Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo

dc.contributor.advisorChejne Janna, Farid
dc.contributor.authorEstrada Ramírez, Omar Augusto
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2021-03-26T16:03:03Z
dc.date.available2021-03-26T16:03:03Z
dc.date.issued2021-03-15
dc.description.abstractCon el objetivo de estudiar la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo, en el presente proyecto se realizaron las siguientes actividades de investigación, con los siguientes resultados: Se realizó el seguimiento del desempeño energético de algunos procesos industriales de procesamiento de polímeros para entender la relación entre la eficiencia productiva y la eficiencia energética. Como resultado se desarrolló el Método de las Brechas Energéticas (Energy Gap Method o EGM), el cual permite identificar el origen de las ineficiencias alrededor de los procesos productivos y mejorar eficazmente la productividad y el consumo de energía. El método fue publicado en el Journal of Cleaner Production en 2017 y ha sido utilizado exitosamente en más de 20 empresas en Colombia. Se realizó el estudio del desempeño energético del proceso de extrusión, comparando cinco diferentes unidades de plastificación de zona de alimentación ranurada (GFE) y una unidad de plastificación con zona de plastificación ranurada (GPE), todas ellas compartiendo el mismo motor, reductor, sistema de control y posextrusión. Se presentó la dependencia del consumo de energía específico (SEC) con las condiciones de operación, el tipo de husillo empleado y el tipo de unidad de plastificación utilizada. Se introdujo el concepto de eficiencia energética máxima y eficiencia energética relativa para una extrusora y la forma de determinarlas. Se plantearon hipótesis por las cuales las GPE son más productivas y eficientes energéticamente. Este trabajo condujo a una publicación en la revista Energy en 2020. Se reevaluó la hipótesis con la que dio inicio el trabajo y se estableció que GPE es más productiva y eficiente energéticamente que GFE, debido a que la unidad de plastificación logra una plastificación más rápida e incrementa las componentes de mezcla. Se planteó que el motivo para que la plastificación ocurra con mayor velocidad es por un mecanismo que no ha sido reportado a la fecha el cual fue llamado Remoción de la Capa de Transición. Se desarrolló un modelo simplificado y se solucionó empleando el método de diferencias finitas (FDM) para evaluar la hipótesis. Se encontró que la capa de transición se forma y juega un papel muy importante en el proceso de plastificación y que las modelaciones reportadas en el estado del arte no la consideran. También se pudo mostrar que retirar la capa de transición puede acelerar de forma considerable la velocidad de plastificación del polímero en una unidad de plastificación. Se presentó a través de simulaciones en 3D usando OpenFOAM®, que la geometría del canal en una GPE incrementa significativamente las componentes de mezcla. Como producto de estos conceptos se fabricó un prototipo de una nueva unidad de plastificación que se denominó “Extrusora con Zona de Plastificación Mezcladora (MPE)”. La unidad de plastificación exhibió un desempeño productivo cuatro veces superior y un consumo específico de energía que fue la mitad del de una extrusora convencional con zona de alimentación lisa.spa
dc.description.abstractIn order to study the influence of the plasticizing process on the energy efficiency of the single screw extrusion process, the following research activities were carried out in this project, with the following results: The energy performance of some industrial polymer processing processes was monitored to understand the relationship between production efficiency and energy efficiency. As a result, the Energy Gap Method was developed. This method allows identifying the origin of inefficiencies around production processes and effectively improving productivity and energy consumption. The method was published in the Journal of Cleaner Production in 2017 and has been used successfully in more than 20 companies in Colombia. The energy performance study of the extrusion process was carried out, comparing five different grooved feed zone plasticating units (GFE) and one plasticating unit with grooved plasticating zone (GPE). Each of these technologies sharing the same motor, reducer, system control and post-extrusion. The dependence of the specific energy consumption (SEC) with the operational conditions, the type of screw and the type of plasticating unit used was presented. The maximum energy efficiency and relative energy efficiency concept for an extruder was introduced. In addition, the mathematical formulation was obtained for both. Hypotheses were put forward as to why GPE technology is more productive and energy efficient. This work led to a publication in Energy magazine in 2020. The initial hypothesis was re-evaluated and it was established that GPE is more productive and energy efficient than GFE, due to the fact that the plasticating unit achieves a faster plasticization and increases the mixing components. It was suggested that the reason for the faster plasticization is due to a mechanism called Transition Layer Removal. This mechanism has not been reported in the state of art to date. In order to evaluate the hypothesis, a simplified model was developed and it was solved using the finite difference method (FDM). It was found that the transition layer is formed and this layer plays a very important role in the plasticization process. Plasticizing models in polymer extrusion reported in the state of the art do not consider it. It could also be shown that removing the transition layer can considerably accelerate the plasticizing rate of the polymer in a plasticating unit. Using OpenFOAM® 3D simulations, a significant increment of the mixing component was found as a product of the geometry of the channel in the GPE technology. As a product of all concepts studied, a prototype of a new plasticating unit was manufactured, called Mixing Plasticating Extruder (MPE). This prototype exhibited four time higher production performance and a specific energy consumption that is a half in comparison to conventional extruder with a smooth feed zone.eng
dc.description.degreelevelDoctoradospa
dc.description.researchareaSistemas Energéticosspa
dc.format.extent236 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional -Sede Medellínspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79375
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedspa
dc.relation.references[1] IEA B. Annual Report 2017. Park Relat Disord 2017;21:430. https://doi.org/10.1080/10417940509373326.spa
dc.relation.references[2] IEA. Energy and Climate Change. World Energy Outlook Spec Rep 2015:1–200. https://doi.org/10.1038/479267b.spa
dc.relation.references[3] Masson-Delmotte; V.; Zhai; P.; Pörtner; H.-O.; Roberts; D.; Skea; J.; Shukla; P.R.; Pirani; A.; Moufouma-Okia; W.; Péan; C.; Pidcock; R.; Connors; S.; Matthews; J.B.R.; Chen; Y.; Zhou; X.; Gomis; M.I.; Lonnoy; E.; Maycock; T.; Tignor; M.; Waterfield. Global Warming Of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. 2018.spa
dc.relation.references[4] World Energy Council. World Energy Trilemma | 2016 Defining Measures To Accelarate the Energy Transition 2016.spa
dc.relation.references[5] World Energy Council. A Fresh Perspective: Emerging Opportunities Confronting Climate Change | 2018. 2018.spa
dc.relation.references[6] PlasticsEurope, Epro. Plastics-the Facts 2018 An analysis of European plastics production, demand and waste data. Bruselas: 2018.spa
dc.relation.references[7] Estrada O, López ID, Hernández A, Ortíz JC. Energy gap method (EGM) to increase energy efficiency in industrial processes: Successful cases in polymer processing. J Clean Prod 2017;176:7–25. https://doi.org/10.1016/j.jclepro.2017.12.009. [8] Estrada O, Ortiz JC, Hernández A, López I, Chejne F, del Pilar Noriega M. Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency. Energy 2020;194. https://doi.org/10.1016/j.energy.2019.116879.spa
dc.relation.references[9] Kent R. Energy Management in Plastics Processing: Strategies, Targets, Techniques and Tools. 3rd Editio. United Kingdom: Plastics Infromation Direct. Applied Market Information; 2018.spa
dc.relation.references[10] CIPEC, Canadian Plastic Industry, Canadian Plastics Industry. Guide To Energy Efficiency Opportunities in the Canadian Plastics Processing Industry. 2007.spa
dc.relation.references[11] Fresner J, Morea F, Krenn C, Aranda Uson J, Tomasi F, Aranda J, et al. Energy efficiency in small and medium enterprises: Lessons learned from 280 energy audits across Europe. J Clean Prod 2017;142:1650–60. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.11.126.spa
dc.relation.references[12] Thollander P, Palm J. Improving Energy Efficiency in Industrial Energy Systems. London: Springer London; 2013. https://doi.org/10.1007/978-1-4471-4162-4.spa
dc.relation.references[13] Li M-J, Tao W-Q. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry. Appl Energy 2017;187:203–15. https://doi.org/10.1016/j.apenergy.2016.11.039.spa
dc.relation.references[14] May G, Stahl B, Taisch M, Kiritsis D. Energy management in manufacturing: From literature review to a conceptual framework. J Clean Prod 2016. https://doi.org/10.1016/j.jclepro.2016.10.191.spa
dc.relation.references[15] Schulze M, Nehler H, Ottosson M, Thollander P. Energy management in industry - A systematic review of previous findings and an integrative conceptual framework. J Clean Prod 2016;112:3692–708. https://doi.org/10.1016/j.jclepro.2015.06.060.spa
dc.relation.references[16] International Organization for Standardization. ISO 50001. International standard, energy management systems – requirements with guidance for use. 2011:40.spa
dc.relation.references[17] International Organization for Standardization. ISO 50002:2014 Energy audit. Requirements with guidance for use 2014.spa
dc.relation.references[18] Thollander P, Mardan N, Karlsson M. Optimization as investment decision support in a Swedish medium-sized iron foundry – A move beyond traditional energy auditing. Appl Energy 2009;86:433–40. https://doi.org/10.1016/j.apenergy.2008.08.012.spa
dc.relation.references[19] Kluczek A, Olszewski P. Energy audits in industrial processes. J Clean Prod 2017;142:3437–53. https://doi.org/10.1016/j.jclepro.2016.10.123.spa
dc.relation.references[20] Arens M, Worrell E. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption. Energy 2014;73:968–77. https://doi.org/10.1016/j.energy.2014.06.112.spa
dc.relation.references[21] Kong L, Hasanbeigi A, Price L. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. J Clean Prod 2016;122:5–28. https://doi.org/10.1016/j.jclepro.2015.12.116.spa
dc.relation.references[22] Colwill J, Simeone A, Gould O, Woolley E, Mulvenna C. Energy-efficient Systems for the Sensing and Separation of Mixed Polymers. Procedia CIRP 2017;62:512–7. https://doi.org/10.1016/j.procir.2016.06.116.spa
dc.relation.references[23] Anderson ST, Newell RG. Information programs for technology adoption: the case of energy-efficiency audits. Resour Energy Econ 2004;26:27–50. https://doi.org/10.1016/j.reseneeco.2003.07.001.spa
dc.relation.references[24] Aflaki S, Kleindorfer PR, de Miera Polvorinos VS. Finding and Implementing Energy Efficiency Projects in Industrial Facilities. Prod Oper Manag 2013;22:503–17. https://doi.org/10.1111/j.1937-5956.2012.01377.x.spa
dc.relation.references[25] European Standard. BS EN 16231:2012. Energy efficiency benchmarking methodology 2012.spa
dc.relation.references[26] Tan YS, Tjandra TB, Song B. Energy Efficiency Benchmarking Methodology for Mass and High-Mix Low-Volume Productions. Procedia CIRP 2015;29:120–5. https://doi.org/10.1016/j.procir.2015.02.200.spa
dc.relation.references[27] Tallini A, Cedola L. Evaluation Methodology for Energy Efficiency Measures in Industry and Service Sector. Energy Procedia 2016;101:542–9. https://doi.org/10.1016/j.egypro.2016.11.069.spa
dc.relation.references[28] ElMaraghy HA, Youssef AMA, Marzouk AM, ElMaraghy WH. Energy use analysis and local benchmarking of manufacturing lines. J Clean Prod 2016. https://doi.org/10.1016/j.jclepro.2015.12.026.spa
dc.relation.references[29] Spiering T, Kohlitz S, Sundmaeker H, Herrmann C. Energy efficiency benchmarking for injection moulding processes. Robot Comput Integr Manuf 2015;36:45–59. https://doi.org/10.1016/j.rcim.2014.12.010.spa
dc.relation.references[30] Iván D. López, Juan C. Ortiz, Hernández A, Estrada O. Methodology to improve injection molding energy performance: Successful case studies. Antec - SPE Conf., 2017, p. 6.spa
dc.relation.references[31] Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO. Integrating energy efficiency performance in production management - Gap analysis between industrial needs and scientific literature. J Clean Prod 2011;19:667–79. https://doi.org/10.1016/j.jclepro.2010.11.011.spa
dc.relation.references[32] Kent R, Cheater G. Energy in plastics processing – a practical guide 1999:49.spa
dc.relation.references[33] Velchev S, Kolev I, Ivanov K, Gechevski S. Empirical models for speci fi c energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. J Clean Prod 2014;80. https://doi.org/10.1016/j.jclepro.2014.05.099.spa
dc.relation.references[34] Atmaca A, Yumrutas R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry. Appl Therm Eng 2014;66. https://doi.org/10.1016/j.applthermaleng.2014.02.038.spa
dc.relation.references[35] Hosten C, Fidan B. An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties. Powder Technol 2012;221:183–8. https://doi.org/10.1016/j.powtec.2011.12.065.spa
dc.relation.references[36] Wen-qiang SUN, Jiu-ju CAI, Tao DU, Da-wei Z. Application in Typical Steel Manufacturing Process. J Iron Steel Res Int 2010;17:33–7. https://doi.org/10.1016/S1006-706X(10)60180-X.spa
dc.relation.references[37] Sakai T. Screw extrusion technology — past, present and future. Polimery 2013;58:847–57.spa
dc.relation.references[38] European Commission under the Intelligent Energy – Europe Programme, Recipe. Low Energy Plastics Processing. European Best Practice Guide. 2006.spa
dc.relation.references[39] EUROMAP Technical Comission. EUROMAP 60.1: Injection Moulding Machines Determination of Machine Related Energy Efficiency Class 2013;49:1–12.spa
dc.relation.references[40] EUROMAP. EUROMAP 46.1 Extrusion Blow Molding Machines. Determination of Machine Related Energy Efficiency Class. First Edition. 2014;49:1–13.spa
dc.relation.references[41] EUROMAP Technical comission. EUROMAP 46.2 Extrusion Blow Moulding Machines Determination of Product Related Energy Consumption 2014;49:2–7.spa
dc.relation.references[42] Rauwendaal C. Extruder Hardware. In: Hanser, editor. Polym. Extrus. Fifth Edit, Hanser; 2014, p. 49–83. https://doi.org/http://dx.doi.org/10.3139/9781569905395.003.spa
dc.relation.references[43] Osswald TA, Hernandez-Ortiz JP. Polymer Processes. Polym. Process. Model. Simul., Cincinnati: Hanser Gardner Publications Inc.; 2006, p. 111–67.spa
dc.relation.references[44] Le Roy G. Apparatus for extrusion of thermoplastics. US3486192 A, 1969.spa
dc.relation.references[45] Maillefer CE. US3358327A - Screw for extrusion apparatus - Google Patents. US Pat Off 1959.spa
dc.relation.references[46] Lacher FK. Extruder. US17575462A, 1966.spa
dc.relation.references[47] Chung CI. Scientifically designed barrier screw. US20110217406 A1, 2010.spa
dc.relation.references[48] Kruder GA. Multi-channel extrusion screw with a zig-zag undercut barrier. US5035509A, 1990.spa
dc.relation.references[49] Eshima M. Barrier screw. US5141326 A, 1991.spa
dc.relation.references[50] Christiano JP, Thompson MR. Extruder screw having multi-channeled barrier section. US 6139179 A, 1999.spa
dc.relation.references[51] Dray RF. Plastics screw with barrier members. US6988821 B2, 2002.spa
dc.relation.references[52] Davis BA, Gramann PJ, Noriega E. MDP, Osswald TA. Grooved feed single screw extruders—improving productivity and reducing viscous heating effects. Polym Eng Sci 1998;38:1199–204. https://doi.org/10.1002/pen.10288.spa
dc.relation.references[53] Grünschloss E. Single screw extruder. WO/2001/000383, 2001. https://doi.org/10.1016/j.(73).spa
dc.relation.references[54] Klee C. Screw for a screw extruder. US8636497, 2008.spa
dc.relation.references[55] Barr R. Extruder screw with improved energy efficient melting. EP1390185A4, 2001.spa
dc.relation.references[56] Rauwendaal C. Screw extruder and extruder screw for improved heat transfer. US2005236734A1, 2005.spa
dc.relation.references[57] Grünschloss E. Einschnecken-extruder. WO2001000383A1, 1999.spa
dc.relation.references[58] Schut JH. High-Speed Extrusion: Are You Ready for the Fast Lane? : Plastics Technology. Plast Technol 2008.spa
dc.relation.references[59] Grünschloß E. HELIBAR® – A New Style Single Screw Extruder with Improved Plastification and Output Power . Process Analysis of the Barrier Screw. Polym Process 2002:1–18.spa
dc.relation.references[60] Alfaro JAA, Grünschloß E, Epple S, Bonten C. Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel–Part I: The Melting Model. Int Polym Process 2015;30:284–96. https://doi.org/10.3139/217.3021.spa
dc.relation.references[61] Geiger K, Grunschloss E, Martin GA. Elongation and shear deformation of polymers in a wedge slit. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 2, 2014, p. 1067–75.spa
dc.relation.references[62] Grunschloss E. A powerful universal plasticating system for single-screw-extruders and injection-moulding machines. Int Polym Process 2003.spa
dc.relation.references[63] Christiano JP. Examination of the performance of a high speed single screw extruder for several different extrusion applications. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 2, 2012, p. 1029–34.spa
dc.relation.references[64] White JL, Lyu M-Y. Development of The Modern Buss Kneader and The Study of Its Flow and Mixing Mechanisms. Polym Plast Technol Eng 1998;37:385–410. https://doi.org/10.1080/03602559808006935.spa
dc.relation.references[65] Grutter H, Siegenthaler HU. Mixing and kneading machine and method of implementing continual compounding. US7909500B2, 2007.spa
dc.relation.references[66] B&P Littleford. TRIVOLUTION®- Next Generation of Compounding 2014:14. http://www.pen-tas.com/uploads/yuklemeler/B&P-TriVolution-Brochure.pdf.spa
dc.relation.references[67] Cantor KM. ANALYZING EXTRUDER ENERGY CONSUMPTION. Antec, ANTEC; 2010, p. 603–9.spa
dc.relation.references[68] Rauwendaal C. How to Get Peak Performance & Efficiency Out of Your Extrusion Line, Part I. Plast Technol 2010;33.spa
dc.relation.references[69] Rauwendaal C. Trim Your Material & Energy Costs. Plast Technol 2010:26.spa
dc.relation.references[70] Rauwendaal C. Dynamic Optimization of Extruder Barrel Temperatures. Plast Technol 2008:72.spa
dc.relation.references[71] Abeykoon C, Mcafee M, Li K, Martin PJ, Deng J, Kelly AL. Modelling the Effects of Operating Conditions on Motor Power Consumption in Single Screw Extrusion n.d.:9–20.spa
dc.relation.references[72] Abeykoon C, McAfee M, Li K, Martin PJ, Kelly AL. The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusion. J Mater Process Technol 2011;211:1907–18. https://doi.org/10.1016/j.jmatprotec.2011.05.002.spa
dc.relation.references[73] Abeykoon C, Kelly AL, Vera-Sorroche J, Brown EC, Coates PD, Deng J, et al. Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability. Appl Energy 2014;135:560–71. https://doi.org/10.1016/j.apenergy.2014.08.086.spa
dc.relation.references[74] Abeykoon C, Kelly AL, Brown EC, Coates PD. The effect of materials , process settings and screw geometry on energy consumption and melt temperature in single screw extrusion. Appl Energy 2016;180:880–94. https://doi.org/10.1016/j.apenergy.2016.07.014.spa
dc.relation.references[75] Abeykoon C. Control Engineering Practice Single screw extrusion control : A comprehensive review and directions for improvements. Control Eng Pract 2016;51:69–80. https://doi.org/10.1016/j.conengprac.2016.03.008.spa
dc.relation.references[76] Abeykoon C, Kelly AL, Brown EC, Vera-Sorroche J, Coates PD, Harkin-Jones E, et al. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study. Appl Energy 2014;136:726–37. https://doi.org/10.1016/j.apenergy.2014.09.024.spa
dc.relation.references[77] Vera-Sorroche J, Kelly A, Brown E, Coates P, Karnachi N, Harkin-Jones E, et al. Thermal optimisation of polymer extrusion using in-process monitoring techniques. Appl Therm Eng 2013;53:405–13. https://doi.org/10.1016/j.applthermaleng.2012.04.013.spa
dc.relation.references[78] Deng J, Li K, Harkin-Jones E, Price M, Karnachi N, Kelly A, et al. Energy monitoring and quality control of a single screw extruder. Appl Energy 2014;113:1775–85. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.08.084.spa
dc.relation.references[79] Estrada OA, Ledezma JM, Hernández A, Noriega P. Energy Efficiency and Specific Energy Consumption ( SEC ) in Single Screw Extrusion ( SSE ) and Twin Screw Extrusion ( TSE ): Performance and differences. Antec - SPE Conf., Las Vegas - Necada: 2014.spa
dc.relation.references[80] Maddock BH. Visual Analysis of Flow and Mixing in Extruder Screws. Tech. Pap. SPE ANTEC, vol. 15, 1959.spa
dc.relation.references[81] Street LF. Plastifying Extrusion. Int Plast Eng 1961;1:289–96.spa
dc.relation.references[82] Krzysztof W, Nastaj A, Lewandowski A, Krzysztof W, Buziak K. Fundamentals of global modeling for polymer extrusion. Polymers (Basel) 2019;11. https://doi.org/10.3390/polym11122106.spa
dc.relation.references[83] Tadmor Z. Fundamentals of plasticating extrusion. I. A theoretical model for melting. Polym Eng Sci 1966;6:185–90. https://doi.org/10.1002/pen.760060303.spa
dc.relation.references[84] Marshall DI, Klein I. Fundamentals of plasticating extrusion. II. Experiments. Polym Eng Sci 1966;6:191–7. https://doi.org/10.1002/pen.760060304.spa
dc.relation.references[85] Klein I, Marshall DI. Fundamentals of plasticating extrusion. III. Development of a mathematical model. Polym Eng Sci 1966;6:198–202. https://doi.org/10.1002/pen.760060305.spa
dc.relation.references[86] Shapiro J, Halmos AL, Pearson JRA. Melting in single screw extruders. Polymer (Guildf) 1976;17:905–18. https://doi.org/10.1016/0032-3861(76)90258-5.spa
dc.relation.references[87] Schott NR. Analysis of plastics extruder dynamics (Ph. D. Thesis). The University of Arizona, 1971.spa
dc.relation.references[88] Viriyayuthakorn, M; Kassahun BA. Three Dimensional Model for Plasticating Extrusion Screw Design. SPE-ANTEC Tech. Pap., 1985, p. 81–4.spa
dc.relation.references[89] Syrjälä S. A new approach for the simulation of melting in extruders. Int Commun Heat Mass Transf 2000;27:623–34. https://doi.org/10.1016/S0735-1933(00)00144-5.spa
dc.relation.references[90] Altınkaynak A, Gupta M, Spalding MA, Crabtree SL. Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. Int Polym Process 2011;26:182–96. https://doi.org/10.3139/217.2419.spa
dc.relation.references[91] Hopmann C, Kremer C, Grammel S. Predicting the melting behavior within a single screw extruder using 3D FVM simulation 2012. https://doi.org/999910295657.spa
dc.relation.references[92] Lewandowski A, Wilczyński K. General model of polymer melting in extrusion process. Polimery/Polymers 2018;63:444–52. https://doi.org/10.14314/polimery.2018.6.5.spa
dc.relation.references[93] Celik A, Bonten C, Togni R, Kloss C, Goniva C. A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework. Polymers (Basel) 2021;13:227. https://doi.org/10.3390/polym13020227.spa
dc.relation.references[94] Jin XM, Jia MY, Xue P, Cai JC, Pan L, Yu DQ. Study on the melting performance of single screw extruder with grooved melting zone and barr screw. J Mater Process Technol 2014;214:2834–42. https://doi.org/10.1016/j.jmatprotec.2014.06.022.spa
dc.relation.references[95] Virtanen T, Tuomaala M, Pentti E. Energy efficiency complexities: A technical and managerial investigation. Manag Account Res 2013;24:401–16. https://doi.org/10.1016/j.mar.2013.06.002.spa
dc.relation.references[96] Madan J, Mani M, Lee JH, Lyons KW. Energy performance evaluation and improvement of unit-manufacturing processes: injection molding case study. J Clean Prod 2015;105:157–70. https://doi.org/10.1016/j.jclepro.2014.09.060.spa
dc.relation.references[97] Rohdin P, Thollander P. Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden. Energy 2006;31:1500–8. https://doi.org/10.1016/j.energy.2005.10.010.spa
dc.relation.references[98] Peterson RD, Belt CK. Elements of an energy management program. J Miner Met Mater Soc 2009;61:19–24.spa
dc.relation.references[99] Hirst E, Brown M. Closing the efficiency gap: barriers to the efficient use of energy. Resour Conserv Recycl 1990;3:267–81. https://doi.org/10.1016/0921-3449(90)90023-W.spa
dc.relation.references[100] Gahm C, Denz F, Dirr M, Tuma A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur J Oper Res 2016;248:744–57. https://doi.org/10.1016/j.ejor.2015.07.017.spa
dc.relation.references[101] Gong X, De Pessemier T, Joseph W, Martens L. An Energy-Cost-Aware Scheduling Methodology for Sustainable Manufacturing. Procedia CIRP 2015;29:185–90. https://doi.org/10.1016/j.procir.2015.01.041.spa
dc.relation.references[102] Gong X, Van der Wee M, De Pessemier T, Verbrugge S, Colle D, Martens L, et al. Energy- and Labor-aware Production Scheduling for Sustainable Manufacturing: A Case Study on Plastic Bottle Manufacturing. Procedia CIRP 2017;61:387–92. https://doi.org/10.1016/j.procir.2016.11.136.spa
dc.relation.references[103] Giglio D, Paolucci M, Roshani A. Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems. J Clean Prod 2017;148:624–41. https://doi.org/10.1016/j.jclepro.2017.01.166.spa
dc.relation.references[104] Li X, Xing K, Wu Y, Wang X, Luo J. Total energy consumption optimization via genetic algorithm in flexible manufacturing systems. Comput Ind Eng 2017;104:188–200. https://doi.org/10.1016/j.cie.2016.12.008.spa
dc.relation.references[105] Lu C, Gao L, Li X, Pan Q, Wang Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J Clean Prod 2017;144:228–38. https://doi.org/10.1016/j.jclepro.2017.01.011.spa
dc.relation.references[106] Ramos AG, Leal J. ILP model for energy-efficient production scheduling of flake ice units in food retail stores. J Clean Prod 2017;156:953–61. https://doi.org/10.1016/j.jclepro.2017.04.086.spa
dc.relation.references[107] Wang S, Liu M, Chu F, Chu C. Bi-objective optimization of a single machine batch scheduling problem with energy cost consideration. J Clean Prod 2016;137:1205–15. https://doi.org/10.1016/j.jclepro.2016.07.206.spa
dc.relation.references[108] Zhang R, Chiong R. Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. J Clean Prod 2016;112:3361–75. https://doi.org/10.1016/j.jclepro.2015.09.097.spa
dc.relation.references[109] Bird RB. Dynamics of polymeric liquids. 2nd ed. Wiley; 1987.spa
dc.relation.references[110] Naranjo Carvajal A, Noriega M del P, Sierra JD, Sanz JR. Extrusion Processing Data. Munich: Carl Hanser Verlag; 2001.spa
dc.relation.references[111] Amellal K, Elbirli B. Performance study of barrier screws in the transition zone. Polym Eng Sci 1988;28:311–20.spa
dc.relation.references[112] Aquite WM, López ID, Osswald TA. Adimensional analysis of viscous heating in runner systems using the Radial Function Method. Antec - SPE Conf., vol. 2, 2010, p. 1349–55.spa
dc.relation.references[113] Tadmor Zehev GC. Principles of Polymer Processing. 2nd Editio. WILEY-INTERSCIENCE; 2013.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembPolímeros
dc.subject.proposalEficiencia energéticaspa
dc.subject.proposalExtrusión de termoplásticosspa
dc.subject.proposalUnidades de plastificaciónspa
dc.subject.proposalProcesamiento de polímerosspa
dc.subject.proposalEnergy Efficiencyeng
dc.subject.proposalPolymer extrusioneng
dc.subject.proposalPlasticating unitseng
dc.subject.proposalPolymer processingeng
dc.titleEstudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillospa
dc.title.translatedStudy of the influence of the plasticizing process on the energy efficiency of the single screw extrusion process
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71692784.2021.pdf
Tamaño:
15.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: