Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources

dc.contributor.advisorBaena Doello, Juan Domingo
dc.contributor.authorEscobar Fajardo, Ana Cristina
dc.contributor.researchgroupGrupo de Física Aplicadaspa
dc.date.accessioned2022-08-25T15:32:44Z
dc.date.available2022-08-25T15:32:44Z
dc.date.issued2022-06
dc.descriptionilustraciones, graficasspa
dc.description.abstractThis Master's thesis is about the study of a Huygens' source and its application to the design of two applications where the small backscattering is required: a left-handed metamaterial matched to free-space impedance and a Huygens' metasurface for anomalous refraction. In this work, we begin with the analysis of the polarizability tensor of subwavelength scatterers; for some scatterers, the co- and cross-polarizability components are bounded. Later on, we obtain the dipole moments and polarizability tensor requirements to have an anisotropic and an isotropic Huygens' source. We demonstrate that a pair of Split Ring Resonators can satisfy the conditions. Then we use these results for the design of the metasurface and metamaterial. For the demonstration of the left-handedness and impedance matching, we use the dispersion relation, impedance, permittivity, and permeability from a homogenization model obtained from the multimodal transfer matrix method.eng
dc.description.abstractEn el presente trabajo se estudia una fuente de Huygens y su aplicación en dos diseños en los que se requiere baja reflexión: un metamaterial zurdo adaptado a la impedancia del vacío y una metasuperficie de Huygens que presenta refracción anómala. En este trabajo, comenzamos con el análisis del tensor de polarizabilidad de dispersores de sub-longitud de onda, y, para algunos dispersores, se estudia que las componentes de co-polarizabilidad y de polarizabilidad cruzada pueden están relacionadas. Posteriormente, obtenemos los momentos dipolares y los requisitos del tensor de polarizabilidad para tener una fuente de Huygens anisótropa e isótropa. Demostramos que un par de resonadores de anillo partido (SRR, por sus siglas en inglés) pueden satisfacer las condiciones. A continuación, utilizamos estos resultados para el diseño de la metasuperficie para la refracción anómala y del metamaterial zurdo. Para la demostración del medio zurdo y de la adaptación de la impedancia, utilizamos la relación de dispersión, la impedancia, la permitividad y la permeabilidad de un modelo de homogeneización obtenido a partir del método de la matriz de transferencia multimodal. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaElectromagnetismo aplicadospa
dc.format.extentxx, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82098
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesJ. D. Baena, L. Jelinek, and R. Marqués, “Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B, vol. 76, p. 245115, Dec 2007.spa
dc.relation.referencesV. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics, vol. 7, no. 6, pp. 1069–1094, 2018.spa
dc.relation.referencesR. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Wiley Series in Microwave and Optical Engineering, Wiley, 2011.spa
dc.relation.referencesX. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, vol. 70, p. 016608, Jul 2004.spa
dc.relation.referencesM. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3d metamaterials,” Nature Reviews Physics, vol. 1, pp. 198–210, Mar 2019.spa
dc.relation.referencesM. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nature Communications, vol. 6, p. 10102, Dec 2015.spa
dc.relation.referencesJ. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4773–4776, 1996.spa
dc.relation.referencesP. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B, vol. 67, p. 113103, 2003.spa
dc.relation.referencesJ. D. Baena, L. Jelinek, R. Marqués, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A, vol. 78, p. 013842, Jul 2008.spa
dc.relation.referencesM. Silveirinha, J. Baena, L. Jelinek, and R. Marqués, “Nonlocal homogenization of an array of cubic particles made of resonant rings,” Metamaterials, vol. 3, no. 3, pp. 115– 128, 2009.spa
dc.relation.referencesF. Mesa, R. Rodríguez-Berral, and F. Medina, “Considerations on the usage of transmission matrices to study the dispersion behavior of glide-symmetry structures,” in 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, 2019.spa
dc.relation.referencesF. Mesa, G. Valerio, R. Rodríguez-Berral, and O. Quevedo-Teruel, “Simulation-assisted efficient computation of the dispersion diagram of periodic structures: A comprehensive overview with applications to filters, leaky-wave antennas and metasurfaces,” IEEE Antennas and Propagation Magazine, vol. 63, no. 5, pp. 33–45, 2021.spa
dc.relation.referencesA. Sihvola, “Metamaterials in electromagnetics,” Metamaterials, vol. 1, no. 1, pp. 2–11, 2007.spa
dc.relation.referencesR. Marqués, L. Jelinek, M. J. Freire, J. D. Baena, and M. Lapine, “Bulk metamaterials made of resonant rings,” Proceedings of the IEEE, vol. 99, no. 10, pp. 1660–1668, 2011.spa
dc.relation.referencesD. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.spa
dc.relation.referencesC. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, 2012.spa
dc.relation.referencesS. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Physics Reports, vol. 634, pp. 1–72, 2016. Metasurfaces: From microwaves to visible.spa
dc.relation.referencesM. Albooyeh, S. Tretyakov, and C. Simovski, “Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework,” Annalen der Physik, vol. 528, no. 9-10, pp. 721–737, 2016.spa
dc.relation.referencesJ. D. Baena, L. Jelinek, R. Marqués, J. J. Mock, J. Gollub, and D. R. Smith, “Isotropic frequency selective surfaces made of cubic resonators,” Applied Physics Letters, vol. 91, no. 19, p. 191105, 2007.spa
dc.relation.referencesJ. P. del Risco, I. S. Mikhalka, V. A. Lenets, M. S. Sidorenko, A. D. Sayanskiy, S. B. Glybovski, A. L. Samofalov, S. A. Khakhomov, I. V. Semchenko, J. D. Ortiz, and J. D. Baena, “Optimal angular stability of reflectionless metasurface absorbers,” Phys. Rev. B, vol. 103, p. 115426, 2021.spa
dc.relation.referencesJ. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B, vol. 92, p. 245413, Dec 2015.spa
dc.relation.referencesN. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, no. 6138, pp. 1304–1307, 2013.spa
dc.relation.referencesJ. D. Baena, S. B. Glybovski, J. P. del Risco, A. P. Slobozhanyuk, and P. A. Belov, “Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4124–4133, 2017.spa
dc.relation.referencesN. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011.spa
dc.relation.referencesX. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science, vol. 335, no. 6067, pp. 427–427, 2012.spa
dc.relation.referencesC. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett., vol. 110, p. 197401, May 2013.spa
dc.relation.referencesM. Londoño, A. Sayanskiy, J. L. Araque-Quijano, S. B. Glybovski, and J. D. Baena, “Broadband huygens’ metasurface based on hybrid resonances,” Phys. Rev. Applied, vol. 10, p. 034026, Sep 2018.spa
dc.relation.referencesV. S. Asadchy, M. S. Mirmoosa, A. Díaz-Rubio, S. Fan, and S. A. Tretyakov, “Tutorial on electromagnetic nonreciprocity and its origins,” Proceedings of the IEEE, vol. 108, no. 10, pp. 1684–1727, 2020.spa
dc.relation.referencesS. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 7, pp. 1006–1014, 1996.spa
dc.relation.referencesS. A. Tretyakov, C. R. Simovski, and A. A. Sochava, The Relation Between Co- and Cross-Polarizabilities of Small Conductive Bi-Anisotropic Particles, pp. 271–280. Dordrecht: Springer Netherlands, 1997.spa
dc.relation.referencesM. Albooyeh, V. S. Asadchy, R. Alaee, S. M. Hashemi, M. Yazdi, M. S. Mirmoosa, C. Rockstuhl, C. R. Simovski, and S. A. Tretyakov, “Purely bianisotropic scatterers,” Phys. Rev. B, vol. 94, p. 245428, Dec 2016.spa
dc.relation.referencesM. Albooyeh, S. M. Hashemi, V. Asadchy, R. Alaee, M. Yazdi, M. S. Mirmoosa, C. Rockstuhl, C. R. Simovski, and S. A. Tretyakov, “Magnetoelectric coupling without electric and magnetic response?,” in 2016 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 215–217, 2016.spa
dc.relation.referencesJ. L. Araque and J. D. Baena, “A general method to retrieve electromagnetic polarizability tensors of metamaterial resonators,” in 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, pp. 490–492, 2013.spa
dc.relation.referencesA. C. Escobar and J. D. Baena, “Demonstration of the relation between co- and cross-polarizabilities using a multipole expansion of the electromotive force for planar bianisotropic scatterers,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 118–120, 2020.spa
dc.relation.referencesJ. D. Jackson, Classical Electrodynamics. Wiley, 1998.spa
dc.relation.referencesJ. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.spa
dc.relation.referencesJ. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1461, 2005.spa
dc.relation.referencesA. C. Escobar, A. Sayanskiy, J. L. Araque-Quijano, S. B. Glybovski, and J. D. Baena, “Quasi-isotropic huygens resonant scatterer in microwaves,” in 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. X–053–X–055, 2019.spa
dc.relation.referencesR. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett., vol. 40, pp. 2645–2648, Jun 2015.spa
dc.relation.referencesR. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B, vol. 96, p. 180201, Nov 2017.spa
dc.relation.referencesP. Jin and R. W. Ziolkowski, “Metamaterial-inspired, electrically small huygens sources,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 501–505, 2010.spa
dc.relation.referencesM. Tang, H. Wang, and R. W. Ziolkowski, “Design and testing of simple, electrically small, low-profile, huygens source antennas with broadside radiation performance,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 11, pp. 4607–4617, 2016.spa
dc.relation.referencesM. Tang, T. Shi, and R. W. Ziolkowski, “Electrically small, broadside radiating huygens source antenna augmented with internal non-foster elements to increase its bandwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 712–715, 2017.spa
dc.relation.referencesM. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics, vol. 4, no. 2, p. 020802, 2019.spa
dc.relation.referencesE. Saenz, I. Semchenko, S. Khakhomov, K. Guven, R. Gonzalo, E. Ozbay, and S. Tretyakov, “Modeling of spirals with equal dielectric, magnetic, and chiral susceptibilities,” Electromagnetics, vol. 28, no. 7, pp. 476–493, 2008.spa
dc.relation.referencesA. Osipov and S. Tretyakov, Modern Electromagnetic Scattering Theory with Applications. Wiley, 2017.spa
dc.relation.referencesM. Londoño, “Metasuperficies transparentes con control total del salto de fase,” Master’s thesis, Universidad Nacional de Colombia, 2017.spa
dc.relation.referencesR. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure. Properties of Materials: Anisotropy, Symmetry, Structure, OUP Oxford, 2004.spa
dc.relation.referencesM. Londoño, A. C. Escobar, and J. D. Baena, “Broadband transparent metasurfaces for anomalous refraction,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 204–206, 2020.spa
dc.relation.referencesS. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Physics Reports, vol. 634, pp. 1 – 72, 2016. Metasurfaces: From microwaves to visible.spa
dc.relation.referencesM. Chen, M. Kim, A. M. Wong, and G. V. Eleftheriades, “Huygens’ metasurfaces from microwaves to optics: a review,” Nanophotonics, vol. 7, no. 6, pp. 1207 – 1231, 2018.spa
dc.relation.referencesJ. P. S. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Polarization considerations for scalar huygens metasurfaces and characterization for 2-d refraction,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 913–924, 2015.spa
dc.relation.referencesA. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 9, pp. 3880–3895, 2016.spa
dc.relation.referencesA. C. Escobar, J. P. Del Risco, O. Quevedo-Teruel, F. Mesa, and J. D. Baena, “Retrieval of the constitutive parameters and dispersion relation of glide-symmetric metamaterials via the multimodal transfer matrix method,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 312–314, 2020.spa
dc.relation.referencesM. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial lines and surfaces exhibiting glide symmetry,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2618–2628, 2019.spa
dc.relation.referencesA. Alex-Amor, A. Palomares-Caballero, F. Mesa, and O. Quevedo-Teruel, “Dispersion analysis of periodic structures in anisotropic media: Application to liquid crystals.” Submitted, 2022.spa
dc.relation.referencesB. Bandlow, R. Schuhmann, G. Lubkowski, and T. Weiland, “Analysis of single-cell modeling of periodic metamaterial structures,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1662–1665, 2008.spa
dc.relation.referencesR. Collin, I. Antennas, and P. Society, Field Theory of Guided Waves. IEEE/OUP series on electromagnetic wave theory, IEEE Press, 1990.spa
dc.relation.referencesD. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.spa
dc.relation.referencesJ. Brown, “Artificial dielectrics having refractive indices less than unity,” Proceedings of the IEE - Part IV: Institution Monographs, vol. 100, no. 5, pp. 51–62, 1953.spa
dc.relation.referencesV. G. Veselago, “The electrodynamics of substances with silmultaneously negative values of ϵ and µ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, apr 1968.spa
dc.relation.referencesM. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B, vol. 75, p. 235114, Jun 2007.spa
dc.relation.referencesH. T. Nguyen, T. S. Bui, S. Yan, G. A. E. Vandenbosch, P. Lievens, L. D. Vu, and E. Janssens, “Broadband negative refractive index obtained by plasmonic hybridization in metamaterials,” Applied Physics Letters, vol. 109, no. 22, p. 221902, 2016.spa
dc.relation.referencesR. Liu, A. Degiron, J. J. Mock, and D. R. Smith, “Negative index material composed of electric and magnetic resonators,” Applied Physics Letters, vol. 90, no. 26, p. 263504, 2007.spa
dc.relation.referencesW. Jia-Fu, Q. Shao-Bo, X. Zhuo, X. Song, M. Hua, W. Qian, Y. Yi-Ming, and W. Xiang, “Experimental verification of left-handed metamaterials composed of coplanar electric and magnetic resonators,” Chinese Physics Letters, vol. 27, p. 034104, mar 2010.spa
dc.relation.referencesS. M. Rudolph and A. Grbic, “Volumetric negative-refractive-index medium exhibiting broadband negative permeability,” Journal of Applied Physics, vol. 102, no. 1, p. 013904, 2007.spa
dc.relation.referencesJ. a. T. Costa and M. G. Silveirinha, “Mimicking the veselago-pendry lens with broadband matched double-negative metamaterials,” Phys. Rev. B, vol. 84, p. 155131, Oct 2011.spa
dc.relation.referencesD. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Impedance-matched, double-zero optical metamaterials based on weakly resonant metal oxide nanowires,” Photonics, vol. 5, no. 2, 2018.spa
dc.relation.referencesR. Harrington and J. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 622–628, 1971.spa
dc.relation.referencesR. Harrington, J. Mautz, and Y. Chang, “Characteristic modes for dielectric and magnetic bodies,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 2, pp. 194–198, 1972.spa
dc.relation.referencesY. Chen and C.-F. Wang, Characteristic Mode Theory for PEC Bodies, pp. 37–97. 2015.spa
dc.relation.referencesB. K. Lau, M. Capek, and A. M. Hassan, “Characteristic modes: Progress, overview, and emerging topics,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 14–22, 2022.spa
dc.relation.referencesA. Alu, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B, vol. 84, p. 075153, Aug 2011.spa
dc.relation.referencesB. Bandlow, R. Schuhmann, G. Lubkowski, and T. Weiland, “Analysis of single-cell modeling of periodic metamaterial structures,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1662–1665, 2008.spa
dc.relation.referencesM. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial lines and surfaces exhibiting glide symmetry,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, pp. 2618–2628, July 2019.spa
dc.relation.referencesC. Caloz, A. Alu, S. Tretyakov, D. Sounas, K. Achouri, and Z.-L. Deck-Léger, “Electromagnetic nonreciprocity,” Phys. Rev. Applied, vol. 10, p. 047001, Oct 2018.spa
dc.relation.referencesF. Capolino, Theory and Phenomena of Metamaterials. Metamaterials Handbook, CRC Press, 2009.spa
dc.relation.referencesX.-X. Liu and A. Alu, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B, vol. 87, p. 235136, Jun 2013.spa
dc.relation.referencesF. Mesa, R. Rodríguez-Berral, and F. Medina, “Considerations on the usage of transmission matrices to study the dispersion behavior of glide-symmetry structures,” in 2019 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, March 2019.spa
dc.relation.referencesF. J. Mustieles, E. Ballesteros, and F. Hernandez-Gil, “Multimodal analysis method for the design of passive te/tm converters in integrated waveguides,” IEEE Photonics Technology Letters, vol. 5, pp. 809–811, July 1993.spa
dc.relation.referencesD. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.spa
dc.relation.referencesC. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials, vol. 1, no. 2, pp. 62–80, 2007.spa
dc.relation.referencesD. R. Smith, “Analytic expressions for the constitutive parameters of magnetoelectric metamaterials,” Phys. Rev. E, vol. 81, p. 036605, Mar 2010.spa
dc.relation.referencesJ. L. Araque-Quijano, J. P. del Risco, M. A. Londoño, A. Sayanskiy, S. B. Glybovski, and J. D. Baena, “Huygens’ metasurfaces covering from waveplates to perfect absorbers,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 511–514, 2018.spa
dc.relation.referencesM. Chen and G. V. Eleftheriades, “Omega-bianisotropic wire-loop huygens’ metasurface for reflectionless wide-angle refraction,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 1477–1490, 2020.spa
dc.relation.referencesM. Chen, E. Abdo-Sánchez, A. Epstein, and G. V. Eleftheriades, “Theory, design, and experimental verification of a reflectionless bianisotropic Huygens’s metasurface for wide-angle refraction,” Phys. Rev. B, vol. 97, p. 125433, Mar 2018.spa
dc.relation.referencesS. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Advanced Optical Materials, vol. 6, no. 13, p. 1800104, 2018.spa
dc.relation.referencesF. S. Cuesta, I. A. Faniayeu, V. S. Asadchy, and S. A. Tretyakov, “Planar broadband huygens’ metasurfaces for wave manipulations,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7117–7127, 2018.spa
dc.relation.referencesA. H. Dorrah, M. Chen, and G. V. Eleftheriades, “Bianisotropic huygens’ metasurface for wideband impedance matching between two dielectric media,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4729–4742, 2018.spa
dc.relation.referencesN. Mohammadi Estakhri and A. Alu, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X, vol. 6, p. 041008, Oct 2016.spa
dc.relation.referencesH. Kazemi, M. Albooyeh, and F. Capolino, “Perfect anomalous reflection and refraction accompanied by an ideal polarization conversion: Potential of a chiral metasurface,” in 2019 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 1–4, May 2019.spa
dc.relation.referencesH. Li, G. Wang, T. Cai, H. Hou, and W. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Applied, vol. 11, p. 014043, Jan 2019.spa
dc.relation.referencesY. Ra’di, D. L. Sounas, and A. Alu, “Metagratings: Beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett., vol. 119, p. 067404, Aug 2017.spa
dc.relation.referencesA. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite huygens’ metasurface,” Phys. Rev. X, vol. 8, p. 011036, Feb 2018.spa
dc.relation.referencesK. Aydin and E. Ozbay, “Negative refraction through an impedance-matched left-handed metamaterial slab,” J. Opt. Soc. Am. B, vol. 23, pp. 415–418, Mar 2006.spa
dc.relation.referencesK. Aydin, I. Bulu, and E. Ozbay, “Verification of impedance matching at the surface of left-handed materials,” Microwave and Optical Technology Letters, vol. 48, no. 12, pp. 2548–2552, 2006.spa
dc.relation.referencesN. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Wiley, 2006.spa
dc.relation.referencesR. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, no. 4, pp. 489–491, 2001.spa
dc.relation.referencesD. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.spa
dc.relation.referencesT. Yamaguchi, T. Ishiyama, T. Ueda, and T. Itoh, “Unit cell block for 3-d isotropic negative-index metamaterials impedance-matched to free space by using dielectric cubes and metallic mesh,” in 2018 Asia-Pacific Microwave Conference (APMC), pp. 1118–1120, 2018.spa
dc.relation.referencesJ. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Communications, vol. 3, pp. 1171 EP –, 11 2012.spa
dc.relation.referencesM. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am., vol. 73, pp. 765–767, Jun 1983.spa
dc.relation.referencesI. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, “Helices of optimal shape for nonreflecting covering,” Eur. Phys. J. Appl. Phys., vol. 49, no. 3, p. 33002, 2010.spa
dc.relation.referencesV. Rumsey, “Some new forms of huygens’ principle,” IRE Transactions on Antennas and Propagation, vol. 7, no. 5, pp. 103–116, 1959.spa
dc.relation.referencesI. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, “Optimal helix shape: Equality of dielectric, magnetic, and chiral susceptibilities,” Russian Physics Journal, vol. 52, no. 5, p. 472, 2009.spa
dc.relation.referencesR. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New Journal of Physics, vol. 13, p. 123017, dec 2011.spa
dc.relation.referencesA. Alu, “First-principles homogenization theory for periodic metamaterials,” Physical Review B - Condensed Matter and Materials Physics, vol. 84, no. 7, 2011.spa
dc.relation.referencesJ. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.spa
dc.relation.referencesA. F. Peterson, S. L. Ray, and R. Mittra, Electromagnetic Theory, pp. 1–36. Wiley, 1998.spa
dc.relation.referencesC. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials, vol. 1, no. 2, pp. 62–80, 2007.spa
dc.relation.referencesV. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics, vol. 7, no. 6, pp. 1069–1094, 2018.spa
dc.relation.referencesT. Chang, J. U. Kim, S. K. Kang, H. Kim, D. K. Kim, Y.-H. Lee, and J. Shin, “Broadband giant-refractive-index material based on mesoscopic space-filling curves,” Nat. Commun., vol. 7, Article number 12661, 2016.spa
dc.relation.referencesD. Cavallo and C. Felita, “Analytical formulas for artificial dielectrics with nonaligned layers,” IEEE Trans. Antennas Propag., vol. 65, pp. 5303–5311, Oct 2017.spa
dc.relation.referencesD. Cavallo, “Dissipation losses in artificial dielectric layers,” IEEE Trans. Antennas Propag., vol. 66, pp. 7460–7465, Dec 2018.spa
dc.relation.referencesM. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep., vol. 9, pp. 2045–2322, Sept 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembONDAS ELECTROMAGNETICASspa
dc.subject.lembElectromagnetic waveseng
dc.subject.proposalHuygens' sourceseng
dc.subject.proposalMetamaterialseng
dc.subject.proposalMetasurfaceseng
dc.subject.proposalLeft-handedeng
dc.subject.proposalPeriodic structureseng
dc.subject.proposalFuentes de Huygensspa
dc.subject.proposalEstructuras periódicasaspa
dc.subject.proposalMetamaterialesspa
dc.subject.proposalMetasuperficiesspa
dc.subject.proposalMedio zurdospa
dc.subject.proposalPermittivityeng
dc.subject.proposalPermeabilityeng
dc.subject.proposalPermitividadspa
dc.subject.proposalPermeabilidadspa
dc.titleControl of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sourceseng
dc.title.translatedControl de ondas electromagnéticas usando metamateriales y metasuperficies basados en fuentes de Huygensspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1107083739.2022.pdf
Tamaño:
7.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: