Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes

dc.contributor.advisorAristizábal Giraldo, Edier Vicente
dc.contributor.advisorEcheverri Ramírez, Óscar
dc.contributor.advisorMergili, Martin
dc.contributor.authorPalacio Cordoba, Johnnatan Arley
dc.contributor.colaboratorEcheverri Ramírez, Óscarspa
dc.contributor.colaboratorMergili, Martinspa
dc.contributor.colaboratorAristizábal Giraldo, Edier Vicentespa
dc.contributor.googlescholarPalacio Cordoba, Johnnatan Arley [WSGNHRUAAAAJ&hl]spa
dc.contributor.orcidPalacio Cordoba, Johnnatan Arley [0000-0002-1603-4614]spa
dc.contributor.orcidMergili, Martin [0000-0001-5085-4846]spa
dc.contributor.orcidEcheverri Ramírez, Óscar [0000-0002-4665-8786]spa
dc.contributor.orcidAristizábal Giraldo, Edier Vicente [0000-0002-2648-2197]spa
dc.contributor.researchgatePalacio Cordoba, Johnnatan Arley [Johnnatan-Palacio]spa
dc.contributor.researchgroupInvestigación en Geología Ambiental Geaspa
dc.coverage.regionAndes, Colombia
dc.date.accessioned2023-11-30T15:28:55Z
dc.date.available2023-11-30T15:28:55Z
dc.date.issued2023-11
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractApproximately one-fifth of the Earth’s surface is considered vulnerable to at least one natural hazards such as cyclones, droughts, floods, earthquakes, volcanoes, and landslides. Landslides are one of the most destructive; there are several triggering factors. In the Colombian Andes, rainfall is the primary triggering factor. Historical records of landslide occurrences in the country between 1900 and 2018 found that rainfall was responsible for 87 percent of them. These landslides are typically shallow and can evolve into more rapid movements such as flows or avalanches. According to recent records, debris flows have caused some of the most severe damage and some of them happened as a result of the occurrence of Clustered Shallow Landslides (CSL). In terms of spatial analysis, most study in the country focuses on estimating the areas most susceptible to the occurrence of Shallow Landslides (SL). But what happens when an SL propagates? This research focuses on parameters for modelling the propagation of SL triggered by rainfall occurred on March 31, 2017, in Mocoa that supply mass to bigger chain processes that affect the city and surrounding villages with approximately 306 dead people. The modeling is carried out through two useful tools. The empirical tool Flow-R, it requires little input information, the propagation is performed using different algorithms and friction laws, fundamental factors are the travel distance angle, velocity, and dispersion. And r.avaflow that incorporates various physics-based models. It was established for each tool the best-fit parameters for modeling with minimal requirements. Results indicated a maximum velocity of 10 m s−1, minimum travel distance angle of 15, and x value of 2 and 4 for modeling in Flow-R. In addition, the cut-off for the probability of impact was set to 25% as the minimal threshold for zoning. The results concerning to the parameters to modeling SL in r.avaflow suggest; to consider the basal friction equal to the internal friction of the material as the starting value. And to use the minimum heights in the range of 0.51 m to 0.61 m to perform hazard zoning of the possible affected areas.eng
dc.description.abstractAproximadamente una quinta parte de la superficie terrestre se considera vulnerable a al menos una amenaza de origen natural, como: ciclones, sequías, inundaciones, terremotos, volcanes y movimientos en masa. Siendo este último uno de los más destructivos; existen varios factores detonantes. En los Andes colombianos, las lluvias son el principal factor detonante, según registros históricos entre 1900 y 2018 el 87% de los movimientos en masa fueron detonados por lluvias, los cuales suelen ser poco profundos y pueden evolucionar a movimientos más rápidos y destructivos como flujos y avalanchas. Según registros recientes, la ocurrencia de decenas a cientos de movimientos en masa detonados por lluvias, Resultó en la ocurrencia de avenidas torrenciales, causando afectaciones sobre la población y la infraestructura. En términos de análisis espacial, la mayoría de los estudios realizados se centran en estimar las zonas más susceptibles a la ocurrencia de movimientos en masa superficiales. Pero ¿Qué ocurre cuando un movimiento en masa se propaga? Esta investigación se centra en los parámetros para la modelación de la propagación de movimientos en masa superficiales detonados por las lluvias ocurridas el 31 de marzo de 2017, en Mocoa, que fueron suplemento para un evento concatenado de mayor poder destructivo, que afecto la infraestructura y causó la muerte de aproximadamente 306 personas. La modelación se ejecuta mediante la herramienta empírica Flow-R, la cual requiere poca información de entrada, la propagación se realiza utilizando diferentes algoritmos y reglas. Y r.avaflow incorpora varios modelos basados en la física, teniendo como insumo básico la distribución de la fricción interna del material y fricción basal material – superficie. Se estableció para cada herramienta los parámetros de mejor ajuste para el modelado con requisitos mínimos. Los resultados indicaron para Flow-R una velocidad máxima de 10 m/s, un ángulo de distancia de viaje de 15 grados, y un valor para el, exponte de dispersión x de 2 y 4. Además, el umbral mínimo de la probabilidad de impacto se fijó en 25% para la zonificación. Respecto a r.avaflow, los resultados sugieren considerar la fricción basal igual a la fricción interna del material como valor de partida. Y utilizar las alturas mínimas en el rango de 0, 51 m a 0, 61 m para realizar la zonificación de la amenaza de las posibles áreas afectadas. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Geotecniaspa
dc.description.researchareaLandslide and risk managementspa
dc.description.tableofcontentsBrief review of state of propagation models for flow-like landslides and current state in Colombia / This chapter was written with support of Edier Aristizábal, Martin Mergili and, Oscar Echeverrí
dc.description.tableofcontentsExploring best-fit parameters for propagation modeling of shallow landslides, using Flow-R / This chapter was written with support of Edier Aristizábal, Martin Mergili and, Oscar Echeverrí
dc.description.tableofcontentsExploration of basal friction parameter in shallow landslide propagation modeling using r.avaflow / This chapter was written with support of Edier Aristizábal, Martin Mergili and, Oscar Echeverrí
dc.format.extentx, 77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85027
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.references(2017). INMLCF identifica 191 cuerpos en Mocoa.spa
dc.relation.referencesAnderson, S. A. and Sitar, N. (1995). Analysis of Rainfall-Induced Debris Flows. Journal of Geotechnical Engineering, 121(12):544–552.spa
dc.relation.referencesAristiz´abal, E. (2013). SHIA – Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesAristizábal, E., Carmona, M. I. A., and López, I. K. G. (2020). Definición y clasificación de las avenidas torrenciales y su impacto en los Andes colombianos. Cuadernos de Geografía: Revista Colombiana de Geografía, 29(1):242–258.spa
dc.relation.referencesAristizábal, E., Martínez, E., and Vélez-Upegui, J. I. (2017). Influencia de la lluvia antecedente y la conductividad hidráulica en la ocurrencia de deslizamientos detonados por lluvias utilizando el modelo SHIA landslide. EIA, 13(January) : 31 −−46.spa
dc.relation.referencesAristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disastersspa
dc.relation.referencesBaum, R. L., Savage, W. Z., and Godt, J. W. (2008). TRIGRS— A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey, (2008-1159):75.spa
dc.relation.referencesBeguería, S., W. J. Van Asch, T., Malet, J. P., and Gröndahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Science, 9(6):1897–1909.spa
dc.relation.referencesBenda, L. E. and Cundy, T. W. (1990). Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal, 27(4):409–417.spa
dc.relation.referencesBerti, M. and Simoni, A. (2007). Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90(1-2):144–161.spa
dc.relation.referencesBerti, M. and Simoni, A. (2014). DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers and Geosciences, 67:14–23.spa
dc.relation.referencesBladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(1):1–10.spa
dc.relation.referencesBorga, M., Dalla Fontana, G., Daros, D., and Marchi, L. (1998). Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol, 28:81–88.spa
dc.relation.referencesCaine, N. (1980). The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler. Series A, Physical Geography, 62:23–27.spa
dc.relation.referencesCampbell, R. H. (1974). Debris flows originating from soil slips during rainstorms in southern california. Journal of Engineering Geology and Hydrogeology, 7(4):339–349.spa
dc.relation.referencesCannon, S. H. (1993). Empirical model for the volume-change behavior of debris flows. In Proceedings - National Conference on Hydraulic Engineering, pages 1768–1773, San Francisco, CA, USA.spa
dc.relation.referencesCaracol Radio (2007). Terrible calamidad enfrenta Antioquia por lluvias y derrumbes.spa
dc.relation.referencesCaracol Radio (2020a). 438 afectados por deslizamiento en Dabeiba permanecen en albergues.spa
dc.relation.referencesCaracol Radio (2020b). Un muerto y quince municipios afectados por lluvias en Antioquia.spa
dc.relation.referencesCarmona Arango, M. I., Aristizábal, E., Jaboyedoff, M., and McArdell, B. (2021). Assessing torrential flow susceptibility using triggering and propagation models for tropical mountainous regions, a case study of the northern Andes, Colombia. In Cabrera, M. A., Prada-Sarmiento, L. F., and Montero, J., editors, SCG-XIII INTERNATIONAL SYMPOSIUM ON LANDSLIDES, number June 2020, page 9, Cartagena. International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE).spa
dc.relation.referencesCascini, L., Cuomo, S., Pastor, M., and Sorbino, G. (2010). Modeling of rainfall-induced shallow landslides of the flow-type. Journal of Geotechnical and Geoenvironmental Engineering, 136(1):85–98.spa
dc.relation.referencesCastro López, F. R. (2018). Simulación de flujos granulares detonados desde el Cerro Montoso (Nariñoo, Colombia) e implicaciones para amenazas por remoción en masa. PhD thesis, Universidad de los Andes.spa
dc.relation.referencesChristen, M., Kowalski, J., and Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1-2):1–14.spa
dc.relation.referencesCorominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 2(33):260–271.spa
dc.relation.referencesCrosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2-3):131–145.spa
dc.relation.referencesCrosta, G. and Frattini, P. (2001). Rainfall thresholds for soil slip and debris flow triggering. Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, (January 2001):463– 487.spa
dc.relation.referencesCrosta, G., Imposimato, S., and Roddeman, D. G. (2003). Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Science, 3(6):523–538.spa
dc.relation.referencesCrozier, M. J. (2005). Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides, 2(4):247–256.spa
dc.relation.referencesCrozier, M. J. (2017). A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping. Geomorphology, 295(July):480–488.spa
dc.relation.referencesCruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43:27–29.spa
dc.relation.referencesCruden, D. M. and Varnes, D. J. (1996). Landslide types and processes. pages 36–75.spa
dc.relation.referencesCuomo, S. (2020). Modelling of flowslides and debris avalanches in natural and engineered slopes: a review. Geoenvironmental Disasters, 7(1):1–25.spa
dc.relation.referencesDai, F. C., Lee, C. F., and Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1):65–87.spa
dc.relation.referencesDai, L., Scaringi, G., Fan, X., Yunus, A. P., Liu-Zeng, J., Xu, Q., and Huang, R. (2021). Coseismic Debris Remains in the Orogen Despite a Decade of Enhanced Landsliding. Geophysical Research Letters, 48(19).spa
dc.relation.referencesDevoli, G., De Blasio, F. V., Elverhøi, A., and Høeg, K. (2009). Statistical analysis of landslide events in Central America and their run-out distance. Geotechnical and Geological Engineering, 27(1):23–42.spa
dc.relation.referencesDilley, M., Chen, R. S., Deichmann, U., Lener-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., Yetman, G., Lerner-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G. (2005). Natural Disaster Hotspots A Global Risk Analysis.spa
dc.relation.referencesEl Tiempo (2007). Tarazá (Bajo Cauca antioqueño) fue declarado en estado de emergencia.spa
dc.relation.referencesEngelen, G. (1967). Landslides in the metamorphic northern border of the dolomites (north italy). Engineering Geology, 2(3):135–147.spa
dc.relation.referencesFairfield, J. and Leymarie, P. (1991). Drainage Networks From Grid Digital Elevation Models. Water Resources Research, 27(5):709–717.spa
dc.relation.referencesFannin, R. J. and Wise, M. P. (2001). An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38(5):982–994.spa
dc.relation.referencesFawcett, T. (2005). An introduction to ROC analysis. 35(6):299–309.spa
dc.relation.referencesFell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31(2):261–272.spa
dc.relation.referencesFreeman, T. G. (1991). Calculating catchment area with divergent flow based on a regular grid. Computers 6eosciences, 17(3):413–422.spa
dc.relation.referencesFroude, M. J. and Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., (18):2161–2181.spa
dc.relation.referencesGamma, P. (2000). Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. PhD thesis, Geographisches Institut der Universit¨at Bern.spa
dc.relation.referencesGingold, R. and Monaghan, J. (1977). Smoothed particles hydrodynam ics: theory and application to non-spherical stars. Mon Not R Astron Soc, 181:375–389.spa
dc.relation.referencesGómez, D., García, E. F., and Aristizábal, E. (2023). Spatial and temporal landslide distributions using global and open landslide databases, volume 117. Springer Netherlands.spa
dc.relation.referencesGonzález, J. L., Chavez, O. A., and Hermelin, M. (2005). Aspectos geomorfológicos de la avenida torrencial del 31 de enero de 1994 en la cuenca del río Fraile y sus fenómenos asociados. In Hermelin, M., editor, Desastres de origen natural en Colombia 1979-2004, chapter 11, pages 135–150. Fondo Editorial Universidad EAFIT, Medellín.spa
dc.relation.referencesGuthrie, R. and Befus, A. (2021). DebrisFlow Predictor : an agent-based runout program for shallow landslides. Nat. Hazards Earth Syst. Sci., 21:1029–1049.spa
dc.relation.referencesGuzmán, F., Ruíz, J., and Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de análisis de componentes principales (ACP). pages 1–55.spa
dc.relation.referencesHaeberli, W. (1984). Permafrost glacier relationships in the Swiss Alps: today and in the past. In Fourth International Conference on Permafrost, pages 415–420, Fairbanks, Alaska. Versuchsanst. für Wasserbau, Hydrologie u. Glaziologie an d. Eidg. Techn. Hochsch.spa
dc.relation.referencesHeim, A. (1932). Bergsturz und Menschenleben. Zürich.spa
dc.relation.referencesHermelin, M. and Hoyos, N. (2010a). Convulsive Events , a Widespread Hazard in the Colombian Andes. In Latrubesse, E. M., editor, Natural hazards and human-exacerbated disasters in LatinAmerica : special volumes of geomorphology, volume 13, chapter 7, pages 131–148. Earth Surface Processes.spa
dc.relation.referencesHernández, A. F. (2015). Avenida Torrencial en Salgar, Antioquia (Colombia).spa
dc.relation.referencesHolmgren, P. (1994). Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8(4):327–334.spa
dc.relation.referencesHorton, P., Jaboyedoff, M., and Bardou, E. (2008). Debris flow susceptibility mapping at a regional scale. In 4th Canadian Conference on Geohazards, Qu´ebec, Canada, 20–24 May 2008.spa
dc.relation.referencesHorton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4):869–885.spa
dc.relation.referencesHuggel, C., K¨a¨ab, A., Haeberli, W., Teysseire, P., and Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2):316–330.spa
dc.relation.referencesHungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4):610–623.spa
dc.relation.referencesHungr, O., Corominas, J., and Eberhardt, E. (2005). Estimating landslide motion mechanism, travel distance and velocity. pages 99–128.spa
dc.relation.referencesHungr, O., Evans, S. G., Bovis, M. J., and Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3):221–238.spa
dc.relation.referencesHungr, O., Leroueil, S., and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2):167–194.spa
dc.relation.referencesHunter, G. and Fell, R. (2003). Travel distance angle for ”rapid” landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6):1123–1141.spa
dc.relation.referencesH¨urlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008). Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102(3-4):152–163.spa
dc.relation.referencesHutchinson, J. N. (1986). A sliding–consolidation model for flow slides. Canadian Geotechnical Journal, 23(2):115–126.spa
dc.relation.referencesInternational Union of Geological Sciences Working Group on Landslides (1995). A suggested method for describing the rate of movement of a landslide. Bulletin of the International Association of Engineering Geology, 52(1):75–78.spa
dc.relation.referencesIverson, R. M., Schilling, S. P., and Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. GSA Bulletin, 110(8):972–984.spa
dc.relation.referencesKappes, M. S., Malet, J. P., Remaítre, A., Horton, P., Jaboyedoff, M., and Bell, R. (2011). Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Science, 11(2):627–641.spa
dc.relation.referencesKirschbaum, D., Stanley, T., and Zhou, Y. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249:4–15.spa
dc.relation.referencesKirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A. (2009). A global landslide catalog for hazard applications: method, results, and limitations. pages 561–575.spa
dc.relation.referencesKjekstad, O. and Highland, L. (2009). Economic and Social Impacts of Landslides. Springer, Berlin, Heidelberg.spa
dc.relation.referencesKwan, J. S. and Sun, H. W. (2006). An improved landslide mobility model. Canadian Geotechnical Journal, 43(5):531–539.spa
dc.relation.referencesKwan, J. S. H., Sun, H. W., and of Engineers, H. K. I. (2007). Benchmarking exercise on landslide mobility modelling - runout analyses using 3dDMM. In International Forum, Landslide disaster management, Hong Kong, Hong Kong, China. Geotechnical Division, Hong Kong Institution of Engineers.spa
dc.relation.referencesLi, T. (1983). A mathematical model for predicting the extent of a major rockfall. Zeitschrift fur Geomorphologie, 27:473–482.spa
dc.relation.referencesLlano Serna, M. A., Muniz-de Farias, M., and Martínez-Carvajal, H. E. (2015). Numerical modelling of Alto Verde landslide using the material point method. Dyna, 82(194):150–159.spa
dc.relation.referencesMaros, H. and Juniar, S. (2019). Modelación de flujos de escombros con DAN3D en quebradas susceptibles del sector norte del AMSS. PhD thesis, Universidad del Salvador.spa
dc.relation.referencesMcDougall, S. (2017). 2014 canadian geotechnical colloquium: Landslide runout analysis— current practice and challenges. Canadian Geotechnical Journal, 54(5):605–620.spa
dc.relation.referencesMcDougall, S. and Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6):1084–1097.spa
dc.relation.referencesMcDougall, S. and Hungr, O. (2005). Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5):1437–1448.spa
dc.relation.referencesMedina, V., Hürlimann, M., and Bateman, A. (2008). Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5(1):127–142.spa
dc.relation.referencesMedina Bello, E., Reyes Merchan, A. A., Castro, J. A., Sandoval Martínez, A., Torres, J., and Pérez Moreno, M. A. (2018). Observaciones de campo de la avenida torrencial del 12 de agosto de 2018 en el municipio de Mocoa - Putumayo. Technical report.spa
dc.relation.referencesMergili, M. (2008). Integrated modelling of debris flows with Open Source GIS. PhD thesis, University of Innsbruck, Austria.spa
dc.relation.referencesMergili, M., Fellin, W., Moreiras, S. M., and Stötter, J. (2012). Simulation of debris flows in the Central Andes based on Open Source GIS: Possibilities, limitations, and parameter sensitivity. Natural Hazards, 61(3):1051–1081.spa
dc.relation.referencesMergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P. (2017). r.avaflow v1, an advanced open source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2):553–569.spa
dc.relation.referencesMergili, M., Krenn, J., and Chu, H. J. (2015). r.randomwalk v1, a multi-functional conceptual tool for mass movement routing. Geoscientific Model Development, 8(12):4027–4043.spa
dc.relation.referencesMergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-muntau, B., Rossi, M., and Guzzetti, F. (2014). A strategy for GIS-based 3-D slope stability modelling over large areas. Geoscientific Model Development, 7(6):2969–2982.spa
dc.relation.referencesMesa,Ó., Poveda, G., Vélez-Upegui, J. I., Mejía, Valencia, J. F., Hoyos Ortiz, C. D., Mantilla Gutiérrez, R., Barco Mejía, O. J., Cuartas Pineda, L. A., Botero Hernández, B., and Montoya, M. (2000). Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. XIV Seminario de Hidráulica e Hidrología, (1):1–9.spa
dc.relation.referencesMolinari, M. E., Cannata, M., and Meisina, C. (2014). r.massmov: An open-source landslide model for dynamic early warning systems. Natural Hazards, 70(2):1153–1179.spa
dc.relation.referencesMoncayo, C. (2021). Evaluación de la distancia de viaje de movimientos en masa en Colombia a partir de registros históricos. PhD thesis, Universidad Nacional de Colombia (Bogotá).spa
dc.relation.referencesMoser, M. and Hohensinn, F. (1983). Geotechnical aspects of soil slips in Alpine regions. Engineering Geology, 19(3):185–211.spa
dc.relation.referencesNadim, F. and Kjekstad, O. (2009). Assessment of global high-risk landslide disaster hotspots.spa
dc.relation.referencesNoticias RCN (2020). Cinco muertos y 16 heridos por deslizamientos en Dabeiba, Antioquia.spa
dc.relation.referencesNúñez Tello, A. (2003). Reconocimiento geológico regional de la Planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco departamentos de Caquetá, Cauca, Huila, Nariño y Putumayo. Technical report, INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTIFICA MINERO AMBIENTAL Y NULEAR INGEOMINAS, Bogotá, D. C.spa
dc.relation.referencesO’brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993). Two-Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, 119:244–261.spa
dc.relation.referencesO’Callaghan, J. F. and Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28:323–344.spa
dc.relation.referencesPalacio, J., Aristizábal, E., Guthrie, R., and Echeverri, O. (2021a). DebrisFlow Predictor : Herramienta para la propagación de movimientos en masa tipo flujos . In XVIII Congreso Colombiano de Geología, Medellín, 18-20 August 2021. Sociedad Colombiana de Geología.spa
dc.relation.referencesPalacio, J., Aristizábal, E., Mergili, M., and Echeverri, O. (2021b). Shallow landslide occurrence and propagation in tropical mountainous terrain with open source models . A case study in the Colombian Andes . In EGU General Assembly 2021, online, 19–30 Apr 2021.spa
dc.relation.referencesPalacio, J., Gómez, F., Aristizábal, E., and Guthrie, R. (2022). Modelos empíricos para la evaluación de la amenaza por movimientos en masa tipo flujo. In XXI Congreso Geológico Argentino, page 3, Puerto Madryn, Chubut.spa
dc.relation.referencesPalacio, J., Mergili, M., and Aristizábal, E. (2020). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model. Natural Hazards and Earth System Sciences, 20:815–829.spa
dc.relation.referencesPapa, M. N., Sarno, L., Vitiello, F. S., and Medina, V. (2018). Application of the 2D depth-averaged model, FLATModel, to pumiceous debris flows in the Amalfi Coast. Water (Switzerland), 10(9).spa
dc.relation.referencesPastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S. (2014). Application of a SPH depthintegrated model to landslide run-out analysis. Landslides, 11(5):793–812.spa
dc.relation.referencesPastor, M., Haddad, B., Sorbino, G., Cuomo, S., and Drempetic, V. (2009). A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Meth. Geomech., 32:143–172.spa
dc.relation.referencesPerla, R., Cheng, T. T., and McClung, D. (1980). A two–parameter model of snow–avalanche motion. Journal of Glaciology, 26(94):197–207.spa
dc.relation.referencesPetley, D. (2008). The global occurrence of fatal landslides in 2007. In Geophysical Research Abstracts, EGU General Assembly 2008, page 3, Vienna, Austria.spa
dc.relation.referencesPetley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10):927–930.spa
dc.relation.referencesPirulli, M. (2005). Numerical Modelling of Landslides Runout. Phd, Politecnico di Torino.spa
dc.relation.referencesPoisel, R., Preh, A., and Hungr, O. (2008). Run Out of Landslides - Continuum Mechanics versus Discontinuum Mechanics Models. Geomechanik und Tunnelbau, 1(5):358–366.spa
dc.relation.referencesPoveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias, XVIII(107):201–222.spa
dc.relation.referencesPrada-Sarmiento, L. F., Cabrera, M. A., Camacho, R., Estrada, N., and Ramos-Cañón, A. M. (2019). The Mocoa Event on March 31 (2017): analysis of a series of mass movements in a tropical environment of the Andean-Amazonian Piedmont. Landslides, 16(12):2459–2468.spa
dc.relation.referencesPudasaini, S. P. (2012). A general two-phase debris flow model. JGR Earth Surface, 117(3):1–28.spa
dc.relation.referencesPudasaini, S. P. and Krautblatter, M. (2021). The mechanics of landslide mobility with erosion. Nature Communications, 12(1).spa
dc.relation.referencesPudasaini, S. P. and Mergili, M. (2019). A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface, 124(12):2920–2942.spa
dc.relation.referencesQiu, C., Xie, M., and Esaki, T. (2007). Application of GIS Technique in Three-Dimensional Slope Stability Analysis. COMPUTATIONAL MECHANICS, 3(1):703–712.spa
dc.relation.referencesQuan Luna, B., Remaítre, A., van Asch, T. W., Malet, J. P., and van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128:63–75.spa
dc.relation.referencesQuan Luna, B. R. (2012). Dynamic numerical run out modeling for quantitative landslide risk assessment. Phd, University of Twente, ITC.spa
dc.relation.referencesQuinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5 (October 1990):59–79.spa
dc.relation.referencesRamos Cañón, A. M., Merchán Reyes, A. A., Munévar Peña, M. A., Ruiz Peña, G. L., Machuca Castellanos, S. V., Rangel Flórez, M. S., Prada Sarmiento, L. F., Cabrera, A., Rodríguez, M. Pineda, C. E., Escobar Castañeda, N., Quintero Ortíz, C. A., Escobar Vargas, J. A., Juan Diego, G. O., Medina Orjuela, M. S., Durán Santana, L., Trujillo Osorio, D. E., Medina Ávila, D. F., Capachero Martínez, C. A., León Delgado, D., Ramírez Hernández, K. C., González Rojas, E. E., Rincón Chisino, S. L., Solarte Blandón, P. A., Castro Malaver, L. C., López Marín, C., Navarro Alarcón, S. d. R., and Pérez Moreno, M. A. (2021). Guía metodológica para zonificación de amenaza por avenidas torrenciales.spa
dc.relation.referencesRCN Radio (2017). Aumenta el número de personas muertas por avalancha en Mocoa.spa
dc.relation.referencesRickenmann, D. (1999). Empirical relationships for Debris Flow. Natural hazards, 19(47):47–77.spa
dc.relation.referencesRickenmann, D. (2005). Runout prediction methods, pages 305–324. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesRickenmann, D. and Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3):175–189.spa
dc.relation.referencesSalm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18:221–226.spa
dc.relation.referencesSassa, K. (1988). Geotechnical model for the motion of landslides. In 5th International Symposium on Landslides, pages 37–55, Rotterdam.spa
dc.relation.referencesSavage, S. B. and Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(2697):177–215.spa
dc.relation.referencesSavage, S. B. and Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis. Acta Mechanica, 86:201–223.spa
dc.relation.referencesScheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics Felsmechanik M´ecanique des Roches, 5:231–236.spa
dc.relation.referencesScheidl, C. and Rickenmann, D. (2010). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf. Process. Landforms, 35(2):157–173.spa
dc.relation.referencesScheidl, C., Rickenmann, D., and McArdell, B. W. (2013). Runout prediction of debris flows and similar mass movements. Landslide Science and Practice: Spatial Analysis and Modelling, 3 (September 2012):221–229.spa
dc.relation.referencesSchilling, S. P. (1998). LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones. Technical report, USGS, Vancouver, Washington.spa
dc.relation.referencesSchuster, R. and Highland, L. (2003). Impact of landslides and innovative landslide-mitigation measures on the natural environment. Geologic Hazards Team, US Geological survey, Denver, Colorado, U.S.A.spa
dc.relation.referencesSchuster, R. L. (1996). Socioeconomic significance of landslides. In Landslides investigation and mitigation, chapter 2, pages 12–35. Washington, D.C.spa
dc.relation.referencesSchuster, R. L. and Highland, L. (2001). Socioeconomic Impacts of Landslides in the Western Hemisphere. Technical report.spa
dc.relation.referencesSepúlveda, S. A. and Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Science, 15(8):1821– 1833.spa
dc.relation.referencesSGC (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá, D. C.spa
dc.relation.referencesSGC (2017). Caracterización del movimiento en masa tipo flujo 31 de marzo 2017 en Mocoa Putumayo. Technical report, Servicio Geológico Colombiano (SGC), Bogotá.spa
dc.relation.referencesSGC (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1: 25.000. Servicio Geológico Colombiano (SGC), Bogotá, D. C.spa
dc.relation.referencesSGC (2017a). Sistema de Información de Movimientos en Masa - SIMMA.spa
dc.relation.referencesSGC (2017b). Zonificación de susceptibilidad y amenaza por movimientos en masa de las subcuencas de las quebradas Taruca, Taruquita, San antonio, El carmen y los ríos Mulato y Sangoyaco del municipio de Mocoa – Putumayo. Escala 1:25.000. Technical report, Servicio Geológico Colombiano (SGC), Putumayo.spa
dc.relation.referencesSGC (2018a). Amenaza por movimientos en masa tipo flujo de las cuencas de las quebradas Taruga, Taruquita, San Antonio y El Carmen y los ríos Mulato y Sangoyaco, municipio de Mocoa, escala 1:5000. Technical report, Servicio Geológico Colombiano (SGC), Bogotá.spa
dc.relation.referencesSGC (2018b). Evaluación de la amenaza por movimientos en masa en el área urbana, periurbana y de expansión del municipio de Mocoa – Putumayo. Escala 1:5.000. Technical report, Servicio Geológico Colombiano (SGC), Mocoa.spa
dc.relation.referencesSkempton, A. and Hutchinson, J. (1969). Stability of natural slopes and embankment foundations. pages 291–340.spa
dc.relation.referencesSovilla, B., Burlando, P., and Bartelt, P. (2006). Field experiments and numerical modeling of mass entrainment in snow avalanches. Journal of Geophysical Research: Earth Surface, 111(3):1–16.spa
dc.relation.referencesTarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res., 33(2):309–319.spa
dc.relation.referencesTayyebi, S. M., Pastor, M., Stickle, M. M., Yagüe, Á., Manzanal, D., Molinos, M., and Navas, P. (2022). SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term. European Journal of Mechanics, B/Fluids, 96:1–14.spa
dc.relation.referencesTe Chow, V. (1959). Open-channel Hydraulics. Civil engineering series. McGraw-Hill, New York.spa
dc.relation.referencesUNGRD and Fundación Instituto Geofísico Universidad Javeriana (2016). Consultoría de estudios y diseño para la implementación del sistema de alerta temprana por avenidas torrenciales en la microcuenca de la quebrada la Liboriana, quebrada la Clara y río Barroso del municipio de Salgar (Antioquia). Technical report, Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD), Bogotá.spa
dc.relation.referencesUNGRD and Universidad Pontificia Javeriana (2017). Consultoría de los estudios de diseño del sistema de alerta temprana para avenidas torrenciales y crecientes súbitas generadas por precipitaciones de la microcuenca de los ríos Mulato, Sangoyaco, quebradas Taruca y Taruquita del municipio de Mocoa. Technical report, Bogotá.spa
dc.relation.referencesÚnico de información normativa, S. (2011). DECRETO 4131 DE 2011.spa
dc.relation.referencesVarnes, D. J. (1978). Slope Movement Types and Processes. pages 11 – 33.spa
dc.relation.referencesVarnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. Unesco, Paris, France.spa
dc.relation.referencesVoellmy, A. (1955). Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73(15).spa
dc.relation.referencesVon Neumann, J. (1966). Theory of self-reproducing automata.spa
dc.relation.referencesvon Ruette, J., Lehmann, P., and Or, D. (2016). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13(5):1097–1107.spa
dc.relation.referencesWang, F. and Sassa, K. (2000a). A modified geotechnical simulation model for the areal prediction of Landslide motion. Annuals of Disas. Prev. Res. Inst., 43:6.spa
dc.relation.referencesWang, F. and Sassa, K. (2000b). A modified geotechnical simulation model for the areal prediction of Landslide motion. Annuals of Disas. Prev. Res. Inst., 43:6.spa
dc.relation.referencesWang, Y., Hutter, K., and Pudasaini, S. P. (2004). The savage-hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 84(8):507–527.spa
dc.relation.referencesWitt, A., Malamud, B. D., Rossi, M., Guzzetti, F., and Peruccacci, S. (2010). Temporal correlations and clustering of landslides. Earth Surface Processes and Landforms, 35(10):1138–1156.spa
dc.relation.referencesZimmermann, F., McArdell, B. W., Rickli, C., and Scheidl, C. (2020). 2D runout modelling of hillslope debris flows, based on well-documented events in Switzerland. Geosciences, 10(2):1–17.spa
dc.relation.referencesZimmermann, M. N., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O., and Hunziker, G. (1997). Murganggefahr und klimaänderung - ein gis-basierter ansatz.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembLandslideseng
dc.subject.lembDesprendimientos de tierraspa
dc.subject.proposalLandslideeng
dc.subject.proposalCluster landslideseng
dc.subject.proposalShallow landslideseng
dc.subject.proposalRunouteng
dc.subject.proposalPropagationeng
dc.subject.proposalModelingeng
dc.subject.proposalNatural hazardeng
dc.subject.proposalDeslizamientospa
dc.subject.proposalPropagaciónspa
dc.subject.proposalDeslizamientos superficialesspa
dc.subject.proposalModelaciónspa
dc.subject.proposalGestión del riesgospa
dc.subject.proposalRisk managementeng
dc.titleShallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andeseng
dc.title.translatedPropagación de deslizamientos superficiales en terrenos montañosos tropicales. Caso de estudio: Andes colombianosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de amenaza por movimientos en masa y flujos torrenciales en ambientes tropicales y montañososspa
oaire.fundernameUniversidad Nacional de Colombia - Sede Medellínspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1040040602_2023.pdf
Tamaño:
36.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Johnnatan Arley Palacio Cordoba License Capítulo1.pdf
Tamaño:
386.53 KB
Formato:
Adobe Portable Document Format
Descripción:
licencia coautor
Cargando...
Miniatura
Nombre:
Johnnatan Arley Palacio Cordoba License Capítulo2.pdf
Tamaño:
385 KB
Formato:
Adobe Portable Document Format
Descripción:
licencia coautor
Cargando...
Miniatura
Nombre:
Johnnatan Arley Palacio Cordoba License Capítulo3.pdf
Tamaño:
386.53 KB
Formato:
Adobe Portable Document Format
Descripción:
licencia coautor