High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information

dc.contributorHernandez, German Jairospa
dc.contributor.authorSandoval Archila, Javier Hernandospa
dc.date.accessioned2019-07-02T14:33:22Zspa
dc.date.available2019-07-02T14:33:22Zspa
dc.date.issued2016-11-03spa
dc.description.abstractAbstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book volume dy- namics. The DBN learned a natural switching buy/uptrend, sell/downtrend trading strategy using a training-validation framework over one month of market data. The model was tested in the following two months, and its performance was reported and compared to results obtained from randomly classified market states and a feed-forward Neural Network. It is separately assessed the contribution to the model’s performance of the order book in- formation and the wavelet transformation. This work also constructs key trading strategy estimators based on the Ran- dom Entry Protocol over the USD/COP data. This technique eliminates unwanted dependencies on returns and order flow while keeps the natural autocorrelation structure of the Limit Order Book (LOB). It is still con- cluded that the DBN-based model results are competitive with a positive, statistically significant P/L and a well-understood risk profile. Buy-and-Hold results calculated over the testing period are provided for comparison reasons. A general characterization of the USD/COP Limit Order Books and theory behind the Dynamic Bayesian Networks are included as part of the main document.spa
dc.description.degreelevelDoctoradospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/55461/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/58647
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemasspa
dc.relation.ispartofIngeniería de Sistemasspa
dc.relation.referencesSandoval Archila, Javier Hernando (2016) High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information. Doctorado thesis, Universidad Nacional de Colombia-Sede Bogotá.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc6 Tecnología (ciencias aplicadas) / Technologyspa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalMachine Learningspa
dc.subject.proposalDynamic Bayesian Networksspa
dc.subject.proposalPrice Predictionspa
dc.subject.proposalOrder Book Informationspa
dc.subject.proposalHierarchical Hidden Markov Modelspa
dc.subject.proposalWavelet Transformspa
dc.titleHigh frequency exchange rate prediction using dynamic bayesian networks over the limit order book informationspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Javier H. SandovalA.2016.pdf
Tamaño:
4.72 MB
Formato:
Adobe Portable Document Format