Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos

dc.contributor.advisorCortés, Farid Bernardo
dc.contributor.authorCarreño Hernandez, Jhon Harvey
dc.date.accessioned2024-09-25T18:47:23Z
dc.date.available2024-09-25T18:47:23Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractLa migración de finos en el medio poroso es una causa inherente a las altas tasas de flujo y cambios en el pH (Russell, y otros, 2017). Estos finos bloquean las gargantas de poro reduciendo así su permeabilidad y por ende la productividad (Loi, y otros, 2023). La industria ha abordado este problema con diferentes estrategias de remediación, donde la más empleada ha sido la acidificación matricial la cual ataca el problema de una manera directa. Sin embargo, esta técnica induce alteraciones en la matriz, aumentando la desconsolidación (Fuentes, y otros, 2022). La nanotecnología se ha establecido en sí misma, como una tecnología emergente ya que las nanopartículas pueden alterar las cargas superficiales de los finos y la arena incrementando la fuerza de atracción y así inhibir su movilización a través del medio poroso (Franco, Zabala, & Cortés, 2017). En este estudio, se evaluó el efecto sobre la morfología y tamaño de tres nanopartículas de ZnO que fueron sintetizadas por el método sol gel a diferentes a pH (6, 8 y 11), la interacción de las nanopartículas de ZnO cuando son funcionalizadas con CTAB y su efectividad para inhibir la migración de caolinita en lechos empacados de arena Ottawa de tamaño 20/40 cuando están dopando el medio poroso por medio de la cuantificación de los efluentes. Los resultados muestran que se presenta un incremento en las fuerzas superficiales cuando las nanopartículas y nanocompuesto está recubriendo el medio poroso, llevando a una mejora de 2 veces el volumen desplazado de referencia sin llegar a la saturación total del medio poroso comparado con el caso de referencia. Así mismo, cuando el medio poroso esta humectado al agua, el nanomaterial funcionalizado evidenció una mejora en del 150% en los finos retenidos con respecto al caso de referencia cuando se han Contenido VII desplazado 12 volúmenes y 67% de retención de finos cuando es comparado con el lecho impregnado con nanopartículas de ZnO a una concentración de 1000 ppm y se han desplazado 24 volúmenes porosos. Por el contrario, cuando el medio esta humectado por aceite no se presenta ninguna diferenciación relevante en cuanto a los finos retenidos cuando este es impregnado por nanopartículas o el nanocompuesto funcionalizado. (Tomado de la fuente)spa
dc.description.abstractFines migration in porous media is an inherent formation damage issue due to high flow rates in oil wells and changes in pH in production water. These fines obstruct pore throats, thereby reducing permeability and consequently productivity. The industry has addressed this issue through various remediation strategies, with matrix acidification being the most employed, which directly targets the problem. However, this technique induces alterations in the matrix, leading to disintegration. Nanotechnology has emerged as a consolidated technology in the industry, as nanoparticles can modify the surface charges of fines and sand, increasing attraction forces and thus inhibiting their mobilization through porous media. This study evaluated the effect on morphology and size of three ZnO nanoparticles synthesized via the sol-gel method at different pH levels (6, 8, and 11), the interaction of those ZnO nanoparticles when functionalized with CTAB, and their effectiveness in inhibiting kaolinite migration in packed beds of Ottawa 20/40 sand through quantification of effluents concentration. Results indicate an increase in surface forces when nanoparticles and nanocomposites coat the porous medium, leading to a 2-fold improvement in displaced volume without reaching total saturation of the porous medium. Additionally, the functionalization process demonstrated an enhancement in nanoparticles, achieving an additional 150% compared to the reference medium when 12 pore volumes have been displaced; and 67% compared to the medium imbedded with ZnO nanoparticles at a concentration of 1000 ppm and 24 pore volumes have been displaced; both in a water-wetted medium. Conversely, when the medium is oil-wetted, no significant differentiation is observed between nanoparticle doping and nanocomposite.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Ingeniería de petróleosspa
dc.format.extent75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86864
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbhishek Singh, T., Sharma, A., Tejwan, N., Ghosh, N., Das, J., & Sil, P. (2021). A estate of the art review on the syntheis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science, 295, 102495. doi:https://doi.org/10.1016/j.cis.2021.102495spa
dc.relation.referencesAhmadi, M., & Chen, Z. (2020). Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: application to asphaltene dispersion. Symmetry, 11, 12. doi: https://doi.org/10.3390/sym12111767spa
dc.relation.referencesAhmadi, M., Habibi, A., Pourafshy, P., & Ayatollahi, S. (2011, September). Zeta potential investigation and mathematical modeling of nanoparticles deposited on the rock surface to reduce fine migration. SPE Middle East Oil and Gas Show and Conference, (pp. SPE-142633)spa
dc.relation.referencesAlakbari, F. S., Mohyaldinn, M. E., Muhsan, A. S., Hassan, N., & Ganat, T. (2020). Chemical sand consolidation: form polymers to nanoparticles. Polymers, 12(5), 1069. doi:https://doi.org/10.3390/polym12051069spa
dc.relation.referencesAli, A. S., Salem, A., & Attia, A. M. (2022). Mitigation of fines migration by using nano-fluid to alleviate formarion damage in Abu-Rawash G. Petroleum and Coal, 64(2), 304 - 312.spa
dc.relation.referencesAlias, S. S., & Mohamad, A. A. (2014). Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells. Singapore: Springer . doi:DOI 10.1007/978-981-4560-77-1spa
dc.relation.referencesAlmutari, A., Saira, S., Wang, Y., & Le-Hussain, F. (2023). Effect of fines migrarion on oil recovery from carbonate rocks. Advances in Geo-Energy Research, 8(1), 61 -70. doi:https://doi.org/10.46690/ager.2023.04.06spa
dc.relation.referencesAquino, P., Osorio, A. M., Ninán, E., & Torres, F. (2018). aracterización de nanopartículas de ZnO sintetizadas por el método de precipitación y su evaluación en la incorporación en pinturas esmalte. Revista de la Sociedad Química del Perú, 84(1), 5-17spa
dc.relation.referencesArab, D., & Pourasfshary, P. (2013). Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 803-814. doi:https://doi.org/10.1016/j.colsurfa.2013.08.022spa
dc.relation.referencesBelcher, C., Seth, K., Hollier, R., & Paternostro, B. (2010). Maximizing production life with the use of nanotechnology to prevent fines migration. SPE International Oil and Gas Conference and Exhibition in China, SPE-132152. doi:https://doi.org/10.2118/132152-MSspa
dc.relation.referencesBerne, B. J., & Pecora, R. (2000). Dynamic light scattering with applications to chemistry, biology and physics. Mineola, USA: Courier Corporation.spa
dc.relation.referencesBetancur, S., Carrasco-Marín, F., Franco, C., & Cortés, F. (2018). Development of composite materials base on the interaction between nanoparticles and surfactants for application on chemical enhanced oil recovery. Ind. Eng. Chem. Res., 57, 12367– 12377. doi:https://doi.org/10.1021/acs.iecr.8b02200spa
dc.relation.referencesCéspedes Chávarro, C. (2015). Desarrollo de un nanofluido para la estabilización de finos en la formación Barco del campo Cupiagua. [Tesis de maestría] Departamento de procesos y energía - Universidad Nacional de Colombia, 95.spa
dc.relation.referencesCivan, F. (2007). Reservoir formation damage fundamentals, modelling, assesment and mitigation (2 ed.). Oxford, UK: Gulf Professional Publishing.spa
dc.relation.referencesClark, R. M. (1987). Evaluating the cost and performance of field-escale granular activated carbon system. Enviromental Science & Technology, 21(6), 573 - 580. doi:https://doi.org/10.1021/es00160a008spa
dc.relation.referencesDíez, R., Medina, O., Giraldo, L., Cortés , F., & Franco, C. (2020). Development of nanofluids for the inhibition of formation damage caused by fines migration: effect of the interaction of quaternary amine (CTAB) and MgO nanoparticles. Nanomaterials, 10(5), 928. doi:https://doi.org/10.3390/nano10050928spa
dc.relation.referencesEcheverry, M., Giraldo, L. F., & Lopéz, B. L. (2007). Síntesis y funcionalización de nanopartículas de sílica con morfología esférica. Scientia et technica, 36spa
dc.relation.referencesFranco, C. A., Montoya, T., Nassar, N. N., & Cortés, F. B. (2014). NiO and PdO on fumed silica nanoparticles for adsorption and catalytic steam gasification of colombian C7 asphaltenes. Handbook on Oil Production Research; Nova Science Publishers: Hauppauge, NY, USA, 101-145spa
dc.relation.referencesFranco, C. A., Zabala, R., & Cortés, F. B. (2017). Nanotechnology to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39-5. doi:DOI: 10.1016/j.petrol.2017.07.004spa
dc.relation.referencesFranco, C., Guzman-Calle, J. D., & Cortés-Correa, F. B. (2016). Adsortion and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. Revista DYNA, 83(198), 171-179. doi:https://doi.org/10.15446/dyna.v83n198.56106spa
dc.relation.referencesFuentes, J., Montes, D., Lucas, E., Montes-Páez, E.-G., Szklo, A., & Guerreo-Martin, C. (2022). Nanotechnology applied to the inhibition and remediation of formation damage by fines migration and deposition: A comprehensive review. Journal of Petroleum Science and Engineering, 216, 110767. doi:https://doi.org/10.1016/j.petrol.2022.110767spa
dc.relation.referencesGhumare, A. K., Mallick, M., & Rama, M. S. (2018). Patent No. 10093846. Patent and Trademark Office.spa
dc.relation.referencesGiraldo, J., Benjumea, P., Lopera, S., Cortés, F., & Ruiz, M. (2013). Wettability alteration of sandstone cores by alumina-based nanofluids. Energy&Fuels, 27(7), 3659-3665. doi:https://doi.org/10.1021/ef4002956spa
dc.relation.referencesGiraldo, J., Nassar, N. N., Benjumea, P. N., Pereira-Almao, P. R., & Cortés, F. (2013). Modeling and prediction of asphaltene adsortion isotherms using Polanyi's modified theory. Energy&Fuels, 27(6), 2908-2914. doi:https://doi.org/10.1021/ef4000837spa
dc.relation.referencesGiraldo, L., Diez, R., Acevedo, S., Cortés, F., & Franco, C. (2021). The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: insights through a simplex -centroid mixture desing of experiments. Journal of Petroleum Science and Engineering, 108494. doi:https://doi.org/10.1016/j.petrol.2021.108494spa
dc.relation.referencesHabibi, A., Ahmadi, M., Pourafshary, P., & Ayatollahi, S. (2014). Fines migration control in sandstone formation by improving silica suface zeta potential using nanoparticle coating process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(21), 2376–2382. doi:https://doi.org/10.1080/15567036.2011.569836spa
dc.relation.referencesHabibi, A., Heidari, M. A., Al-Hadrami, H., Al-Ajmi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Effect of nanofluid injection on fines mitigation to remediate formation damage: A microscopic view. Journal of Advanced Microscopy Research, 7(2), 140 - 144. doi:https://doi.org/10.1166/jamr.2012.1107spa
dc.relation.referencesHabibi, A., Heidari, M., Al-Hadrami, H., Al-Ajmi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Effect of MgO nanofluid injection into water sensitive formation to prevent the water shock permeability impairment. ESP International oilfield nanotechnology conference held in Noordwijk, The Netherlands, SPE 157106. doi:https://doi.org/10.2118/157106-MSspa
dc.relation.referencesHurtado, Y., Beltran, C., Zabala, R., Lopera, S., Franco, C., Nassar, N., & Cortés, F. (2018). Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoir. Energy&Fuels, 32(5), 5824-5833. doi:https://doi.org/10.1021/acs.energyfuels.8b00665spa
dc.relation.referencesJaramillo- Paez, C., Sánchez-Cid, P., Navío, J. A., & Hidalgo, M. C. (2018). A comparative assesment of the UV-photocatalytic activities of ZnO synthesized by different routes. Journal of Envaironmental Chemical Engineering, 6, 7161-7171. doi:https://doi.org/10.1016/j.jece.2018.11.004spa
dc.relation.referencesKarimi, M. A., Mozaheb, M. A., Hatefi-Mehrjardi, A., Tavallali, H., Attaran, A. M., & Shamsi, R. (2015). A new simple method for determining the critical micelle concetrations of surfactants using surface plasmon resonance of silver nanoparticles. Journal of Analytics Science and Technology, 6, 1-8. doi:DOI 10.1186/s40543-015-0077-yspa
dc.relation.referencesKhilar, K., & Fogler, S. (1998). Migration of fines in porus media (Vol. 12). Bombay Mumbai: Springer. doi:DOI 10.1007/978-94-015-9074-7spa
dc.relation.referencesLoi, G., Nguyen, C., Chequer, L., Russell, T., Zeinijahromi, A., & Bedrikovetsky, P. (2023). Tretment of oil production data under fines migration and productivity decline. Energies, 16(8), 3523. doi: https://doi.org/10.3390/en16083523spa
dc.relation.referencesLopéz Vazquez, A. (2015). Crecimiento de nanoalambres de óxido de zinc verticalmente alineados usando el método sol-gel hidrotermal (Tesis de licenciatura). Benémerita Universidad Autónoma de Puebla, Facultad de Ciencias Físico-Matermáticas, Colegio de Física. doi:https://hdl.handle.net/20.500.12371/8774spa
dc.relation.referencesLópez, D., Zabala, R. D., Cárdenas, J. C., Lopera, S. H., Masoud, R., Franco, C. A., & Cortés, F. B. (2020). A novel desing of silica-based completion nanofluids for heavy oil reservoirs. Journal of Petroleum Science and Engineering, 194, 107483. doi:https://doi.org/10.1016/j.petrol.2020.107483spa
dc.relation.referencesLopéz-Cuenca, S., Aguilar-Martinez, J., Rabelero-Velasco, M., Hernandez-Ibarra, F., Lopez-Ureta, L., & Pedroza-Toscano, M. (2019). Nanopartículas esféricas de óxido de zinc sintetizadas por un método de precipitación semicontinua a bajas temperaturas. Revista Mexicana de Ingeniería Química, 18(3), 1179-1187spa
dc.relation.referencesMansour, M., Eleraki, M., Noah, A., & Moustafa, E.-A. (2020). Using nanotechnology to prevent fines migration while production. Petroleum, 7(2), 168 - 177. doi:https://doi.org/10.1016/j.petlm.2020.09.003spa
dc.relation.referencesMansour, M., Moustafa, E.-A., Eleraki, M., & Noah, A. (2020). A novel aproach of fines migration control using nanoparticle through zeta potential measurements. Petroleum and Coal, 62(3), 691 - 793. Obtenido de https://scholar.googleusercontent.com/scholar?q=cache:2HTtKqiN-f8J:scholar.google.com/&hl=en&as_sdt=0,5spa
dc.relation.referencesMartinez, A., & Chaves, C. (2018). Inmovilización de la proteína fotoactiva bacteriorodopsina sobre óxido de zinc Aplicación en Celdas Solares Bio-Sensibilizadas. Revista Tecnología en Marcha, 31(4), 49-62. doi:http://dx.doi.org/10.18845/tm.v31i4.3959spa
dc.relation.referencesMohd Shafian, S., Mohd Saaid, I., Razali, N., Khalida Salleh, I., & Irawan, S. (2021). Experimental investigation of colloidal silica nanoparticles (C-SNPs) for fines migration control application. Applied Nanoscience, 11, 1993-2008. doi:https://doi.org/10.1007/s13204-021-01894-5spa
dc.relation.referencesMontoya, T., Coral, D., Franco, C., Nassar, N., & Cortés, F. (2014). A novel solid-liquid equilibrium model for describing the adsortion of associating asphaltene molecules onto solid surfaces based on the "Chemical Theory". Energy&Fuels, 28(8), 4963-4975. doi:https://doi.org/10.1021/ef501020dspa
dc.relation.referencesMora, C., Franco, C., & Cortes, F. (2013). Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa. Informador técnico, 77(1), 27 - 34. doi:https://doi.org/10.23850/22565035.42spa
dc.relation.referencesMuneer, R., Hashmet, M., & Pourafshary, P. (2020). Fine migration control in sandstone: surface force analysis and application of DVLO theory. ACS Omega, 5(49), 31624-31639. doi:https://doi.org/10.1021/acsomega.0c03943spa
dc.relation.referencesNaranjo, E., & Pereira, J. (2021). Procesos en el medio poroso causante de la migración de finos durante la etapa de producción de petróleo. Revista Ciencia e Ingeniería, 42(2), 229-238spa
dc.relation.referencesNashaat, N., Cortés, F., & Franco, C. (2021). Nanoparticles: An emerging technology for oil production and processing applications. Cham, Germany: Springer Nature Switzerland AG. doi:https://doi.org/10.1007/978-3-319-12051-5spa
dc.relation.referencesNgata, M. R., Yang, B., Aminu, M. D., Emmanuely, B. L., Said, A. A., Kalibwami, D. C., . . . Nyakilla, E. E. (2022). Minireview of formation damage control through nanotechnology utilization at fieldwork conditions. Energy&Fuels, 36(8), 4174-4185. doi:https://doi.org/10.1021/acs.energyfuels.2c00210spa
dc.relation.referencesOgolo, N. A., Achor, T., & Onyekonwu, M. O. (2022). Effect of aluminum oxide powder and nanoparticles on kaolinite mobilization in sand. Computational Engineering and Physical Modeling, 5(4), 67-78. doi:10.22115/CEPM.2023.381797.1229spa
dc.relation.referencesOgolo, N. A., Olafuyi, O. A., & Onyekonwu, M. O. (2013). Impact of hidrocarbon oon the performance of nanoparticles in control of fines migration. In SPE Nigeria Annual International Conference and Exhibition, SPE-167503spa
dc.relation.referencesOgolo, N., Olafuyi, O., & Onyekonwu, M. (2012). Effect of nanoparticles on migrating fines in formarions. In SPE International Oilfield Nanotechnology Conference and Exhibition, SPE-155213. doi:https://doi.org/10.2118/155213-MSspa
dc.relation.referencesOmar, F. M., Aziz, H. A., & Stoll, S. (2014). Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsortion of Suwannee River humic acid. Science of the Total Environment, 468, 195-201. doi:https://doi.org/10.1016/j.scitotenv.2013.08.044spa
dc.relation.referencesPourrahimi, A., Liu, D., Pallon, L., Andersson, R., Martínez Abad, A., Lagarón, J.-M., . . . Olsson, R. (2014). Water-based synthesis and cleaning methods for high purity ZnO nanoparticles - comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Advances, 4(67), 35568-35577. doi:https://doi.org/10.1039/C4RA06651Kspa
dc.relation.referencesRamírez Barrón, S. N. (2013). Estudio del efecto antimicrobiano y citotóxico de nanopartículas de ZnO con y sin tratamiento superficial en nanocompuestos para uso médico (Trabajo de maestría). Centro de Investigación en Química Aplicada, Programa de maestría en técnología de polímeros.spa
dc.relation.referencesRani, S., Suri, P., Shishodia, P. K., & Mehra, R. M. (2008). Synthsis of nanocrystalline ZnO powder via sol-gel route for dye-sentized solar cells. Solar Energy Materials & Solar Cells, 92, 1639 - 1645. doi:https://doi.org/10.1016/j.solmat.2008.07.015spa
dc.relation.referencesRodríguez-Estupiñan, P., Giraldo, L., & Moreno-Piraján, J. C. (2019). Isotherms models, kinetics study and thermodynamic parameters of asphaltenes adsortion on activated carbons prepared from corncobs waste form toluene solutions. Journal of Thermal Analysis and Calorimetry, 138, 2577-2595. doi:https://doi.org/10.1007/s10973-019-08549-2spa
dc.relation.referencesRussell, T., Pham, D., Tavakkoli Neishaboor, M., Badalyan, A., Behr, A., Genolet, L., . . . Zeinijahromi, A. (2017). Effect of kaolinite on rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243 - 255. doi:https://doi.org/10.1016/j.jngse.2017.05.020spa
dc.relation.referencesSalwa Alias, S., & Azmin Mohamad, A. (2014). Synthesis of zinc oxide by sol-gel method for photoelectro-chemical cells. Singapure: Springer.spa
dc.relation.referencesSamir Ali, A., Salem, A., & Mahmoud Attia, A. (2022). Mitigation of fines migration by using nano-fluid to alliviate formation damage in Abu Rawash G. Petroleum and Coal, 64(2), 304-312spa
dc.relation.referencesSavi, B., Rodrigues, L., & Bernardin, A. (2012). Síntesis de nanopartículas de ZnO por el proceso sol - gel. Qualicer, 12, 1 - 9spa
dc.relation.referencesShakiba, M., Khamehchi, E., Fahimifar, A., & Dabir, B. (2020). A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs. Journal of Molecular Liquids, 319, 114210. doi:https://doi.org/10.1016/j.molliq.2020.114210spa
dc.relation.referencesValencia Rios, J., & Castellar Ortega, G. (2013). Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Revista Facultad de Ingeniería Universidad de Antioquia(66), 141-158spa
dc.relation.referencesWahab, R., Ansari, S. G., Kim, S. Y., Song, M., & Shin, H.-S. (2009). The role of pH variation on the grow of zinc oxide nanostructures. Applied Suface Science, 255, 4891 - 4896. doi:https://doi.org/10.1016/j.apsusc.2008.12.037spa
dc.relation.referencesWang, C., Montero Pallares, J., Haftani, M., & Nouri, A. (2020). Developing a methodology to characterize formation damage (pore plugging) due to fines migration in sand control test. Journal of Petroleum Science and Engineering, 186, 106793. doi:https://doi.org/10.1016/j.petrol.2019.106793spa
dc.relation.referencesYang, S., Russelll, T., Baldayan, A., Schacht, U., Woolley, M., & Bedrikovetsky, P. (2019). Characterizartion of fines migration system using laboratory pressure measurements. Journal of Natural Gas Science and Engineering, 65, 108-124. doi:https://doi.org/10.1016/j.jngse.2019.02.005spa
dc.relation.referencesYasaman, A., Arab, D., & Pourafshary, P. (2014). Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding. Journal of Petroleum Science and Engineering, 124, 331-340. doi:https://doi.org/10.1016/j.petrol.2014.09.023spa
dc.relation.referencesZabala Romero, R. D. (2016). Modelo fenomenológico para escalar a yacimiento el impacto sobre producción de hidrocarburos del daño de formación por migración de finos. Fuentes, el reventón energético, 14(1), 103-114. doi:https://doi.org/10.18273/revfue.v14n1-2016009spa
dc.relation.referencesZheng, X., Perreault, F., & Jang, J. (2018). Fines adsortion on nanoparticle-coated surface. Acta Geotechnica, 13, 219 - 226. doi:https://doi.org/10.1007/s11440-017-0528-2spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembNanotecnología
dc.subject.lembMateriales de nanoestructuras
dc.subject.lembNanopartículas
dc.subject.proposalDaño de formaciónspa
dc.subject.proposalFormation damageeng
dc.subject.proposalMigración de finosspa
dc.subject.proposalFines migrationeng
dc.subject.proposalNanotecnologíaspa
dc.subject.proposalNanotechnologyeng
dc.subject.proposalZnOspa
dc.subject.proposalZnOeng
dc.titleDesarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finosspa
dc.title.translatedDevelopment of a Zinc Oxide nanomaterial surface modified with Hexadecyltrimethyl Ammonium Bromide (CTAB) to inhibit fines migrationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098681773.2024.pdf
Tamaño:
1.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: