Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia

dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.advisorAguirre Forero, Sonia Esperanza
dc.contributor.authorGirón Angarita, Karla Johayra
dc.date.accessioned2022-06-08T16:58:18Z
dc.date.available2022-06-08T16:58:18Z
dc.date.issued2021
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractEl stock de carbono orgánico del suelo (SCOS) es reconocido como un indicador de la calidad del suelo y está estrechamente relacionado con el uso del suelo y las prácticas de manejo. En Colombia, aunque son numerosos los trabajos para estimar el tenor de Carbono Orgánico del Suelo (COS), son escasos aquellos que se enfocan en la determinación de su contenido a través del tiempo y los que involucran el cálculo del stock, particularmente en ambientes subhúmedos. En este contexto, este estudio tuvo como objetivo estimar el cambio en el stock de carbono orgánico de un suelo de la región subhúmeda de Colombia para el periodo 2008 – 2019, en el Centro de Desarrollo Agrícola y Forestal de la Universidad del Magdalena. Partiendo de una base de datos colectada en 2008 de 184 puntos, se calculó el stock de carbono orgánico para esta fecha y se diseñó un sistema de muestreo a partir del cual determinó el número de muestras para estimar el COS en los 25 cm superficiales del suelo en 2019. El estudio muestra cómo es posible realizar monitoreos del SCOS partiendo de una línea base y disminuyendo sustancialmente el número de muestras a 50, valiéndose de modelos de regresión espacial que permiten preservar la estructura de los datos. En adición se estimaron las variaciones vertical y horizontal del COS y se espacializaron para mostrar los cambios ocurridos en el periodo analizado. Los cambios encontrados corresponden al carbón lábil dadas las condiciones de clima subhúmedo que determinarían su rápida evolución y permanencia en el sistema. (Texto tomado de la fuente)spa
dc.description.abstractSoil Organic Carbon Stock (SOCS) is recognized as a soil quality indicator and it is related to soil use and management practices. In Colombia there are a lot of studies that estimate Soil Organic Carbon (SOC), but only a few focus on calculating its content through time and rarely estimate it in sub humid environments. In this context, this study determined SOCS variation from 2008 to 2019 in the Centro de Desarrollo Agrícola y Forestal de la Universidad del Magdalena, Colombia. Starting from legacy data, SOC stock was calculated. Then, a sampling system was built from a spatial regression allowing to define SOC sampling points in the first 30 cm for 2019. This study shows how it is possible to monitor SOCS from a baseline and substancially diminish the number of samples used while preserving data structure. In addition, horizontal and vertical COS variation was estimated and spatialized to show changes occurred in the time period studied. It is presumed that changes found correspond to labile carbon from typical conditions of sub humid weather that determine its fast evolution and permanence.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaSuelosspa
dc.format.extent72 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81533
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110319spa
dc.relation.referencesAbella, S. R., & Zimmer, B. W. (2007). Estimating Organic Carbon from Loss-On-Ignition in Northern Arizona Forest Soils. Soil Science Society of America Journal, 71(2), 545–550. https://doi.org/10.2136/sssaj2006.0136spa
dc.relation.referencesAkima, H., Gebhard, A., Petzold, T., & Maechler, M. (2020). Package ‘ akima .’ https://cran.r-project.org/web/packages/akima/akima.pdfspa
dc.relation.referencesAlvarez, C., Alvarez, C. R., Costantini, A., & Basanta, M. (2014). Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142, 25–31. https://doi.org/https://doi.org/10.1016/j.still.2014.04.005spa
dc.relation.referencesArbia, G. (2014). A Primer for Spatial Econometrics With Applications in R. https://doi.org/https://doi.org/10.1057/9781137317940spa
dc.relation.referencesBallabio, C., Panagos, P., & Montanarella, L. (2014). Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. Joint Research Centre, Institute for Environment and Sustainability, 9229. https://doi.org/10.1117/12.2066406spa
dc.relation.referencesBatjes, N. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61–68. https://doi.org/10.1016/j.geoderma.2016.01.034spa
dc.relation.referencesBatjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.xspa
dc.relation.referencesBatjes, & Wesemael, B. (2014). Measuring and monitoring soil carbon. Soil Carbon: Science, Management and Policy for Multiple Benefits, December, 188–201. https://doi.org/10.1079/9781780645322.0188spa
dc.relation.referencesBellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245–248. https://doi.org/10.1038/nature04038spa
dc.relation.referencesBianchi, S. R., Miyazawa, M., De Oliveira, E. L., & Pavan, M. A. (2008). Relationship between the mass of organic matter and carbon in soil. Brazilian Archives of Biology and Technology, 51(2), 263–269. https://doi.org/10.1590/S1516-89132008000200005spa
dc.relation.referencesBiswas, A., & Zhang, Y. (2018). Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28(1), 1–15. https://doi.org/https://doi.org/10.1016/S1002-0160(18)60001-3spa
dc.relation.referencesBlanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J., & Shaver, T. M. (2013). Replacing Fallow with Cover Crops in a Semiarid Soil: Effects on Soil Properties. Soil Science Society of America Journal, 77(3), 1026–1034. https://doi.org/https://doi.org/10.2136/sssaj2013.01.0006spa
dc.relation.referencesBoubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. CATENA, 190, 104539. https://doi.org/https://doi.org/10.1016/j.catena.2020.104539spa
dc.relation.referencesBouma, J. (2014). Soil science contributions towards Sustainable Development Goals and their implementation: Linking soil functions with ecosystem services. Journal of Soil Fertility and Soil Science, 177, 111–120. https://doi.org/10.1002/jpln.201300646spa
dc.relation.referencesBremner, J. M., & Tabatabai, M. A. (1970). Use of the Leco Automatic 70-Second Carbon Analyzer for Total Carbon Analysis of Soils. Soil Science, 34, 608–610.spa
dc.relation.referencesBremner, J. M., & Tabatabai, M. A. (1971). Use of Automated Combustion Techniques for Total Carbon, Total Nitrogen, and Total Sulfur Analysis of Soils. Iowa Agriculture & Home Economics Experiment Station, 1835, 1–15. https://doi.org/10.2136/1971.instrumentalmethods.c1spa
dc.relation.referencesBronick, C. J., & Lal, R. (2005). Soil structure and management : a review. 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005spa
dc.relation.referencesCarré, F., Hiederer, R., Blujdea, V., & Koeble, R. (2010). Background Guide for the Calculation of Land Carbon Stocks in the Biofuels Sustainability Scheme Drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.spa
dc.relation.referencesChen, S., Arrouays, D., Angers, D. A., Martin, M. P., & Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53–58. https://doi.org/https://doi.org/10.1016/j.still.2018.11.001spa
dc.relation.referencesChenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/https://doi.org/10.1016/j.still.2018.04.011spa
dc.relation.referencesContreras Santos, J. L., Martinez Atencia, J., Cadena Torre, J., & Fallas Guzmán, C. K. (2020). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. 44, a.spa
dc.relation.referencesCorbeels, M., de Graaff, J., Ndah, T. H., Penot, E., Baudron, F., Naudin, K., Andrieu, N., Chirat, G., Schuler, J., Nyagumbo, I., Rusinamhodzi, L., Traore, K., Mzoba, H. D., & Adolwa, I. S. (2014). Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agriculture, Ecosystems & Environment, 187, 155–170. https://doi.org/https://doi.org/10.1016/j.agee.2013.10.011spa
dc.relation.referencesDe Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., & Carnicelli, S. (2015). Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma, 251–252, 33–46. https://doi.org/10.1016/j.geoderma.2015.03.008spa
dc.relation.referencesDeng, L., Zhu, G. yu, Tang, Z. sheng, & Shangguan, Z. ping. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.gecco.2015.12.004spa
dc.relation.referencesEllili, Y., Walter, C., Michot, D., Pichelin, P., & Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(February), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005spa
dc.relation.referencesEscosteguy, P. A. V., Galliassi, K., & Ceretta, C. A. (2007). Determinação de matéria orgânica do solo pela perda de massa por Ignição, em amostras do Rio Grande do Sul. Revista Brasileira de Ciência Do Solo, 31(2), 247–255. https://doi.org/10.1590/s0100-06832007000200007spa
dc.relation.referencesEyherabide, M., Saínz Rozas, H., Barbieri, P., & Eduardo Echeverría, H. (2014). Comparación De Métodos Para Determinar Carbono Orgánico En Suelo. Cienc Suelo (Argentina), 32(1), 13–19.spa
dc.relation.referencesFAO. (2007). Secuestro de Carbono en tierras áridas. Informes Sobre Recursos Mundiales, 138. https://doi.org/10.1016/S0169-555X(01)00072-1spa
dc.relation.referencesFAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps.spa
dc.relation.referencesFAO. (2015). El suelo es un recurso no renovable. Fao, 2. fao.org/soils-2015spa
dc.relation.referencesFAO. (2017). Carbono Organico del suelo potencial oculto. http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10042482(1).pdfspa
dc.relation.referencesFlores-sánchez, B., Segura-castruita, M. Á., Fortis-hernández, M., & Martínez-corral, L. (2015). Enmiendas de estiércol solarizado en la estabilidad de agregados de un Aridisol cultivado de México. Revista Mexicana De Ciencias Agrícolas, 6, 1543–1555.spa
dc.relation.referencesFrancaviglia, R., Coleman, K., Whitmore, A. P., Doro, L., Urracci, G., Rubino, M., & Ledda, L. (2012). Changes in soil organic carbon and climate change – Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agricultural Systems, 112, 48–54. https://doi.org/https://doi.org/10.1016/j.agsy.2012.07.001spa
dc.relation.referencesFu, C., Chen, Z., Wang, G., Yu, X., & Yu, G. (2021). A comprehensive framework for evaluating the impact of land use change and management on soil organic carbon stocks in global drylands. Current Opinion in Environmental Sustainability, 48, 103–109. https://doi.org/https://doi.org/10.1016/j.cosust.2020.12.005spa
dc.relation.referencesGalvez, J. (2010). El recurso suelo agua en medios áridos y semiáridos. 143–149.spa
dc.relation.referencesGe, N., Wei, X., Wang, X., Liu, X., Shao, M., Jia, X., Li, X., & Zhang, Q. (2019). Soil texture determines the distribution of aggregate-associated carbon , nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena, 172(October 2017), 148–157. https://doi.org/10.1016/j.catena.2018.08.021spa
dc.relation.referencesGessesse, T. A., Khamzina, A., Gebresamuel, G., & Amelung, W. (2020). Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. Catena, 190(September 2019), 104543. https://doi.org/10.1016/j.catena.2020.104543spa
dc.relation.referencesGougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577spa
dc.relation.referencesGray, J. M., Bishop, T. F. A., & Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741–1751. https://doi.org/https://doi.org/10.2136/sssaj2015.06.0224spa
dc.relation.referencesGuevara, M., Olmedo, G., Stell, E., Yigini, Y., Aguilar, Y., Arellano Hernandez, C., Arevalo, G., Arroyo-Cruz, C., Bolivar, A., Bunning, S., Cañas, N., Cruz-Gaistardo, C., Davila, F., Acqua, M., Encina, A., Tacona, H., Fontes, F., Hernández Herrera, J., Navarro, A., & Vargas, R. (2018). No Silver Bullet for Digital Soil Mapping: Country-specific Soil Organic Carbon Estimates across Latin America. SOIL Discussions, 1–20. https://doi.org/10.5194/soil-2017-40spa
dc.relation.referencesHammad, H. M., Fasihuddin Nauman, H. M., Abbas, F., Ahmad, A., Bakhat, H. F.,Saeed, S., Shah, G. M., Ahmad, A., & Cerdà, A. (2020). Carbon sequestration potential and soil characteristics of various land use systems in arid region. Journal of Environmental Management, 264, 110254. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110254spa
dc.relation.referencesHan, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 94, 107–121. https://doi.org/10.1016/j.soilbio.2015.11.023spa
dc.relation.referencesHiederer, R., & Köchy, M. (2011). Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. 79. https://doi.org/10.2788/13267spa
dc.relation.referencesIGAC. (2009). Estudio general de suelos y zonificación de tierras Departamento del Magdalena.spa
dc.relation.referencesIGAC, instituto geografico agustin codazzi. (2006). Métodos analiticos del laboratorio de suelos (6 edición). IGAC.spa
dc.relation.referencesIGAC, instituto geografico agustin codazzi. (2015). Suelos y Tierras de Colombia. Imprenta Nacional de Colombia,.spa
dc.relation.referencesINGEOMINAS. (1996). Geología de las planchas 11 Santa Marta y 18 Ciénaga.spa
dc.relation.referencesIranmanesh, M., & Sadeghi, H. (2019). The Effect of Soil Organic Matter, Electrical Conductivity and Acidity on the Soil’s Carbon Sequestration Ability Via Two Species of Tamarisk ( Tamarix Spp.). Environmental Progress & Sustainable Energy, 38. https://doi.org/10.1002/ep.13230spa
dc.relation.referencesJandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D. de B., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026spa
dc.relation.referencesJarecki, M. K., & Lal, R. (2003). Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 22(6), 471–502. https://doi.org/10.1080/713608318spa
dc.relation.referencesJastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1), 5–23. https://doi.org/10.1007/s10584-006-9178-3spa
dc.relation.referencesJha, P., Garg, N., Lakaria, B. L., Biswas, A. K., & Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. https://doi.org/https://doi.org/10.1016/j.still.2012.01.018spa
dc.relation.referencesJobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2spa
dc.relation.referencesKaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31(7–8), 711–725. https://doi.org/10.1016/S0146-6380(00)00046-2spa
dc.relation.referencesKeskin, H., & Grunwald, S. (2018). Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma, 326, 22–41. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.04.004spa
dc.relation.referencesKöhl, M., Lister, A., Scott, C. T., Baldauf, T., & Plugge, D. (2011). Implications of sampling design and sample size for national carbon accounting systems. Carbon Balance and Management, 6(1), 10. https://doi.org/10.1186/1750-0680-6-10spa
dc.relation.referencesKrol, B. G. C. M. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data BT - Digital Soil Mapping with Limited Data (A. E. Hartemink, A. McBratney, & M. de L. Mendonça-Santos (eds.); pp. 137–149). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8592-5_11spa
dc.relation.referencesLal, R. (2004). Carbon Sequestration in Dryland Ecosystems. May 2004. https://doi.org/10.1007/s00267-003-9110-9spa
dc.relation.referencesLal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185spa
dc.relation.referencesLal, R. (2009). Soil Carbon Sequestration: Land and water use options for climate change adaptation and mitigation in agriculture. SOLAW Background Thematic Report – TRO4B, 37. https://doi.org/10.1016/j.geoderma.2004.01.032spa
dc.relation.referencesLal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15(C), 79–86. https://doi.org/10.1016/j.cosust.2015.09.002spa
dc.relation.referencesLange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6. https://doi.org/10.1038/ncomms7707spa
dc.relation.referencesLark, R. M. (2009). Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 60(5), 748–756. https://doi.org/https://doi.org/10.1111/j.1365-2389.2009.01156.xspa
dc.relation.referencesLashermes, G., Nicolardot, B., Parnaudeau, V., Thuriès, L., Chaussod, R., Guillotin, M. L., Linères, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., & Houot, S. (2009). Indicator of potential residual carbon in soils after exogenous organic matter application. European Journal of Soil Science, 60(2), 297–310. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01110.xspa
dc.relation.referencesLavelle, P., Fonte, S., Bedano, J. C., Blanchart, E., Galindo, V., Grimaldi, M., Jose, J., Velasquez, E., & Zangerlé, A. (2020). Soil aggregation , ecosystem engineers and the C cycle. Acta Oecologica, 105(December 2019), 103561. https://doi.org/10.1016/j.actao.2020.103561spa
dc.relation.referencesLiu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions : A meta-analysis. Science of the Total Environment, 618(818), 1658–1664. https://doi.org/10.1016/j.scitotenv.2017.10.009spa
dc.relation.referencesLugato, E., Panagos, P., Bampa, F., Jones, A., & Montanarella, L. (2014). A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20(1), 313–326. https://doi.org/https://doi.org/10.1111/gcb.12292spa
dc.relation.referencesLuo, Z., Wang, E., Feng, W., Luo, Y., & Baldock, J. (2018). The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017). Global Change Biology, 24(2), e397–e398. https://doi.org/https://doi.org/10.1111/gcb.13949spa
dc.relation.referencesMalagon, D., Pulido, C., & Llinas Ruben, Chamarro CLara, F. J. (1995). SUELOS DE COLOMBIA origen, evolucion, clasificación, distribución y uso (IGAC (ed.)).spa
dc.relation.referencesMalone, B., Minasny, B., & Mcbratney, A. B. (2017). Progress in Soil Science Using R for Digital Soil Mapping. http://www.springer.com/series/8746spa
dc.relation.referencesMartínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono Orgánico y Propiedades del Suelo. Scielo, Revista de, 68–96. https://doi.org/dx.doi.org/10.4067/S0718-27912008000100006spa
dc.relation.referencesMasunga, R. H., Uzokwe, V. N., Mlay, P. D., Odeh, I., Singh, A., Buchan, D., & De Neve, S. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185–193. https://doi.org/10.1016/j.apsoil.2016.01.006spa
dc.relation.referencesMcbratney, A. B., Minasny, B., & Rossel, R. V. (2006). Spectral soil analysis and inference systems : A powerful combination for solving the soil data crisis. 136, 272–278. https://doi.org/10.1016/j.geoderma.2006.03.051spa
dc.relation.referencesMcBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. https://doi.org/https://doi.org/10.1016/j.geoderma.2013.08.013spa
dc.relation.referencesMinisterio de Ambiente. (2005). Plan de acción Nacional: Lucha contra la desertificación y la sequía en Colombia. In Ministerio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT) (Vol. 1, Issue 1). www.minambiente.gov.co/images/.../5596_250510_plan_lucha_desertificacion.pdfspa
dc.relation.referencesMondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S., & Mukhopadhyay, A. (2017). Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 20(1), 61–70. https://doi.org/10.1016/j.ejrs.2016.06.004spa
dc.relation.referencesMontaño, N. M., Ayala, F., Bullock, S. H., Briones, O., Oliva, F. G., Sánchez, R. G., Maya, Y., Perroni, Y., Siebe, C., Torres, Y. T., & Troyo, E. (2016). ALMACENES Y FLUJOS DE CARBONO EN ECOSISTEMAS ÁRIDOS Y SEMIÁRIDOS DE MÉXICO : SÍNTESIS Y PERSPECTIVAS. 39–59.spa
dc.relation.referencesMoran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17spa
dc.relation.referencesNayak, A. K., Mahmudur, M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., Shahid, M., Ra, M., & Pathak, H. (2019). Current and emerging methodologies for estimating carbon sequestration in agricultural soils : A review. 665, 890–912. https://doi.org/10.1016/j.scitotenv.2019.02.125spa
dc.relation.referencesNerger, R., Beylich, A., & Fohrer, N. (2016). Long-term monitoring of soil quality changes in Northern Germany. Geoderma Regional, 7(2), 239–249. https://doi.org/10.1016/j.geodrs.2016.04.004spa
dc.relation.referencesNieder, R., & Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5spa
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … Wetterlind, J. (2015). Chapter Four - Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (D. L. B. T.-A. in A. Sparks (ed.); Vol. 132, pp. 139–159). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2015.02.002spa
dc.relation.referencesO’Rourke, S., Angers, D., Holden, N., & Mcbratney, A. (2015). Soil organic carbon across scales. Global Change Biology, 21. https://doi.org/10.1111/gcb.12959spa
dc.relation.referencesOdeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67(3), 215–226. https://doi.org/https://doi.org/10.1016/0016-7061(95)00007-Bspa
dc.relation.referencesParras-Alcántara, L., Lozano-García, B., Brevik, E. C., & Cerdá, A. (2015). Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219–228.spa
dc.relation.referencesPausch, J., & Kuzyakov, Y. (2018). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24(1), 1–12. https://doi.org/https://doi.org/10.1111/gcb.13850spa
dc.relation.referencesPellat, F. P., Espinoza, J. A., Cruz Gaistardo, C. O., Etchevers, J. D. B., & de Jong, B. (2016). Spatial and temporal distribution of soil organic carbon in the terrestrial ecosystems of Mexico. Terra Latinoamericana, 34(3), 289–310.spa
dc.relation.referencesPlaza-Bonilla, D., Arrúe, J. L., Cantero-Martínez, C., Fanlo, R., Iglesias, A., & Álvaro-Fuentes, J. (2015). Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 35(4), 1319–1334. https://doi.org/10.1007/s13593-015-0326-xspa
dc.relation.referencesPlaza, C., Zaccone, C., Sawicka, K., Méndez, A. M., Tarquis, A., Gascó, G., Heuvelink, G. B. M., Schuur, E. A. G., & Maestre, F. T. (2018). Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8(1), 13788. https://doi.org/10.1038/s41598-018-32229-0spa
dc.relation.referencesPrăvălie, R. (2016). Drylands extent and environmental issues. A global approach. 161, 259–278. https://doi.org/10.1016/j.earscirev.2016.08.003spa
dc.relation.referencesPremrov, A., Cummins, T., & Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses, sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030spa
dc.relation.referencesRather, B. (1918). An accurate loss on ignition method for determination of organic matter in soils. Association of O8cial Agricultural Chemists, 448(1917), 1–4.spa
dc.relation.referencesRodríguez Martín, J. A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J. J., Grau Corbí, J. M., & Boluda, R. (2016). Assessment of the soil organic carbon stock in Spain. Geoderma, 264, 117–125. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.10.010spa
dc.relation.referencesSafriel, U., & Zafar, A. (2005). Dryland Systems.spa
dc.relation.referencesSánchez, M., Prager M, M., Naranjo, R. E., & Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34.spa
dc.relation.referencesSchillaci, C., Saia, S., Lipani, A., Perego, A., Zaccone, C., & Acutis, M. (2021). Determination of minimum number of samples allowing to detect long term soil organic carbon changes in Mediterranean arable lands using paired-sites. 1–24. https://doi.org/10.21203/rs.3.rs-150726/v1spa
dc.relation.referencesSchmidt, M., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D., Nannipieri, P., Rasse, D., Weiner, S., & Trumbore, S. (2011). Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478, 49–56. https://doi.org/10.1038/nature10386spa
dc.relation.referencesSegura, C., Jiménez, M. N., Nieto, O., Navarro, F. B., & Fernández-Ondoño, E. (2016). Changes in soil organic carbon over 20years after afforestation in semiarid SE Spain. Forest Ecology and Management, 381, 268–278. https://doi.org/http://dx.doi.org/10.1016/j.foreco.2016.09.035spa
dc.relation.referencesShi, Z., Crowell, S., Luo, Y., & Moore, B. (2018). Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9(1), 2171. https://doi.org/10.1038/s41467-018-04526-9spa
dc.relation.referencesSix, J, Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789spa
dc.relation.referencesSix, Johan, & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4–A9. https://doi.org/10.1016/j.soilbio.2013.06.014spa
dc.relation.referencesStenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Chapter Five - Visible and Near Infrared Spectroscopy in Soil Science (D. LB. T.-A. in A. Sparks (ed.); Vol. 107, pp. 163–215). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(10)07005-7spa
dc.relation.referencesStockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164(2013), 80–99. https://doi.org/10.1016/j.agee.2012.10.001spa
dc.relation.referencesTiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/https://doi.org/10.1111/ele.12453spa
dc.relation.referencesTotsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451spa
dc.relation.referencesUSDA. (2014). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdfspa
dc.relation.referencesUSDA. (2017). Soil Survey Manual By Soil Science Division Staff. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue 18). https://doi.org/10.1007/978-3-319-53845-7_6spa
dc.relation.referencesUssiri, D. A. N., & Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue C, pp. 163–225). https://doi.org/10.1007/978-3-319-53845-7spa
dc.relation.referencesVasquez, J., Baena, D., & Menjivar, J. (2010). Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad de Magdalena (Santa Martha, Colombia). Acta Agronómica, 59(4), 449–456. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesVermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R., Reddy, M., Sunga, I., Von Unger, M., & Warnken, M. (2019). A global agenda for collective action on soil carbon. Nature Sustainability, 2(1), 2–4. https://doi.org/10.1038/s41893-018-0212-zspa
dc.relation.referencesViscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1), 59–75. https://doi.org/https://doi.org/10.1016/j.geoderma.2005.03.007spa
dc.relation.referencesVitharana, U. W. A., Mishra, U., & Mapa, R. B. (2019). National soil organic carbon estimates can improve global estimates. Geoderma, 337(April 2018), 55–64. https://doi.org/10.1016/j.geoderma.2018.09.005spa
dc.relation.referencesWade, A. M., Richter, D. D., Medjibe, V. P., Bacon, A. R., Heine, P. R., White, L. J. T., & Poulsen, J. R. (2019). Geoderma Estimates and determinants of stocks of deep soil carbon in Gabon , Central Africa. Geoderma, August 2018, 1–13. https://doi.org/10.1016/j.geoderma.2019.01.004spa
dc.relation.referencesWadoux, A. M. J.-C., & Brus, D. J. (2021). How to compare sampling designs for mapping? European Journal of Soil Science, 72(1), 35–46. https://doi.org/https://doi.org/10.1111/ejss.12962spa
dc.relation.referencesWang, X., Wang, J., & Zhang, J. (2012). Comparisons of Three Methods for Organic and Inorganic Carbon in Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China. August 2015. https://doi.org/10.1371/journal.pone.0044334spa
dc.relation.referencesWhitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131).spa
dc.relation.referencesWilliams, J. N., Morandé, J. A., Vaghti, M. G., Medellín-Azuara, J., & Viers, J. H. (2020). Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation. Carbon Balance and Management, 15(1), 23. https://doi.org/10.1186/s13021-020-00158-zspa
dc.relation.referencesWu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., & Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4spa
dc.relation.referencesXu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., & Ge, J. (2018). Carbon storage in China’s terrestrial ecosystems: A synthesis. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20764-9spa
dc.relation.referencesYu, T., Fu, Y., Hou, Q., Xia, X., Yan, B., & Yang, Z. (2020). Soil organic carbon increase in semi-arid regions of China from 1980s to 2010s. Applied Geochemistry, 116, 104575. https://doi.org/https://doi.org/10.1016/j.apgeochem.2020.104575spa
dc.relation.referencesZamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.03.003spa
dc.relation.referencesZhang, C., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3), 261–275. https://doi.org/https://doi.org/10.1016/j.geoderma.2003.08.004spa
dc.relation.referencesZhang, X., Zhao, Y., Zhu, L., Cui, H., Jia, L., Xie, X., Li, J., & Wei, Z. (2017). Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil. Waste Management, 70, 30–36. https://doi.org/10.1016/j.wasman.2017.08.050spa
dc.relation.referencesZiegler, S. E., Billings, S. A., Lane, C. S., Li, J., & Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalTierras secasspa
dc.subject.proposalVariabilidad espacialspa
dc.subject.proposalCarbono orgánicospa
dc.subject.proposalSuelospa
dc.subject.proposalDrylandseng
dc.subject.proposalSpatial variabilityeng
dc.subject.proposalOrganic carboneng
dc.subject.proposalSoileng
dc.subject.unescoDegradación de suelosspa
dc.subject.unescoSoil degradationeng
dc.subject.unescoCarbonospa
dc.subject.unescoCarboneng
dc.titleMonitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombiaspa
dc.title.translatedMonitoring of the organic carbon stock in soils of sub-humid environments. Case Study Department of Magdalena, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
KJGATesis2021.pdf
Tamaño:
2.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: