, Czeslaw: Outliers in rules-the comparision of LOF, COF and KMEANS algorithms. En: Procedia Computer Science 176 (2020), p. 1420–1429 | spa |
dc.relation.references | Pang, Guansong ; Shen, Chunhua ; Cao, Longbing ; Hengel, Anton Van D.: Deep learning for anomaly detection: A review. En: ACM computing surveys (CSUR) 54 (2021), Nr. 2, p. 1–38 | spa |
dc.relation.references | Park, Cheong H.: A Comparative Study for Outlier Detection Methods in High Dimensional Text Data. En: Journal of Artificial Intelligence and Soft Computing Research 13 (2023), Nr. 1, p. 5–17 | spa |
dc.relation.references | Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research 12 (2011), p. 2825–2830 | spa |
dc.relation.references | Pevn ́y, Tom ́aˇs: Loda: Lightweight on-line detector of anomalies. En: Machine Learning 102 (2016), p. 275–304. – ISSN 1573–0565 | spa |
dc.relation.references | Pierna, JA F. ; Wahl, F ; De Noord, OE ; Massart, DL: Methods for outlier detection in prediction. En: Chemometrics and Intelligent Laboratory Systems 63 (2002), Nr. 1, p. 27–39 | spa |
dc.relation.references | Rahimi, Ali ; Recht, Benjamin: Random Features for Large-Scale Kernel Machines. En: Proceedings of the 20th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2007 (NIPS’07). – ISBN 9781605603520, p. 1177–1184 | spa |
dc.relation.references | Ramaswamy, Sridhar ; Rastogi, Rajeev ; Shim, Kyuseok: Efficient Algorithms for Mining Outliers from Large Data Sets, Association for Computing Machinery, 2000. – ISBN 1581132174, p. 427438 | spa |
dc.relation.references | Ramchoun, Hassan ; Ghanou, Youssef ; Ettaouil, Mohamed ; Janati Idrissi, Mohammed A.: Multilayer perceptron: Architecture optimization and training. (2016 | spa |
dc.relation.references | Rayana, Shebuti. ODDS Library. 2016 | spa |
dc.relation.references | Rettig, Laura ; Khayati, Mourad ; Cudr ́e-Mauroux, Philippe ; Pi ́orkowski, Michal: Online anomaly detection over big data streams. En: Applied Data Science: Lessons Learned for the Data-Driven Business (2019), p. 289–312 | spa |
dc.relation.references | Reynolds, Douglas A. [u. a.]: Gaussian mixture models. En: Encyclopedia of biometrics 741 (2009), Nr. 659-663 | spa |
dc.relation.references | Rousseeuw, Peter J. ; Driessen, Katrien V.: A fast algorithm for the minimum covariance determinant estimator. En: Technometrics 41 (1999), Nr. 3, p. 212–223 | spa |
dc.relation.references | Ruff, L ; Kauffmann, J R. ; Vandermeulen, R A. ; Montavon, G ; Samek, W ; Kloft, M ; Dietterich, T G. ; Muller, K.-R.: A Unifying Review of Deep and Shallow Anomaly Detection. En: Proceedings of the IEEE 109 (2021), p. 756–795 | spa |
dc.relation.references | Ruff, Lukas ; Vandermeulen, Robert ; Goernitz, Nico ; Deecke, Lucas ; Siddiqui, Shoaib A. ; Binder, Alexander ; M ̈uller, Emmanuel ; Kloft, Marius: Deep One-Class Classification, PMLR, 3 2018, p. 4393–4402 | spa |
dc.relation.references | Sch ̈olkopf, Bernhard ; Platt, John C. ; Shawe-Taylor, John ; Smola, Alex J. ; Williamson, Robert C.: Estimating the support of a high-dimensional distribution. En: Neural computation (2001) | spa |
dc.relation.references | Shaukat, Kamran ; Alam, Talha M. ; Luo, Suhuai ; Shabbir, Shakir ; Hameed, Ibrahim A. ; Li, Jiaming ; Abbas, Syed K. ; Javed, Umair: A review of time-series anomaly detection techniques: A step to future perspectives. En: Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), Volume 1 Springer, 2021, p. 865–877 | spa |
dc.relation.references | Silverman, Bernard W.: Density estimation for statistics and data analysis. Vol. 26. CRC press, 1986 | spa |
dc.relation.references | Soh, Youngsung ; Hae, Yongsuk ; Mehmood, Aamer ; Ashraf, R H. ; Kim, Intaek [u. a.]: Performance evaluation of various functions for kernel density estimation. En: Open J Appl Sci 3 (2013), Nr. 1, p. 58–64 | spa |
dc.relation.references | Stadelmann, Thilo ; Amirian, Mohammadreza ; Arabaci, Ismail ; Arnold, Marek ; Duivesteijn, Gilbert F. ; Elezi, Ismail ; Geiger, Melanie ; L ̈orwald, Stefan ; Meier, Benjamin B. ; Rombach, Katharina [u. a.]: Deep learning in the wild. En: Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8 Springer, 2018, p. 17–38 | spa |
dc.relation.references | Steinwart, Ingo ; Hush, Don ; Scovel, Clint: A Classification Framework for Anomaly Detection. En: Journal of Machine Learning Research 6 (2005), Nr. 2 | spa |
dc.relation.references | Sun, Jiayu ; Wang, Xinzhou ; Xiong, Naixue ; Shao, Jie: Learning sparse representation with variational auto-encoder for anomaly detection. En: IEEE Access 6 (2018), p. 33353–33361 | spa |
dc.relation.references | Tan, Pang-Ning ; Steinbach, Michael ; Kumar, Vipin: Introduction to data mining. Pearson Education India, 2016 | spa |
dc.relation.references | Useche, Diego H. ; Bustos-Brinez, Oscar A. ; Gallego, Joseph A. ; Gonz ́alez, Fabio A.: Computing expectation values of adaptive Fourier density matrices for quantum anomaly detection in NISQ devices. 2022 | spa |
dc.relation.references | Walczak, Steven: Artificial neural networks. En: Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction. IGI global, 2019, p. 40–53 | spa |
dc.relation.references | Warmuth, Manfred K. ; Kuzmin, Dima: Bayesian generalized probability calculus for density matrices. En: Machine learning 78 (2010), Nr. 1-2, p. 63 | spa |
dc.relation.references | Weglarczyk, Stanislaw: Kernel density estimation and its application. En: ITM Web of Conferences Vol. 23 EDP Sciences, 2018, p. 00037 | spa |
dc.relation.references | Yang, Jie ; Xu, Ruijie ; Qi, Zhiquan ; Shi, Yong: Visual anomaly detection for images: A systematic survey. En: Procedia Computer Science 199 (2022), p. 471–478 | spa |
dc.relation.references | Zenati, Houssam ; Romain, Manon ; Foo, Chuan-Sheng ; Lecouat, Bruno ; Chandrasekhar, Vijay: Adversarially learned anomaly detection. En: 2018 IEEE International conference on data mining (ICDM) IEEE, 2018, p. 727–736 | spa |
dc.relation.references | Zhai, Shuangfei ; Cheng, Yu ; Lu, Weining ; Zhang, Zhongfei: Deep structured energy based models for anomaly detection. En: International conference on machine learning PMLR, 2016, p. 1100–1109 | spa |
dc.relation.references | Zhao, Yue ; Nasrullah, Zain ; Li, Zheng: PyOD: A Python Toolbox for Scalable Outlier Detection. En: Journal of Machine Learning Research 20 (2019), Nr. 96, p. 1–7 | spa |
dc.relation.references | Zhou, Fangrong ; Wen, Gang ; Ma, Yi ; Geng, Hao ; Huang, Ran ; Pei, Ling ; Yu, Wenxian ; Chu, Lei ; Qiu, Robert: A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data. En: Applied Sciences 12 (2022), Nr. 11, p. 5336 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.lemb | Algoritmos (computadores) | spa |
dc.subject.lemb | Computer algorithms | eng |
dc.subject.proposal | Detección de anomalías | spa |
dc.subject.proposal | Algoritmos de aprendizaje automático | spa |
dc.subject.proposal | Estimación de densidad | spa |
dc.subject.proposal | Aprendizaje automático cuántico | spa |
dc.subject.proposal | Análisis de datos | spa |
dc.subject.proposal | Anomaly detection | eng |
dc.subject.proposal | Machine learning algorithms | eng |
dc.subject.proposal | Density estimation | eng |
dc.subject.proposal | Quantum machine learning | eng |
dc.subject.proposal | Data analysis | eng |
dc.title | Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas | spa |
dc.title.translated | Development of an anomaly detection algorithm based on kernel density estimation, density matrices and quantum measurement | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1012433384.2023.pdf
- Tamaño:
- 825.04 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: