Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja

dc.contributor.advisorBranch Bedoya, John William
dc.contributor.advisorRestrepo Martinez, Alejandro
dc.contributor.authorFandiño Toro, Hermes Alexander
dc.contributor.researchgroupGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificialspa
dc.contributor.researchgroupGPIMA: Grupo de Promoción e Investigación en Mecánica Aplicadaspa
dc.date.accessioned2021-06-23T14:13:09Z
dc.date.available2021-06-23T14:13:09Z
dc.date.issued2021-06-21
dc.descriptionIlustracionesspa
dc.description.abstractLa fotoelasticidad es una técnica de inspección visual para determinar el campo de esfuerzos de un objeto bajo carga. A pesar de que permite análisis no invasivos, no destructivos y de campo completo, el desempeño de los estudios de fotoelasticidad depende de múltiples aspectos experimentales. Un aspecto clave es la generación de un conjunto de imágenes con patrones de franja, ya que el campo de esfuerzos se obtiene luego de procesar este conjunto de imágenes. Para que sea posible la evaluación del campo de esfuerzos, estos patrones de franja deben exhibir cierto grado de desplazamiento entre ellos, lo cual se logra modificando el estado de esfuerzos de la pieza bajo inspección. En esta tesis se evalúa la concentración de esfuerzos de modelos birrefringentes sometidos a carga mecánicas y térmicas. Esta evaluación se hace analizando cambios en las concentración de esfuerzos, al modificar la fuente de iluminación del polariscopio empleado; y mediante la estimulación térmica de los modelos birrefringentes bajo carga. Como resultado de analizar las interacciones entre desplazamientos de franja y temperatura, se logran tres estrategias para integrar fotoelasticidad y termografía infrarroja. Los resultados de los análisis efectuados en esta tesis son: (1) teóricamente es posible extender el análisis fotoelástico a espectro electromagnético infrarrojo, lo cual sería útil para tratar algunos problemas de sobremodulación que pueden ocurrir en el espectro visible; (2) se puede utilizar un único experimento de aplicación de carga cíclica, para determinar simultáneamente los campos de esfuerzos y de temperatura de un modelo birrefringente bajo carga; (3) se pueden integrar la fotoelasticidad y la termografía infrarroja, para determinar campos de esfuerzos de muestras birrefringentes bajo carga, incluso en aplicaciones estáticas. En este último caso, la termografía es útil para determinar la magnitud del estímulo térmico, que a su vez permita determinar el campo de esfuerzos de la muestra inspeccionada. (Tomado de la fuente)spa
dc.description.abstractDigital photoelasticity is an imaging technique for visualizing the stress field of loaded objects. Despite their advantages over other techniques for stress analysis, photoelasticity-based studies are non-trivial to develop and, their effectiveness depends on several theoretical and experimental aspects, one being the generation of a proper set of images with fringe patterns displacements. This, because the processing of these images produces the required stress field. In this thesis, the fringe displacements at the surface of a loaded sample are modified by a thermal stimulation. After analyzing the interactions between fringe patterns displacements and temperature, three strategies to integrate photoelasticity and infrared thermography are proposed. The results of the analyzes carried out are: (1) theoretically it is possible to extend the photoelastic analysis to the infrared, which can help with some over modulation problems that can appear in the visible region of the electromagnetic spectrum; (2) a single experiment based on cyclic load can be used to simultaneously reconstruct the stress and temperature fields of a birefringent loaded sample and, (3) photoelasticity and infrared thermography can be integrated to calculate stress fields even in static applications. In the latter case, infrared thermography serves to determine the temperatures steps that, in turn, lead to obtaining the required stress field. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaTermografía Digitalspa
dc.format.extent210 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79684
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.referencesJ. C. Briñez, A. R. Martı́nez, and J. W. Branch, “Computational hybrid phase shifting technique applied to digital photoelasticity,” Optik, vol. 157, pp. 287–297, 2018.spa
dc.relation.referencesR. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Transactions on Consumer electronics, vol. 51, no. 4, pp. 1260–1267, 2005.spa
dc.relation.referencesS. Yamanaka, “Solid state color camera,” Oct. 18 1977. US Patent 4,054,906.spa
dc.relation.referencesE. Rodriguez and F. Filisko, “Temperature changes in poly (methyl methacrylate) and high-density polyethylene during rapid compressive deformation,” Polymer Engineering & Science, vol. 26, no. 15, pp. 1060–1065, 1986.spa
dc.relation.referencesR. Vergara-Puello, H. A. Fandiño-Toro, and A. Restrepo-Martı́nez, “Stresses analysis through digital photoelasticity and infrared thermography in an epoxy sample affected by cyclic loads: A cost-effective proposal,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 115090B, International Society for Optics and Photonics, 2020.spa
dc.relation.referencesD. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” JOSA A, vol. 11, no. 1, pp. 107–117, 1994.spa
dc.relation.referencesM. Ekman and A. Nurse, “Absolute determination of the isochromatic parameter by load-stepping photoelasticity,” Experimental mechanics, vol. 38, no. 3, pp. 189–195, 1998.spa
dc.relation.referencesE. Patterson and Z. Wang, “Towards full field automated photoelastic analysis of complex components,” Strain, vol. 27, no. 2, pp. 49–53, 1991.spa
dc.relation.referencesM. Rahman, N. Schott, and L. K. Sadhu, “Glass transition of abs in 3d printing,” in COMSOL Conference, Boston, MA, 2016.spa
dc.relation.referencesJ. Gough Phil. Mem., 2nd series, vol. 1, p. 288.spa
dc.relation.referencesM. H. Belgen, “Structural stress measurements with an infrared radiometer(structural stress measurements in terms of induced temperature increments, using ir radiometer),” ISA transactions, vol. 6, pp. 49–53, 1967.spa
dc.relation.referencesA. Wong, N. Rajic, and Q. Nguyen, “50th anniversary article: Seeing stresses through the thermoelastic lens—a retrospective and prospective from an australian viewpoint,” Strain, vol. 51, no. 1, pp. 1–15, 2015.spa
dc.relation.referencesC. Middleton, A. Gaio, R. Greene, and E. Patterson, “Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis,” Journal of Nondestructive Evaluation, vol. 38, no. 1, p. 18, 2019.spa
dc.relation.referencesA. Garinei and R. Marsili, “Thermoelastic stress analysis of the contact between a flat plate and a cylinder,” Measurement, vol. 52, pp. 102–110, 2014.spa
dc.relation.referencesI. Ubero-Martı́nez, L. Rodrı́guez-Tembleque, J. Cifuentes-Rodrı́guez, and J. Vallepuga-Espinosa, “Non-linear interface thermal conditions in three-dimensional thermoelastic contact problems,” Computers & Structures, vol. 241, p. 106354, 2020.spa
dc.relation.referencesG. Allevi, M. Cibeca, R. Fioretti, R. Marsili, R. Montanini, and G. Rossi, “Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results,” Measurement, vol. 126, pp. 252–258, 2018.spa
dc.relation.referencesF. Di Carolo, R. De Finis, D. Palumbo, and U. Galietti, “A thermoelastic stress analysis general model: Study of the influence of biaxial residual stress on aluminium and titanium,” Metals, vol. 9, no. 6, p. 671, 2019.spa
dc.relation.referencesZ. S. Hosseini, M. Dadfarnia, B. P. Somerday, P. Sofronis, and R. O. Ritchie, “On the theoretical modeling of fatigue crack growth,” Journal of the Mechanics and Physics of Solids, vol. 121, pp. 341–362, 2018.spa
dc.relation.referencesA. Vivekanandan and K. Ramesh, “Study of crack interaction effects under thermal loading by digital photoelasticity and finite elements,” Experimental Mechanics, vol. 60, no. 3, pp. 295–316, 2020.spa
dc.relation.referencesR. Greene and E. Patterson, “An integrated approach to the separation of principal surface stresses using combined thermo-photo-elasticity,” Experimental mechanics, vol. 46, no. 1, pp. 19–29, 2006.spa
dc.relation.referencesT.-W. Lin, L. Rowe, A. Kaczkowski, G. Horn, and H. T. Johnson, “Polarization-resolved imaging for both photoelastic and photoluminescence characterization of photovoltaic silicon wafers,” Experimental Mechanics, vol. 56, no. 8, pp. 1339–1350, 2016.spa
dc.relation.referencesI. Matyash, I. Minailova, and B. Serdega, “Research of mechanical stresses in irradiated tin-doped silicon crystals,” Materials Science in Semiconductor Processing, vol. 71, pp. 263–267, 2017.spa
dc.relation.referencesO. Oliinyk, B. Tsyganok, B. Serdega, and I. Matiash, “Investigation of nonstationary thermo-photo-elastic effect using the polarization modulation of radiation,” in Proceedings of the 2011 34th International Spring Seminar on Electronics Technology (ISSE), pp. 294–298, IEEE, 2011.spa
dc.relation.referencesS. Mrzljak, M. Trautmann, G. Wagner, and F. Walther, “Influence of aluminum surface treatment on tensile and fatigue behavior of thermoplastic-based hybrid laminates,” Materials, vol. 13, no. 14, p. 3080, 2020.spa
dc.relation.referencesF. Furgiuele, P. Magaro, C. Maletta, and E. Sgambitterra, “Functional and structural fatigue of pseudoelastic niti: Global vs local thermo-mechanical response,” Shap. Mem. Superelasticity, vol. 6, pp. 242–255, 2020.spa
dc.relation.referencesJ. Freire, V. Paiva, G. Gonzáles, R. Vieira, J. Diniz, A. Ribeiro, and A. Almeida, “Fatigue monitoring of a dented pipeline specimen using infrared thermography, dic and fiber optic strain gages,” in Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3, pp. 57–66, Springer, 2020.spa
dc.relation.referencesK. E. Donne, R. D. Thomas, C. Davies, and G. Calvert, “Photoelastic stress and thermographic measurements of automotive windscreen defects generated by projectile impact,” Quality and Reliability Engineering International, vol. 24, no. 8, pp. 897–902, 2008.spa
dc.relation.referencesE. Umezaki and M. Abe, “Development of system for simultaneous measurement of stress and temperature,” in Key Engineering Materials, vol. 326, pp. 163–166, Trans Tech Publ, 2006.spa
dc.relation.referencesO. Janssens, M. Loccufier, and S. Van Hoecke, “Thermal imaging and vibration-based multisensor fault detection for rotating machinery,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 434–444, 2018.spa
dc.relation.referencesO. Janssens, M. Loccufier, R. Van de Walle, and S. Van Hoecke, “Data-driven imbalance and hard particle detection in rotating machinery using infrared thermal imaging,” Infrared Physics & Technology, vol. 82, pp. 28–39, 2017.spa
dc.relation.referencesG. Everett, “Comparison between the thermoelastic method and other experimental techniques for stress measurement,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, vol. 1084, pp. 54–58, International Society for Optics and Photonics, 1989.spa
dc.relation.referencesB. Foust and R. Rowlands, “Thermoelastic determination of individual stresses in a diametrally loaded disk,” Strain, vol. 47, no. 2, pp. 146–153, 2011.spa
dc.relation.referencesS.-J. Lin, D. Matthys, and R. Rowlands, “Separating stresses thermoelastically in a central circularly perforated plate using an airy stress function,” Strain, vol. 45, no. 6, pp. 516–526, 2009.spa
dc.relation.referencesD. Palumbo and U. Galietti, “Data correction for thermoelastic stress analysis on titanium components,” Experimental Mechanics, vol. 56, no. 3, pp. 451–462, 2016.spa
dc.relation.referencesJ. Thatcher, D. Crump, C. Devivier, P. Bailey, and J. Dulieu-Barton, “Low cost infrared thermography for automated crack monitoring in fatigue testing,” Optics and Lasers in Engineering, vol. 126, p. 105914, 2020.spa
dc.relation.referencesL. H. Groom and A. G. Zink, “Techniques in experimental mechanics applicable to forest products research,” Gen. Tech. Rep. SO-125. New Orleans, LA: US Dept of Agriculture, Forest Service, Southern Forest Experiment Station. 45 p., vol. 125, 1994.spa
dc.relation.referencesN. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quantitative InfraRed Thermography Journal, vol. 11, no. 2, pp. 207–221, 2014.spa
dc.relation.referencesJ. Freire, R. Waugh, R. Fruehmann, and J. Dulieu-Barton, “Using thermoelastic stress analysis to detect damaged and hot spot areas in structural components,” J. Mech. Eng. Autom, vol. 5, pp. 623–634, 2015.spa
dc.relation.referencesG. Pitarresi, R. Cappello, and G. Catalanotti, “Quantitative thermoelastic stress analysis by means of low-cost setups,” Optics and Lasers in Engineering, vol. 134, p. 106158, 2020.spa
dc.relation.referencesM. Weihrauch, C. Middleton, R. Greene, and E. Patterson, “Low-cost thermoelastic stress analysis,” in Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6, pp. 15–19, Springer, 2020.spa
dc.relation.referencesW. Wang, R. Fruehmann, and J. Dulieu-Barton, “Application of digital image correlation to address complex motions in thermoelastic stress analysis,” Strain, vol. 51, no. 5, pp. 405–418, 2015.spa
dc.relation.referencesK. Ramesh and S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications,” Optics and Lasers in Engineering, p. 106186, 2020.spa
dc.relation.referencesA. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of rgb photoelasticity,” Optics and Lasers in Engineering, vol. 68, pp. 58–73, 2015.spa
dc.relation.referencesM. Scafidi, G. Pitarresi, A. Toscano, G. Petrucci, S. Alessi, and A. Ajovalasit, “Review of photoelastic image analysis applied to structural birefringent materials: glass and polymers,” Optical Engineering, vol. 54, no. 8, p. 081206, 2015.spa
dc.relation.referencesA. Baldi, F. Bertolino, and F. Ginesu, “A temporal phase unwrapping algorithm for photoelastic stress analysis,” Optics and lasers in engineering, vol. 45, no. 5, pp. 612–617, 2007.spa
dc.relation.referencesJ.-T. Wu and M.-J. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Optical Engineering, vol. 54, no. 8, p. 081207, 2015.spa
dc.relation.referencesS. Xia and M. Mello, “Phase-multiplied photoelastic and series interferometer arrangement for full-field stress measurement in single crystals,” Experimental mechanics, vol. 51, no. 4, pp. 653–666, 2011.spa
dc.relation.referencesY. Ju, Z. Zheng, H. Xie, J. Lu, L. Wang, and K. He, “Experimental visualisation methods for three-dimensional stress fields of porous solids,” Experimental Techniques, vol. 41, no. 4, pp. 331–344, 2017.spa
dc.relation.referencesM. S.-B. Fernández, “Data acquisition techniques in photoelasticity,” Experimental Techniques, vol. 35, no. 6, pp. 71–79, 2011.spa
dc.relation.referencesD. F. Woolard and M. K. Hinders, “Coatings for combined thermoelastic and photoelastic stress measurement,” in Nondestructive Evaluation of Bridges and Highways III, vol. 3587, pp. 88–96, International Society for Optics and Photonics, 1999.spa
dc.relation.referencesD. Woolard, M. Hinders, and C. Welch, “Combined thermoelastic and photoelastic full-field stress measurement,” in Review of Progress in Quantitative Nondestructive Evaluation, pp. 1431–1438, Springer, 1999.spa
dc.relation.referencesR. Greene, A. Clarke, S. Turner, and E. Patterson, “Some applications of combined thermoelastic-photoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 42, no. 3, pp. 173–182, 2007.spa
dc.relation.referencesJ. C. Briñez-de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Computational analysis of bayer colour filter arrays and demosaicking algorithms in digital photoelasticity,” Optics and Lasers in Engineering, vol. 122, pp. 195–208, 2019.spa
dc.relation.referencesJ. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fast fourier transform as color variation descriptor for imaging the stress field from photoelasticity videos,” in Imaging Systems and Applications, pp. JW2A–46, Optical Society of America, 2019.spa
dc.relation.referencesH. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-bedoya, “Texture analysis for evaluating the bayer and demosaicking effects in photoelasticity images,” in Computational Optical Sensing and Imaging, pp. JW2A–50, Optical Society of America, 2019.spa
dc.relation.referencesH. Fandiño-Toro, J. Briñez-De León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis,” Optical Engineering, vol. 57, no. 9, p. 093105, 2018. 13, 56spa
dc.relation.referencesM. Hunter, B. Godde, and B. Olk, “Effects of absolute luminance and luminance contrast on visual search in low mesopic environments,” Attention, Perception, & Psychophysics, vol. 80, no. 5, pp. 1265–1277, 2018.spa
dc.relation.referencesF. Bianconi, A. Álvarez-Larrán, and A. Fernández, “Discrimination between tumour epithelium and stroma via perception-based features,” Neurocomputing, vol. 154, pp. 119–126, 2015.spa
dc.relation.referencesH. Aben and C. Guillemet, Photoelasticity of glass. Springer Science & Business Media, 2012.spa
dc.relation.referencesD. Mahler and F. Peyton, “Photoelasticity as a research technique for analyzing stresses in dental structures,” Journal of dental research, vol. 34, no. 6, pp. 831–838, 1955.spa
dc.relation.referencesS. M. Yang, S. Hong, and S. Y. Kim, “Wavelength dependent in-plane birefringence of transparent flexible films determined by using transmission ellipsometry,” Japanese Journal of Applied Physics, vol. 57, no. 5S, p. 05GB03, 2018.spa
dc.relation.referencesK. E. Daniels, J. E. Kollmer, and J. G. Puckett, “Photoelastic force measurements in granular materials,” Review of Scientific Instruments, vol. 88, no. 5, p. 051808, 2017.spa
dc.relation.referencesP. S. Theocaris and E. E. Gdoutos, Matrix theory of photoelasticity, vol. 11. Springer, 2013.spa
dc.relation.referencesA. Sarma, S. Pillai, G. Subramanian, and T. Varadan, “Computerized image processing for whole-field determination of isoclinics and isochromatics,” Experimental Mechanics, vol. 32, no. 1, pp. 24–29, 1992.spa
dc.relation.referencesW. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik - International Journal for Light and Electron Optics, vol. 126, no. 19, pp. 1981–1985, 2015.spa
dc.relation.referencesM. Hariprasad, K. Ramesh, and B. Prabhune, “Evaluation of conformal and non-conformal contact parameters using digital photoelasticity,” Experimental Mechanics, vol. 58, no. 8, pp. 1249–1263, 2018.spa
dc.relation.referencesW. Samad and J. Considine, “Sensitivity analysis of hybrid thermoelastic techniques,” in Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9, pp. 29–36, Springer, 2017.spa
dc.relation.referencesK. V. N. Surendra and K. Y. Simha, “Digital image analysis around isotropic points for photoelastic pattern recognition,” Optical Engineering, vol. 54, no. 8, p. 081209, 2015.spa
dc.relation.referencesT. Kihara, “Measurement of applied stresses and residual stresses on a residual stress model by applying two different loads,” Experimental mechanics, vol. 51, no. 8, pp. 1275–1283, 2011.spa
dc.relation.referencesM. Ayatollahi, M. Mirsayar, and M. Dehghany, “Experimental determination of stress field parameters in bi-material notches using photoelasticity,” Materials & Design, vol. 32, no. 10, pp. 4901–4908, 2011.spa
dc.relation.referencesC. A. Magalhães, A. L. M. A. Magalhães, et al., “Computational methods of phase shifting to stress measurement with photoelasticity using plane polariscope,” Optik, vol. 130, pp. 213–226, 2017.spa
dc.relation.referencesK. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Optical Engineering, vol. 54, no. 8, p. 081205, 2015.spa
dc.relation.referencesY. V. Tokovyy, K.-M. Hung, and C.-C. Ma, “Determination of stresses and displacements in a thin annular disk subjected to diametral compression,” Journal of Mathematical Sciences, vol. 165, no. 3, pp. 342–354, 2010.spa
dc.relation.referencesX. P. Maldague, “Introduction to ndt by active infrared thermography,” Materials Evaluation, vol. 60, no. 9, pp. 1060–1073, 2002.spa
dc.relation.referencesF. Di Carolo, L. Savino, D. Palumbo, A. Del Vecchio, U. Galietti, and M. De Cesare, “Standard thermography vs free emissivity dual color novel cira physics technique in the near-mid ir ranges: Studies for different emissivity class materials from low to high temperatures typical of aerospace re-entry,” International Journal of Thermal Sciences, vol. 147, p. 106123, 2020.spa
dc.relation.referencesR. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors, vol. 14, no. 7, pp. 12305–12348, 2014.spa
dc.relation.referencesN. Rajic and D. Rowlands, “Thermoelastic stress analysis with a compact low-cost microbolometer system,” Quantitative infrared thermography journal, vol. 10, no. 2, pp. 135–158, 2013.spa
dc.relation.referencesJ. Dulieu-Barton and P. Stanley, “Development and applications of thermoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 33, no. 2, pp. 93–104, 1998.spa
dc.relation.referencesX. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” in Visual Communications and Image Processing 2008, vol. 6822, p. 68221J, International Society for Optics and Photonics, 2008.spa
dc.relation.referencesH. S. Malvar, L.-w. He, and R. Cutler, “High-quality linear interpolation for demosaicing of bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. iii–485, IEEE, 2004.spa
dc.relation.referencesJ. Wu, M. Anisetti, W. Wu, E. Damiani, and G. Jeon, “Bayer demosaicking with polynomial interpolation,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5369–5382, 2016.spa
dc.relation.referencesZ. Dengwen, S. Xiaoliu, and D. Weiming, “Colour demosaicking with directional filtering and weighting,” IET Image Processing, vol. 6, no. 8, pp. 1084–1092, 2012.spa
dc.relation.referencesJ. E. Adams Jr, “Interactions between color plane interpolation and other image processing functions in electronic photography,” in Cameras and Systems for Electronic Photography and Scientific Imaging, vol. 2416, pp. 144–151, International Society for Optics and Photonics, 1995.spa
dc.relation.referencesB. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE transactions on image processing, vol. 11, no. 9, pp. 997–1013, 2002.spa
dc.relation.referencesY. M. Lu, M. Karzand, and M. Vetterli, “Demosaicking by alternating projections: theory and fast one-step implementation,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2085–2098, 2010.spa
dc.relation.referencesD. Ramji, C. A. Palagan, A. Nithya, A. Appathurai, and E. J. Alex, “Soft computing based color image demosaicing for medical image processing,” Multimedia Tools and Applications, vol. 79, no. 15, pp. 10047–10063, 2020.spa
dc.relation.referencesA. Stojkovic, I. Shopovska, H. Luong, J. Aelterman, L. Jovanov, and W. Philips, “The effect of the color filter array layout choice on state-of-the-art demosaicing,” Sensors, vol. 19, no. 14, p. 3215, 2019.spa
dc.relation.referencesC. Bonanomi, S. Balletti, M. Lecca, M. Anisetti, A. Rizzi, and E. Damiani, “I3d: a new dataset for testing denoising and demosaicing algorithms,” Multimedia Tools and Applications, vol. 79, no. 13, pp. 8599–8626, 2020.spa
dc.relation.referencesA. Restrepo-Martinez and J. C. Briñez, “Dynamic color descriptor based frenet-serret to classify stress zones from pixel variations recorded in photoelasticity videos,” in Optics and Photonics for Information Processing XIII, vol. 11136, p. 111360G, International Society for Optics and Photonics, 2019.spa
dc.relation.referencesH. Fandiño-Toro, J. de Briñez-de León, A. Restrepo-Martı́nez, and J. W. Bedoya, Branch-Bedoya, “Relevance analysis for texture descriptors in studies of dynamic photoelasticity,” in Laser Applications to Chemical, Security and Environmental Analysis, pp. JM4A–37, Optical Society of America, 2018.spa
dc.relation.referencesH. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja,” Visión electrónica, vol. 11, no. 1, pp. 89–98, 2017.spa
dc.relation.referencesH. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity,” in Applications of Digital Image Processing XL, vol. 10396, p. 103962D, International Society for Optics and Photonics, 2017.spa
dc.relation.referencesY. Caulier, K. P. Spinnler, T. M. Wittenberg, and S. Bourennane, “Specific features for the analysis of fringe images,” Optical Engineering, vol. 47, no. 5, p. 057201, 2008.spa
dc.relation.referencesC. Yan, N. Sang, and T. Zhang, “Local entropy-based transition region extraction and thresholding,” Pattern Recognition Letters, vol. 24, no. 16, pp. 2935–2941, 2003.spa
dc.relation.referencesN. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.spa
dc.relation.referencesZ. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.spa
dc.relation.referencesL. Goldstein, J. Thompson, J. Schroeder, and J. Slattery, “Stress-optic coefficients of znse,” Applied optics, vol. 14, no. 10, pp. 2432–2434, 1975.spa
dc.relation.referencesJ. Szczesniak, D. Cuddeback, and J. Corelli, “Stress-induced birefringence of solids transparent to 1-to 12-μm light,” Journal of Applied Physics, vol. 47, no. 12, pp. 5356–5359, 1976.spa
dc.relation.referencesC. Chen, J. Szczesniak, and J. Corelli, “Infrared stress birefringence in kbr, kcl, lif, and znse,” Journal of Applied Physics, vol. 46, no. 1, pp. 303–309, 1975.spa
dc.relation.referencesW. Jun and A. Asundi, “Strain contouring with gabor filters: filter bank design,” Applied optics, vol. 41, no. 34, pp. 7229 7236, 2002.spa
dc.relation.referencesA. K. Asundi and J. Wang, “Strain contouring using gabor filters: principle and algorithm,” OptEn, vol. 41, pp. 1400–1405, 2002.spa
dc.relation.referencesR. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621, 1973.spa
dc.relation.referencesF. R. De Siqueira, W. R. Schwartz, and H. Pedrini, “Multi-scale gray level co-occurrence matrices for texture description,” Neurocomputing, vol. 120, pp. 336–345, 2013.spa
dc.relation.referencesL. Nanni, A. Lumini, and S. Brahnam, “Survey on lbp based texture descriptors for image classification,” Expert Systems with Applications, vol. 39, no. 3, pp. 3634–3641, 2012.spa
dc.relation.referencesF. Van Der Heijden, R. P. Duin, D. De Ridder, and D. M. Tax, Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons, 2005.spa
dc.relation.referencesT. Sakagami, S. Kubo, Y. Fujinami, and Y. Kojima, “Experimental stress separation technique using thermoelasticity and photoelasticity and its application to fracture mechanics,” JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, no. 3, pp. 298–304, 2004.spa
dc.relation.referencesS. Barone and E. Patterson, “Full-field separation of principal stresses by combined thermo-and photoelasticity,” Experimental Mechanics, vol. 36, no. 4, pp. 318–324, 1996.spa
dc.relation.referencesM. Solaguren-Beascoa Fernández, J. Alegre Calderón, P. Bravo Diez, and I. Cuesta Segura, “Stress-separation techniques in photoelasticity: a review,” The Journal of Strain Analysis for Engineering Design, vol. 45, no. 1, pp. 1–17, 2010.spa
dc.relation.referencesS. Yoneyama and K. Sakaue, “Instantaneous phase-stepping photoelasticity and hybrid stress analysis for a curving crack under thermal load,” in Imaging Methods for Novel Materials and Challenging Applications, Volume 3, pp. 391–402, Springer, 2013.spa
dc.relation.referencesY. K. Godovsky, “Thermomechanics of glassy and crystalline polymers,” in Thermophysical Properties of Polymers, pp. 127–162, Springer, 1992.spa
dc.relation.referencesF. Valiorgue, A. Brosse, P. Naisson, J. Rech, H. Hamdi, and J. M. Bergheau, “Emissivity calibration for temperatures measurement using thermography in the context of machining,” Applied Thermal Engineering, vol. 58, no. 1-2, pp. 321–326, 2013.spa
dc.relation.referencesX. P. Maldague, Nondestructive evaluation of materials by infrared thermography. Springer Science & Business Media, 2012.spa
dc.relation.referencesA. Rühl, S. Kolling, V. Mende, and B. Kiesewetter, “Computational design of a heated pmma window validated by infrared thermography,” Glass Structures & Engineering, vol. 1, no. 2, pp. 375–383, 2016.spa
dc.relation.referencesJ. Gu, S. C. Tam, Y. L. Lam, Q. Zheng, and X. Wei, “Laser-induced temperature-rise measurement by infrared imaging,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing V, vol. 3933, pp. 388–395, International Society for Optics and Photonics, 2000.spa
dc.relation.referencesJ. A. Quiroga and A. González-Cano, “Method of error analysis for phase-measuring algorithms applied to photoelasticity,” Applied optics, vol. 37, no. 20, pp. 4488–4495, 1998.spa
dc.relation.referencesJ. Briñez-De León, J. W. Branch-Bedoya, and A. Restrepo-Martı́nez, “Toward photoelastic sensors: a hybrid proposal for imaging the stress field through load stepping methods,” in OSA Imaging and Applied Optics Congress. (CTh3C.4), Optical Society of America, 2020.spa
dc.relation.referencesA. E1933-14, “Standard practice for measuring and compensating for emissivity using infrared imaging radiometers,” 2018.spa
dc.relation.referencesH. Fandiño-Toro, J. Rendón-Arango, J. Briñez-de León, and A. Restrepo-Martı́nez, “Thermal transient stepping: a powerful thermal-based approach for evaluating the stress field by using digital photoelasticity,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 1150909, International Society for Optics and Photonics, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembTermografía
dc.subject.lembEsfuerzo térmico
dc.subject.proposalFotoelasticidadspa
dc.subject.proposalTermografía infrarrojaspa
dc.subject.proposalTermoelasticidadspa
dc.subject.proposalCampo de esfuerzosspa
dc.subject.proposalProcesamiento digital de imágenesspa
dc.subject.proposalDesplazamiento de franjasspa
dc.subject.proposalPhotoelasticityeng
dc.subject.proposalInfrared thermographyeng
dc.subject.proposalStress fieldeng
dc.subject.proposalDigital image processingeng
dc.subject.proposalFringe pattern displacementeng
dc.titleAnálisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarrojaspa
dc.title.translatedAnalysis oriented towards visual inspection based on photoelasticity and infrared thermographyeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
84451661.2021.pdf
Tamaño:
74.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas e Informática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: