Resistencia a la corrosión del recubrimiento TiAlTaZrNbN en acero AISI 304 con potencial aplicación en la industria de alimentos

dc.contributor.advisorOlaya Floréz, Jhon Jairospa
dc.contributor.advisorPiamba Tulcán, Oscar Edwinspa
dc.contributor.authorCastañeda Beltran, Maria Camilaspa
dc.date.accessioned2025-04-07T15:36:13Z
dc.date.available2025-04-07T15:36:13Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías a color, tablasspa
dc.description.abstractEn el presente estudio se investigan las propiedades estructurales y la resistencia a la corrosión del recubrimiento de alta entropía TiAlTaZrNbN, depositado sobre un sustrato de acero AISI 304, material comúnmente usado en la industria alimentaria. Se empleó la técnica de pulverización catódica con magnetrón de impulso de alta potencia (HiPIMS) para la deposición del recubrimiento. La caracterización del recubrimiento se realizó a través de diferentes métodos analíticos. La estructura cristalina y las fases presentes en el recubrimiento fueron determinadas por medio de la técnica de difracción de rayos X (XRD), mientras que la composición química se determinó por medio de la espectroscopía de energía dispersada (EDS). La morfología del recubrimiento se examinó utilizando microscopía electrónica de barrido (SEM), y la rugosidad de la superficie se evaluó a través de microscopía confocal. Por otro lado, se estudió el comportamiento del recubrimiento ante la corrosión en tres electrolitos a temperatura ambiente: solución de ácido acético, de ácido cítrico y agua de grifo, utilizando técnicas de polarización potenciodinámica (PDP) y espectroscopía de impedancia electroquímica (EIS). Los resultados indicaron que el recubrimiento TiAlTaZrNbN presenta una estructura densa y homogénea, con una composición equilibrada de los elementos constitutivos. La caracterización mediante XRD reveló la presencia de fases cristalinas FCC, que contribuyeron significativamente a su destacada resistencia a la corrosión. Además, el recubrimiento demostró un excelente comportamiento ante la corrosión en los electrolitos de ácido acético y ácido cítrico (simulando alimentos con pH ≤ 4.5), evidenciando una disminución considerable en la densidad de corriente (Icorr) y un desplazamiento hacia valores más positivos del potencial de corrosión (Ecorr). También se observó una resistencia a la polarización mayor en contraste con el sustrato sin recubrimiento. Estos resultados proporcionan una valiosa perspectiva sobre las propiedades del recubrimiento TiAlTaZrNbN y su potencial aplicación en entornos que simulan condiciones alimentarias, lo que puede contribuir significativamente a mejorar la durabilidad de componentes utilizados en el sector alimentario (Texto tomado de la fuente).spa
dc.description.abstractThe present study investigates the structural properties and corrosion resistance of the high-entropy coating TiAlTaZrNbN, deposited on a substrate of AISI 304 steel, a material widely used in the food industry. High-power impulse magnetron sputtering (HiPIMS) technique was used for coating deposition. The characterization of the coating was carried out through different analytical methods. The crystal structure and phases present in the coating were determined by X-ray diffraction (XRD), while the chemical composition was analyzed by dispersed energy spectroscopy (EDS). The coating’s morphology was examined using scanning electron microscopy (SEM), and surface roughness was evaluated through confocal microscopy. Furthermore, the coating’s corrosion behavior was evaluated in three electrolytes at ambient temperature: acetic acid solution, citric acid and tap water, using potentiodynamic polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS) techniques. The results indicated that the TiAlTaZrNbN coating has a dense and homogeneous structure with well-balanced composition of its constituent elements. XRD characterization identified the presence of FCC crystalline phases, which significantly contributed to its outstanding corrosion resistance. In addition, the coating demonstrated excellent corrosion behavior on acetic acid and citric acid electrolytes, evidenced by a notable reduction in current density (Icorr) and a shift towards more positive corrosion potential (Ecorr) values. Additionally, the coating’s polarization resistance was significantly higher than that of the substrate without coating. These findings provide valuable insights into the properties of TiAlTaZrNbN coating and its potential application in environments simulating food conditions, which could substantially enhance the durability of components used in the food sector.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Materiales y procesosspa
dc.description.researchareaIngeniería de Superficiesspa
dc.format.extentxviii, 134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87862
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesF. Abdi, H. Aghajani, y S. K. Asl, «Evaluation of the corrosion resistance of AlCoCrFeMnNi high entropy alloy hard coating applied by electro spark deposition», Surf. Coat. Technol., vol. 454, p. 129156, feb. 2023, doi: 10.1016/j.surfcoat.2022.129156.spa
dc.relation.referencesH. Zhou et al., «Interstitial boron-doped FeCoNiCr high entropy alloys with excellent electromagnetic-wave absorption and resistance to harsh environments», J. Alloys Compd., vol. 959, p. 170579, oct. 2023, doi: 10.1016/j.jallcom.2023.170579.spa
dc.relation.referencesV. Braic, A. Vladescu, M. Balaceanu, C. R. Luculescu, y M. Braic, «Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings», Surf. Coat. Technol., vol. 211, pp. 117-121, oct. 2012, doi: 10.1016/j.surfcoat.2011.09.033.spa
dc.relation.referencesS. K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, y J.-W. Lee, «Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics», J. Alloys Compd., vol. 873, p. 159605, ago. 2021, doi: 10.1016/j.jallcom.2021.159605.spa
dc.relation.referencesA. D. Pogrebnjak, V. M. Beresnev, K. V. Smyrnova, Ya. O. Kravchenko, P. V. Zukowski, y G. G. Bondarenko, «The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings», Mater. Lett., vol. 211, pp. 316-318, ene. 2018, doi: 10.1016/j.matlet.2017.09.121.spa
dc.relation.referencesM. Karimzadeh, M. Malekan, H. Mirzadeh, L. Li, y N. Saini, «Effects of titanium addition on the microstructure and mechanical properties of quaternary CoCrFeNi high entropy alloy», Mater. Sci. Eng. A, vol. 856, p. 143971, oct. 2022, doi: 10.1016/j.msea.2022.143971.spa
dc.relation.references«Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys - ScienceDirect». Accedido: 7 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S092150931400999Xspa
dc.relation.referencesP. E. Hovsepian et al., «Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components», J. Alloys Compd., vol. 746, pp. 583-593, may 2018, doi: 10.1016/j.jallcom.2018.02.312.spa
dc.relation.referencesR. Ananthakumar, B. Subramanian, A. Kobayashi, y M. Jayachandran, «Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings», Ceram. Int., vol. 38, n.o 1, pp. 477-485, ene. 2012, doi: 10.1016/j.ceramint.2011.07.030.spa
dc.relation.referencesA. R. Shugurov y M. S. Kazachenok, «Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings», Surf. Coat. Technol., vol. 353, pp. 254-262, nov. 2018, doi: 10.1016/j.surfcoat.2018.09.001.spa
dc.relation.referencesM.-R. Alhafian et al., «Comparison on the structural, mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation», Surf. Coat. Technol., vol. 423, p. 127529, oct. 2021, doi: 10.1016/j.surfcoat.2021.127529.spa
dc.relation.referencesA. Mendez et al., «Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS», Surf. Coat. Technol., vol. 422, p. 127513, sep. 2021, doi: 10.1016/j.surfcoat.2021.127513.spa
dc.relation.referencesP. Mohamadian Samim, A. Fattah-Alhosseini, H. Elmkhah, y O. Imantalab, «Structure and corrosion behavior of ZrN/CrN nano-multilayer coating deposited on AISI 304 stainless steel by CAE-PVD technique», J. Asian Ceram. Soc., vol. 8, n.o 2, pp. 460-469, abr. 2020, doi: 10.1080/21870764.2020.1750102.spa
dc.relation.references«Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings - ScienceDirect». Accedido: 31 de marzo de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1359645419303313spa
dc.relation.referencesC. Hernández-Navarro, L. P. Rivera, M. Flores-Martínez, E. Camps, S. Muhl, y E. García, «Tribological study of a mono and multilayer coating of TaZrN/TaZr produced by magnetron sputtering on AISI-316L stainless steel», Tribol. Int., vol. 131, pp. 288-298, mar. 2019, doi: 10.1016/j.triboint.2018.10.034.spa
dc.relation.referencesR. Shu et al., «Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films», Surf. Coat. Technol., vol. 404, p. 126485, dic. 2020, doi: 10.1016/j.surfcoat.2020.126485.spa
dc.relation.referencesA. Kahyarian, A. Schumaker, B. Brown, y S. Nesic, «Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction», Electrochimica Acta, vol. 258, pp. 639-652, dic. 2017, doi: 10.1016/j.electacta.2017.11.109.spa
dc.relation.referencesP. Li, M. Du, J. Hou, Y. Zhang, L. Fan, y C. Lin, «Corrosion Behavior of 316L Stainless Steel in Oilfield Produced Water in Presence of CO2 and Acetic Acid», Int. J. Electrochem. Sci., vol. 15, n.o 5, pp. 4287-4307, may 2020, doi: 10.20964/2020.05.23.spa
dc.relation.referencesP. Zhang et al., «Corrosion Behavior of Aluminum in Dilute Acetic Acid Solution Simulating Cooling Water in HVDC Transmission», Int. J. Electrochem. Sci., vol. 17, n.o 3, p. 220324, mar. 2022, doi: 10.20964/2022.03.05.spa
dc.relation.referencesK. Zuñiga-Diaz, C. D. Arrieta-Gonzalez, J. Porcayo-Calderon, J. G. Gonzalez-Rodriguez, M. Casales-Diaz, y L. Martinez-Gomez, «Electrochemical Behavior of Austenitic Stainless Steels Exposed to Acetic Acid Solution», Int. J. Electrochem. Sci., vol. 15, n.o 2, pp. 1242-1263, feb. 2020, doi: 10.20964/2020.02.13.spa
dc.relation.referencesN. Mazinanian, G. Herting, I. Odnevall, y Y. Hedberg, «Metal Release and Corrosion Resistance of Different Stainless Steel Grades in Simulated Food Contact», Corros. -Houst. Tx-, vol. 72, pp. 775-790, mar. 2016, doi: 10.5006/2057.spa
dc.relation.referencesX. Li y S. Deng, «Ce(SO4)2 as an efficient corrosion inhibitor for cold rolled steel in citric acid solution», J. Taiwan Inst. Chem. Eng., vol. 122, pp. 273-283, may 2021, doi: 10.1016/j.jtice.2021.04.057.spa
dc.relation.referencesM. Shahidi y M. R. Gholamhosseinzadeh, «Electrochemical evaluation of AA6061 aluminum alloy corrosion in citric acid solution without and with chloride ions», J. Electroanal. Chem., vol. 757, pp. 8-17, nov. 2015, doi: 10.1016/j.jelechem.2015.09.003.spa
dc.relation.referencesY.-S. Choi, J.-J. Shim, y J.-G. Kim, «Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water», J. Alloys Compd., vol. 391, n.o 1, pp. 162-169, abr. 2005, doi: 10.1016/j.jallcom.2004.07.081.spa
dc.relation.referencesG.-M. Chow, I. A. Ovid’ko, y T. Tsakalakos, Nanostructured Films and Coatings. Springer Science & Business Media, 2012.spa
dc.relation.referencesM. Aliofkhazraei, Nanocoatings: Size Effect in Nanostructured Films. Springer Science & Business Media, 2011.spa
dc.relation.referencesA. Cavaleiro y J. T. de Hosson, Nanostructured Coatings. Springer Science & Business Media, 2007.spa
dc.relation.referencesS. Bose, «Chapter 6 - OXIDATION- AND CORROSION-RESISTANT COATINGS», en High Temperature Coatings, S. Bose, Ed., Burlington: Butterworth-Heinemann, 2007, pp. 71-154. doi: 10.1016/B978-075068252-7/50007-X.spa
dc.relation.references«Hard Coating - an overview | ScienceDirect Topics». Accedido: 17 de junio de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/topics/materials-science/hard-coatingspa
dc.relation.referencesP. Gao, Q. Guo, Y. Xing, y Y. Guo, «Structural, Mechanical, and Tribological Properties of Hard Coatings», Coatings, vol. 13, n.o 2, Art. n.o 2, feb. 2023, doi: 10.3390/coatings13020325.spa
dc.relation.referencesJ. Chen et al., «Microstructure and tribological properties of CrAlTiN coating deposited via multi-arc ion plating», Mater. Today Commun., vol. 30, p. 103136, mar. 2022, doi: 10.1016/j.mtcomm.2022.103136.spa
dc.relation.referencesI. Hamidah et al., «Corrosion study of AISI 304 on KOH, NaOH, and NaCl solution as an electrode on electrolysis process», J. Eng. Sci. Technol., vol. 13, pp. 1345-1351, may 2018.spa
dc.relation.referencesA. K. Bisht, R. O. Vaishya, R. S. Walia, y G. Singh, «Nitrides ceramic coatings for tribological applications: A journey from binary to high-entropy compositions», Ceram. Int., vol. 50, n.o 6, pp. 8553-8585, mar. 2024, doi: 10.1016/j.ceramint.2023.12.245.spa
dc.relation.referencesJ. Deng, F. Wu, Y. Lian, Y. Xing, y S. Li, «Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings», Int. J. Refract. Met. Hard Mater., vol. 35, pp. 10-16, nov. 2012, doi: 10.1016/j.ijrmhm.2012.03.002.spa
dc.relation.references«Effect of Si-addition on structure and thermal stability of Ti-Al-N coatings - ScienceDirect». Accedido: 18 de junio de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0925838822018746?via%3Dihubspa
dc.relation.referencesM. Diserens, J. Patscheider, y F. Lévy, «Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films», Surf. Coat. Technol., vol. 120-121, pp. 158-165, nov. 1999, doi: 10.1016/S0257-8972(99)00481-8.spa
dc.relation.references«Coatings | Free Full-Text | Structure and Properties of CrN/TiN Multi-Layer Coatings Obtained by Vacuum-Arc Plasma-Assisted Deposition Method». Accedido: 18 de junio de 2024. [En línea]. Disponible en: https://www.mdpi.com/2079-6412/13/2/351spa
dc.relation.referencesL. Toth, Transition Metal Carbides and Nitrides. Elsevier, 2014.spa
dc.relation.referencesM.-H. Tsai y J.-W. Yeh, «High-Entropy Alloys: A Critical Review», Mater. Res. Lett., vol. 2, n.o 3, pp. 107-123, jul. 2014, doi: 10.1080/21663831.2014.912690.spa
dc.relation.referencesS. Kumar, «Comprehensive review on high entropy alloy-based coating», Surf. Coat. Technol., vol. 477, p. 130327, feb. 2024, doi: 10.1016/j.surfcoat.2023.130327.spa
dc.relation.referencesS. Shuang, Z. Y. Ding, D. Chung, S. Q. Shi, y Y. Yang, «Corrosion resistant nanostructured eutectic high entropy alloy», Corros. Sci., vol. 164, p. 108315, mar. 2020, doi: 10.1016/j.corsci.2019.108315.spa
dc.relation.references«A critical review of high entropy alloys and related concepts - ScienceDirect». Accedido: 15 de septiembre de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1359645416306759spa
dc.relation.referencesA. Rashidy Ahmady, A. Ekhlasi, A. Nouri, M. haghbin nazarpak, P. Gong, y A. Solouk, «High entropy alloy coatings for biomedical applications: A review», sep. 2022.spa
dc.relation.referencesS.-Y. Lin, S.-Y. Chang, Y.-C. Huang, F.-S. Shieu, y J.-W. Yeh, «Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias», Surf. Coat. Technol., vol. 206, n.o 24, pp. 5096-5102, ago. 2012, doi: 10.1016/j.surfcoat.2012.06.035.spa
dc.relation.referencesA. Aliyu y C. Srivastava, «Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings», Materialia, vol. 5, p. 100249, mar. 2019, doi: 10.1016/j.mtla.2019.100249.spa
dc.relation.referencesA. Meghwal, A. Anupam, B. S. Murty, C. C. Berndt, R. S. Kottada, y A. S. M. Ang, «Thermal Spray High-Entropy Alloy Coatings: A Review», J. Therm. Spray Technol., vol. 29, n.o 5, pp. 857-893, jun. 2020, doi: 10.1007/s11666-020-01047-0.spa
dc.relation.referencesL. Dobrzanski, L. K, D. Pakuła, y J. Mikula, «Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques», Arch. Mater. Sci. Eng., vol. 28, ene. 2007.spa
dc.relation.referencesJ.-W. Yeh, «Alloy Design Strategies and Future Trends in High-Entropy Alloys», JOM, vol. 65, dic. 2013, doi: 10.1007/s11837-013-0761-6.spa
dc.relation.referencesE. Rocha-Rangel, J. A. Castillo-Robles, J. Rodríguez-García, y A.-M. Eddie Nahúm, «Manufactura y caracterización de aleaciones de alta entropía», Rev. InGenio, vol. 5, pp. 31-39, jul. 2022, doi: 10.18779/ingenio.v5i2.519.spa
dc.relation.referencesD. J. M. King, S. C. Middleburgh, A. G. McGregor, y M. B. Cortie, «Predicting the formation and stability of single phase high-entropy alloys», Acta Mater., vol. 104, pp. 172-179, feb. 2016, doi: 10.1016/j.actamat.2015.11.040.spa
dc.relation.referencesN. Nadzri, A. Khemar, J. A Wahab, y M. M. Mahat, «High Entropy Alloy Towards Functional Materials Application: A Review», J. Phys. Conf. Ser., vol. 2169, p. 012007, ene. 2022, doi: 10.1088/1742-6596/2169/1/012007.spa
dc.relation.referencesA. Baptista, J. Porteiro, J. Míguez, y G. Pinto, «Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands», Coatings, vol. 8, p. 402, nov. 2018, doi: 10.3390/coatings8110402.spa
dc.relation.referencesF. A. P. Scacchetti, E. Pinto, y G. M. B. Soares, «Functionalization and characterization of cotton with phase change materials and thyme oil encapsulated in beta-cyclodextrins», Prog. Org. Coat., vol. 107, pp. 64-74, jun. 2017, doi: 10.1016/j.porgcoat.2017.03.015.spa
dc.relation.referencesA. Inspektor y P. A. Salvador, «Architecture of PVD coatings for metalcutting applications: A review», Surf. Coat. Technol., vol. 257, pp. 138-153, oct. 2014, doi: 10.1016/j.surfcoat.2014.08.068.spa
dc.relation.referencesD. M. Mattox, «Chapter 4 - Physical Sputtering and Sputter Deposition», en The Foundations of Vacuum Coating Technology (Second Edition), D. M. Mattox, Ed., William Andrew Publishing, 2018, pp. 87-149. doi: 10.1016/B978-0-12-813084-1.00004-2.spa
dc.relation.referencesH. C. Barshilia, A. Ananth, J. Khan, y G. Srinivas, «Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates», Vacuum, vol. 86, n.o 8, pp. 1165-1173, feb. 2012, doi: 10.1016/j.vacuum.2011.10.028.spa
dc.relation.referencesA. Ehiasarian, «High-power impulse magnetron sputtering and its applications», Pure Appl. Chem. - PURE APPL CHEM, vol. 82, pp. 1247-1258, ene. 2010, doi: 10.1351/PAC-CON-09-10-43.spa
dc.relation.referencesD. Lundin, «The HiPIMS Process», 2010, Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56748spa
dc.relation.referencesA. P. Ehiasarian, R. New, W.-D. Münz, L. Hultman, U. Helmersson, y V. Kouznetsov, «Influence of high power densities on the composition of pulsed magnetron plasmas», Vacuum, vol. 65, n.o 2, pp. 147-154, abr. 2002, doi: 10.1016/S0042-207X(01)00475-4.spa
dc.relation.references«On the film density using high power impulse magnetron sputtering - ScienceDirect». Accedido: 23 de junio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0257897210005633spa
dc.relation.referencesN. F. Lopes Dias, A. L. Meijer, D. Biermann, y W. Tillmann, «Structure and mechanical properties of TiAlTaN thin films deposited by dcMS, HiPIMS, and hybrid dcMS/HiPIMS», Surf. Coat. Technol., vol. 487, p. 130987, jul. 2024, doi: 10.1016/j.surfcoat.2024.130987.spa
dc.relation.referencesJ. Gudmundsson, «Ionized physical vapor deposition (IPVD): Magnetron sputtering discharges», J. Phys. Conf. Ser., vol. 100, p. 082002, mar. 2008, doi: 10.1088/1742-6596/100/8/082002.spa
dc.relation.references«Fundamentals Of Thin Film Growth». Accedido: 17 de octubre de 2024. [En línea]. Disponible en: https://www.materion.com/en/about-materion/news/coating-materials-news/fundamentals-of-thin-film-growthspa
dc.relation.referencesA. Anders, «A structure zone diagram including plasma-based deposition and ion etching», Thin Solid Films, vol. 518, n.o 15, pp. 4087-4090, may 2010, doi: 10.1016/j.tsf.2009.10.145.spa
dc.relation.referencesX. Pardell, «El microscopio electrónico de barrido (SEM) - Apuntes de Electromedicina Xavier Pardell». Accedido: 14 de septiembre de 2024. [En línea]. Disponible en: https://www.pardell.es/microscopia-electronica-de-barrido.htmlspa
dc.relation.referencesB. Ohl, «What is Scanning Electron Microscopy? (How it Works, Applications, and Limitations)», Materials Science & Engineering Student. Accedido: 27 de junio de 2024. [En línea]. Disponible en: https://msestudent.com/what-is-scanning-electron-microscopy-how-it-works-applications-and-limitations/spa
dc.relation.references«Energy-Dispersive X-ray Spectroscopy (EDS)», Chemistry LibreTexts. Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Spectroscopy/Energy-Dispersive_X-ray_Spectroscopy_(EDS)spa
dc.relation.referencesM. Zepeda, «Difracción de Rayos X», Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://www.academia.edu/37651012/Difracci%C3%B3n_de_Rayos_Xspa
dc.relation.referencesM. E. Aparicio Ceja, G. G. Carbajal Arizaga, M. E. Aparicio Ceja, y G. G. Carbajal Arizaga, «Utilidad de la difracción de rayos x en las nanociencias», Mundo Nano Rev. Interdiscip. En Nanociencias Nanotecnología, vol. 3, n.o 2, pp. 62-72, dic. 2010.spa
dc.relation.references«Difracción de rayos X (XRD): descripción general | Malvern Panalytical». Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://www.malvernpanalytical.com/es/products/technology/xray-analysis/x-ray-diffractionspa
dc.relation.references«X-ray diffraction (XRD) basics and application», Chemistry LibreTexts. Accedido: 24 de junio de 2024. [En línea]. Disponible en:https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Diffraction_Techniques/X-ray_diffraction_(XRD)_basics_and_applicationspa
dc.relation.references«Difracción de Rayos X - Introducción FUNDAMENTOS 1 Espectro electromagnético y Rayos X. 1 Estado - Studocu». Accedido: 14 de septiembre de 2024. [En línea]. Disponible en: https://www.studocu.com/co/document/universidad-pedagogica-y-tecnologica-de-colombia/quimica/difraccion-de-rayos-x/22167019spa
dc.relation.references«(PDF) Principios y aplicaciones de la microscopia láser confocal en la investigación biomédica». Accedido: 9 de julio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/312498787_Principios_y_aplicaciones_de_la_microscopia_laser_confocal_en_la_investigacion_biomedicaspa
dc.relation.referencesjavierpn1@gmail.com, « Microscopio Confocal de Barrido Láser », Microscopio Online. Accedido: 9 de julio de 2024. [En línea]. Disponible en: https://microscopioonline.com/tipos-de-microscopio/segun-iluminacion/opticos/de-fluorescencias/confocal-de-barrido-laser/spa
dc.relation.referencesJ.-A. Salazar-Jiménez, «Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica)», Rev. Tecnol. En Marcha, vol. 28, p. 127, sep. 2015, doi: 10.18845/tm.v28i3.2417.spa
dc.relation.referencesD.-H. Xia et al., «Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review», J. Mater. Sci. Technol., vol. 112, pp. 151-183, jun. 2022, doi: 10.1016/j.jmst.2021.11.004.spa
dc.relation.referencesA. Berradja, «Electrochemical Techniques for Corrosion and Tribocorrosion Monitoring: Methods for the Assessment of Corrosion Rates», 2019. doi: 10.5772/intechopen.86743.spa
dc.relation.referencesP. Marcus, Ed., Corrosion Mechanisms in Theory and Practice, 3.a ed. Boca Raton: CRC Press, 2011. doi: 10.1201/b11020.spa
dc.relation.references«Corrosion testing: what is potentiodynamic polarization? | Surface Technology Journal», KosarTech. Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://kosartech.com/en/journal/posts/Corrosion-testing--what-is-potentiodynamic-polarization-spa
dc.relation.references«Electrochemical Corrosion Measurements-Galvanic Corrosion Gamry Instruments». Accedido: 25 de junio de 2024. [En línea]. Disponible en: https://www.gamry.com/application-notes/corrosion-coatings/basics-of-electrochemical-corrosion-measurements/spa
dc.relation.referencesE. McCafferty, «Validation of corrosion rates measured by the Tafel extrapolation method», Corros. Sci., vol. 47, n.o 12, pp. 3202-3215, dic. 2005, doi: 10.1016/j.corsci.2005.05.046.spa
dc.relation.referencesY. González, Y. Pineda, y E. Vera -Rodríguez, «MEDICIONES EIS PARA MONITOREO DE LA CORROSIÓN BAJO CONDICIONES DE FLUJO MULTIFÁSICO», feb. 2009.spa
dc.relation.references«Basics of EIS: Electrochemical Research-Impedance Gamry Instruments». Accedido: 25 de junio de 2024. [En línea]. Disponible en: https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/spa
dc.relation.referencesN. Mazinanian, I. Odnevall Wallinder, y Y. Hedberg, «Comparison of the influence of citric acid and acetic acid as simulant for acidic food on the release of alloy constituents from stainless steel AISI 201», J. Food Eng., vol. 145, pp. 51-63, ene. 2015, doi: 10.1016/j.jfoodeng.2014.08.006.spa
dc.relation.referencesC. G. Dariva, A. F. Galio, C. G. Dariva, y A. F. Galio, «Corrosion Inhibitors – Principles, Mechanisms and Applications», en Developments in Corrosion Protection, IntechOpen, 2014. doi: 10.5772/57255.spa
dc.relation.referencesW. Yang, J. Shen, Z. Wang, G. Ma, P. Ke, y A. Wang, «Mechanical and electrochemical properties of (MoNbTaTiZr)1-xNx high-entropy nitride coatings», J. Mater. Sci. Technol., vol. 208, pp. 78-91, feb. 2025, doi: 10.1016/j.jmst.2024.04.062.spa
dc.relation.referencesS. Sreehari, N. S. George, L. M. Jose, S. Nandakumar, R. T. Subramaniam, y A. Aravind, «A review on 2D transition metal nitrides: Structural and morphological impacts on energy storage and photocatalytic applications», J. Alloys Compd., vol. 950, p. 169888, jul. 2023, doi: 10.1016/j.jallcom.2023.169888.spa
dc.relation.referencesA. L. Greenaway et al., «Ternary Nitride Materials: Fundamentals and Emerging Device Applications», Annu. Rev. Mater. Res., vol. 51, n.o 1, pp. 591-618, jul. 2021, doi: 10.1146/annurev-matsci-080819-012444.spa
dc.relation.referencesY. Wang et al., «Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature», Appl. Surf. Sci., vol. 574, p. 151677, feb. 2022, doi: 10.1016/j.apsusc.2021.151677.spa
dc.relation.referencesB. Ren, S. Q. Yan, R. F. Zhao, y Z. X. Liu, «Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering», Surf. Coat. Technol., vol. 235, pp. 764-772, nov. 2013, doi: 10.1016/j.surfcoat.2013.08.064.spa
dc.relation.references«Sputtering Yields». Accedido: 26 de junio de 2024. [En línea]. Disponible en: https://www.angstromsciences.com/sputtering-yieldsspa
dc.relation.references«(PDF) Fundamentals of Plasma Sputtering». Accedido: 26 de junio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/283490139_Fundamentals_of_Plasma_Sputteringspa
dc.relation.referencesQ. Huaizhi et al., «Effect of heat treatment time on the microstructure and properties of FeCoNiCuTi high-entropy alloy», J. Mater. Res. Technol., vol. 24, pp. 4510-4516, may 2023, doi: 10.1016/j.jmrt.2023.04.078.spa
dc.relation.referencesR. Shu et al., «Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings», Surf. Coat. Technol., vol. 389, p. 125651, may 2020, doi: 10.1016/j.surfcoat.2020.125651.spa
dc.relation.referencesC. Tian, H. Cai, y Y. Xue, «Effect of Working Pressure on Tribological Properties of Ce-Ti/MoS2 Coatings Using Magnetron Sputter», Coatings, vol. 12, n.o 10, Art. n.o 10, oct. 2022, doi: 10.3390/coatings12101576.spa
dc.relation.referencesA. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, y J. Kovač, «Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering», Surf. Coat. Technol., vol. 241, pp. 105-111, feb. 2014, doi: 10.1016/j.surfcoat.2013.10.050.spa
dc.relation.references«Multi-technique study of corrosion resistant CrN/Cr/CrN and CrN : C coatings - ScienceDirect». Accedido: 3 de julio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S025789720501340Xspa
dc.relation.referencesP. Cui et al., «Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films», J. Alloys Compd., vol. 834, p. 155063, sep. 2020, doi: 10.1016/j.jallcom.2020.155063.spa
dc.relation.referencesK.-H. Cheng, C.-H. Lai, S.-J. Lin, y J.-W. Yeh, «Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering», Thin Solid Films, vol. 519, n.o 10, pp. 3185-3190, mar. 2011, doi: 10.1016/j.tsf.2010.11.034.spa
dc.relation.referencesB. Ren, Z. Shen, y Z. Liu, «Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering», J. Alloys Compd., vol. 560, pp. 171-176, may 2013, doi: 10.1016/j.jallcom.2013.01.148.spa
dc.relation.referencesJ.-W. Yeh, «Recent progress in high-entropy alloys», Eur. J. Control - EUR J CONTROL, vol. 31, pp. 633-648, dic. 2006, doi: 10.3166/acsm.31.633-648.spa
dc.relation.references«(PDF) Primeras etapas de corrosión de metales en agua de mar AISI». Accedido: 3 de julio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/305721545_Primeras_etapas_de_corrosion_de_metales_en_agua_de_mar_AISIspa
dc.relation.referencesD. M. Marulanda Cardona, «Multicapas nanoestructuradas de Cr/CrNx como barrera de difusión entre Cu y Si», 2011, Accedido: 3 de julio de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/8240spa
dc.relation.referencesL. V. Ramos Adame, «Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering», Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2023. Accedido: 31 de marzo de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/85347spa
dc.relation.references«Nitriding high entropy alloy films: Opportunities and challenges - ScienceDirect». Accedido: 7 de julio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0257897223009325spa
dc.relation.referencesM. C. Rossi, P. A. Bazaglia Kuroda, L. Solano de Almeida, L. S. Rossino, y C. R. Moreira Afonso, «A detailed analysis of the structural, morphological characteristics and micro-abrasive wear behavior of nitrided layer produced in α (CP–Ti), α+β (Ti–6Al–4V), and β (TNZ33) type Ti alloys», J. Mater. Res. Technol., vol. 27, pp. 2399-2412, nov. 2023, doi: 10.1016/j.jmrt.2023.10.109.spa
dc.relation.referencesE. Mohammadpour, M. Altarawneh, J. Al-Nu’airat, Z.-T. Jiang, N. Mondinos, y B. Z. Dlugogorski, «Thermo-mechanical properties of cubic titanium nitride», Mol. Simul., vol. 44, n.o 5, pp. 415-423, mar. 2018, doi: 10.1080/08927022.2017.1393810.spa
dc.relation.references«In-situ synthesis of dual-phase nitrides and multiple strengthening mechanisms in FeCoCrNiAl0.5 high entropy matrix composite coatings by laser cladding and plasma nitriding - ScienceDirect». Accedido: 6 de julio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0925838824009873spa
dc.relation.references«Heats of Formation of Niobium Nitride, Tantalum Nitride and Zirconium Nitride from Combustion Calorimetry | Journal of the American Chemical Society». Accedido: 7 de julio de 2024. [En línea]. Disponible en: https://pubs.acs.org/doi/pdf/10.1021/ja01595a007spa
dc.relation.referencesM. A. Tit, O. S. Yulmetova, V. D. Andreeva, A. N. Sisyukov, y R. F. Yulmetova, «Application of Niobium Nitride Thin Films for Improvement of Performance Characteristics of Cryogenic Gyroscope», en 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), ene. 2021, pp. 1232-1235. doi: 10.1109/ElConRus51938.2021.9396714.spa
dc.relation.referencesY. Xu, G. Li, y Y. Xia, «Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS», Appl. Surf. Sci., vol. 523, p. 146529, sep. 2020, doi: 10.1016/j.apsusc.2020.146529.spa
dc.relation.referencesB.-S. Lou, R.-Z. Lin, C.-L. Li, y J.-W. Lee, «Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition», Surf. Coat. Technol., vol. 483, p. 130772, may 2024, doi: 10.1016/j.surfcoat.2024.130772.spa
dc.relation.referencesC.-H. Lai, S.-J. Lin, J.-W. Yeh, y S.-Y. Chang, «Preparation and characterization of AlCrTaTiZr multi-element nitride coatings», Surf. Coat. Technol., vol. 201, n.o 6, pp. 3275-3280, dic. 2006, doi: 10.1016/j.surfcoat.2006.06.048.spa
dc.relation.referencesM. Zhang, X. Zhou, X. Yu, y J. Li, «Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding», Surf. Coat. Technol., vol. 311, pp. 321-329, feb. 2017, doi: 10.1016/j.surfcoat.2017.01.012.spa
dc.relation.referencesE. Kusano, «Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review», Appl. Sci. Converg. Technol., vol. 28, n.o 6, pp. 179-185, nov. 2019, doi: 10.5757/ASCT.2019.28.6.179.spa
dc.relation.referencesA. Kumar, G. Malik, R. Chandra, y R. S. Mulik, «Sputter-grown hierarchical nitride (TiN & h-BN) coatings on BN nanoplates reinforced Al7079 alloy with improved corrosion resistance», Surf. Coat. Technol., vol. 432, p. 128061, feb. 2022, doi: 10.1016/j.surfcoat.2021.128061.spa
dc.relation.referencesV. S. Rao y L. K. Singhal, «Corrosion Behavior of Cr-Mn-Ni Stainless Steel in Acetic Acid Solution», Accedido: 22 de julio de 2024. [En línea]. Disponible en: https://dx.doi.org/10.5006/1.3479954spa
dc.relation.referencesF. Mohammadi, T. Nickchi, M. M. Attar, y A. Alfantazi, «EIS study of potentiostatically formed passive film on 304 stainless steel», Electrochimica Acta, vol. 56, n.o 24, pp. 8727-8733, oct. 2011, doi: 10.1016/j.electacta.2011.07.072.spa
dc.relation.referencesM. J. K. Lodhi, K. M. Deen, y W. Haider, «Corrosion behavior of additively manufactured 316L stainless steel in acidic media», Materialia, vol. 2, pp. 111-121, oct. 2018, doi: 10.1016/j.mtla.2018.06.015.spa
dc.relation.references«Rapid Electrochemical Assessment of Paint (REAP) Gamry Instruments». Accedido: 15 de julio de 2024. [En línea]. Disponible en: https://www.gamry.com/application-notes/corrosion-coatings/rapid-electrochemical-assessment-of-paint/spa
dc.relation.referencesH. Bayramoglu y A. Peksoz, «Electronic energy levels and electrochemical properties of co-electrodeposited CdSe thin films», Mater. Sci. Semicond. Process., vol. 90, pp. 13-19, feb. 2019, doi: 10.1016/j.mssp.2018.09.021.spa
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, y A. Matthews, «An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour», Corros. Sci., vol. 45, n.o 6, pp. 1257-1273, jun. 2003, doi: 10.1016/S0010-938X(02)00214-7.spa
dc.relation.references«(PDF) Electrochemical comparison of SAN/PANI/FLG and 2 ZnO/GO coated cast iron subject to corrosive environments». Accedido: 20 de julio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/328828586_Electrochemical_comparison_of_SANPANIFLG_and_2_ZnOGO_coated_cast_iron_subject_to_corrosive_environmentsspa
dc.relation.referencesJ. C. BERRÍOS, «▷ Propiedades dieléctricas de los materiales aislantes (fórmula y constante) | TELCOM® 2024», TELCOM: Aprenda ingeniería eléctrica y electrónica (gratis). Accedido: 20 de julio de 2024. [En línea]. Disponible en: https://telcomplus.org/propiedades-dielectricas-del-aislamiento/spa
dc.relation.references«Corrosion and electrochemical evaluation of an Al–Si–Cu aluminum alloy in ethanol solutions», Corros. Sci., vol. 72, pp. 73-81, jul. 2013, doi: 10.1016/j.corsci.2013.03.009.spa
dc.relation.references«Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron - ScienceDirect». Accedido: 20 de julio de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0300944011004140?via%3Dihubspa
dc.relation.referencesA. González-Hernández, A. B. Morales-Cepeda, M. Flores, J. C. Caicedo, W. Aperador, y C. Amaya, «Electrochemical Properties of TiWN/TiWC Multilayer Coatings Deposited by RF-Magnetron Sputtering on AISI 1060», Coatings, vol. 11, n.o 7, Art. n.o 7, jul. 2021, doi: 10.3390/coatings11070797.spa
dc.relation.referencesS. K. Singh y A. K. Mukherjee, «Kinetics of Mild Steel Corrosion in Aqueous Acetic Acid Solutions», J. Mater. Sci. Technol., vol. 26, n.o 3, pp. 264-269, mar. 2010, doi: 10.1016/S1005-0302(10)60044-8.spa
dc.relation.referencesP. Ju, Y. Zuo, J. Tang, Y. Tang, y Z. Han, «The characteristics of a Pd–Ni/Pd–Cu double coating on 316L stainless steel and the corrosion resistance in stirred boiling acetic and formic acids mixture», Mater. Chem. Phys., vol. 144, n.o 3, pp. 263-271, abr. 2014, doi: 10.1016/j.matchemphys.2013.12.024.spa
dc.relation.referencesS. An, S. Zhang, W. Liu, H. Fang, M. Zhang, y Y. Yu, «Dealloying behavior of Mn–30Cu alloy in acetic acid solution», Corros. Sci., vol. 75, pp. 256-261, oct. 2013, doi: 10.1016/j.corsci.2013.06.008.spa
dc.relation.referencesM. Moreno Amado, «Resistencia a la corrosión y al desgaste de recubrimientos nanoestructurados de Zirconia (ZrO2) – Plata (Ag) y/o Alúmina (Al2O3) obtenidos con técnica de “Sputtering” reactivo con magnetrón desbalanceado», jun. 2019, Accedido: 25 de julio de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/78428spa
dc.relation.referencesA. Obeydavi, A. Shafyei, A. Rezaeian, P. Kameli, y J.-W. Lee, «Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering», J. Non-Cryst. Solids, vol. 527, p. 119718, ene. 2020, doi: 10.1016/j.jnoncrysol.2019.119718.spa
dc.relation.referencesD. Rodriguez, A. F. R. Garcés, y A. del S. A. Consuegra, «Extracción de pectina a partir de la hidrólisis ácida del cacao (Theobroma Cacao L.) y su aplicación en la obtención de biopelículas», Rev. Mutis, vol. 13, n.o 1, Art. n.o 1, ene. 2023, doi: 10.21789/22561498.1885.spa
dc.relation.referencesS. B. Anoraga, R. Shamsudin, M. H. Hamzah, S. Sharif, A. D. Saputro, y M. S. M. Basri, «Optimization of subcritical water extraction for pectin extraction from cocoa pod husks using the response surface methodology», Food Chem., vol. 459, p. 140355, nov. 2024, doi: 10.1016/j.foodchem.2024.140355.spa
dc.relation.referencesF. Priyangini, S. G. Walde, y R. Chidambaram, «Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology», Carbohydr. Polym., vol. 202, pp. 497-503, dic. 2018, doi: 10.1016/j.carbpol.2018.08.103.spa
dc.relation.references«Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: Experimental and theoretical approaches - ScienceDirect». Accedido: 5 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0144861715001502spa
dc.relation.referencesL. Zhang et al., «Study of okra pectin prepared by sweeping frequency ultrasound/freeze-thaw pretreatment on corrosion inhibition of ANSI 304 stainless steel in acidic environment», Int. J. Biol. Macromol., vol. 253, p. 126587, dic. 2023, doi: 10.1016/j.ijbiomac.2023.126587.spa
dc.relation.referencesN. Saidi et al., «Using pectin extract as eco-friendly inhibitor for steel corrosion in 1M HCl media», Pharma Chem., vol. 7, pp. 87-94, ene. 2015.spa
dc.relation.referencesS. A. Umoren y A. Madhankumar, «Effect of addition of CeO2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium», J. Mol. Liq., vol. 224, pp. 72-82, dic. 2016, doi: 10.1016/j.molliq.2016.09.082.spa
dc.relation.referencesM. M. Fares, A. K. Maayta, y M. M. Al-Qudah, «Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution», Corros. Sci., vol. 60, pp. 112-117, jul. 2012, doi: 10.1016/j.corsci.2012.04.002.spa
dc.relation.references«Influence of Citric Acid on the Metal Release of Stainless Steels -Corrosion Science and Technology | Korea Science». Accedido: 11 de agosto de 2024. [En línea]. Disponible en: https://koreascience.kr/article/JAKO201528551642095.pagespa
dc.relation.referencesN. Mazinanian y Y. S. Hedberg, «Metal Release Mechanisms for Passive Stainless Steel in Citric Acid at Weakly Acidic pH», J. Electrochem. Soc., vol. 163, n.o 10, p. C686, ago. 2016, doi: 10.1149/2.1041610jes.spa
dc.relation.referencesA. Wetzel, M. von der Au, P. M. Dietrich, J. Radnik, O. Ozcan, y J. Witt, «The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy», Appl. Surf. Sci., vol. 601, p. 154171, nov. 2022, doi: 10.1016/j.apsusc.2022.154171.spa
dc.relation.references«The influence of flow rate on corrosion of mild steel in hot tap water - ScienceDirect». Accedido: 4 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0010938X15002024spa
dc.relation.referencesV. K. W. Grips, V. Ezhil Selvi, H. C. Barshilia, y K. S. Rajam, «Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering», Electrochimica Acta, vol. 51, n.o 17, pp. 3461-3468, abr. 2006, doi: 10.1016/j.electacta.2005.09.042.spa
dc.relation.referencesJ. Yang et al., «Effect of Au-ions irradiation on mechanical and LBE corrosion properties of amorphous AlCrFeMoTi HEA coating: Enhanced or deteriorated?», Corros. Sci., vol. 192, p. 109862, nov. 2021, doi: 10.1016/j.corsci.2021.109862.spa
dc.relation.referencesZ. Zhang, E.-H. Han, y C. Xiang, «Effect of helium ion irradiation on short-time corrosion behavior of two novel high-entropy alloys in simulated PWR primary water», Corros. Sci., vol. 191, p. 109742, oct. 2021, doi: 10.1016/j.corsci.2021.109742.spa
dc.relation.referencesS. K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, y J.-W. Lee, «Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content», Surf. Coat. Technol., vol. 403, p. 126351, dic. 2020, doi: 10.1016/j.surfcoat.2020.126351.spa
dc.relation.referencesM. Kazan, B. Rufflé, Ch. Zgheib, y P. Masri, «Oxygen behavior in aluminum nitride», J. Appl. Phys., vol. 98, n.o 10, p. 103529, nov. 2005, doi: 10.1063/1.2137461.spa
dc.relation.referencesL. Lyu, J. Yang, M. Zhou, M. Yan, y J. Yang, «Microstructure, mechanical properties and lead-bismuth eutectic corrosion behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO high entropy metal sublattice ceramic coatings», Vacuum, vol. 209, p. 111774, mar. 2023, doi: 10.1016/j.vacuum.2022.111774.spa
dc.relation.referencesJ. Yang et al., «Influence of coating thickness on microstructure, mechanical and LBE corrosion performance of amorphous AlCrFeTiNb high-entropy alloy coatings», Surf. Coat. Technol., vol. 441, p. 128502, jul. 2022, doi: 10.1016/j.surfcoat.2022.128502.spa
dc.relation.referencesW. Chen, T. Hu, C. Wang, H. Xiao, y X. Meng, «The effect of microstructure on corrosion behavior of a novel AlCrTiSiN ceramic coating», Ceram. Int., vol. 46, n.o 8, Part B, pp. 12584-12592, jun. 2020, doi: 10.1016/j.ceramint.2020.02.022.spa
dc.relation.referencesN. D. Nam, M. Vaka, y N. Tran Hung, «Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment», J. Power Sources, vol. 268, pp. 240-245, dic. 2014, doi: 10.1016/j.jpowsour.2014.05.144.spa
dc.relation.referencesX. Zhao, P. Munroe, D. Habibi, y Z. Xie, «Roles of compressive residual stress in enhancing the corrosion resistance of nano nitride composite coatings on steel», J. Asian Ceram. Soc., vol. 1, n.o 1, pp. 86-94, mar. 2013, doi: 10.1016/j.jascer.2013.03.002.spa
dc.relation.referencesJ. Xu et al., «Role of oxidants in the anodic oxidation of 2024 aluminum alloy by dominating anodic and cathodic processes», Colloids Surf. Physicochem. Eng. Asp., vol. 703, p. 135229, nov. 2024, doi: 10.1016/j.colsurfa.2024.135229.spa
dc.relation.referencesB. Rahmati, A. A. D. Sarhan, W. J. Basirun, y W. A. B. W. Abas, «Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti6Al4V alloy», J. Alloys Compd., vol. 676, pp. 369-376, ago. 2016, doi: 10.1016/j.jallcom.2016.03.188.spa
dc.relation.referencesJ. Yang, Y. Song, K. Dong, y E.-H. Han, «Research progress on the corrosion behavior of titanium alloys», Corros. Rev., vol. 41, n.o 1, pp. 5-20, feb. 2023, doi: 10.1515/corrrev-2022-0031.spa
dc.relation.referencesC. Nico, T. Monteiro, y M. P. F. Graça, «Niobium oxides and niobates physical properties: Review and prospects», Prog. Mater. Sci., vol. 80, pp. 1-37, jul. 2016, doi: 10.1016/j.pmatsci.2016.02.001.spa
dc.relation.referencesJ. Hu, W. Lin, Q. Lv, C. Gao, y J. Tan, «Oxide formation mechanism of a corrosion-resistant CZ1 zirconium alloy», J. Mater. Sci. Technol., vol. 147, pp. 6-15, jun. 2023, doi: 10.1016/j.jmst.2022.12.002.spa
dc.relation.referencesT. Hagiwara, S. Hagihara, A. Handa, N. Sasagawa, R. Kawashima, y T. Sakiyama, «Pretreatment with citric acid or a mixture of nitric acid and citric acid to suppress egg white protein deposit formation on stainless steel surfaces and to ease its removal during cleaning», Food Control, vol. 53, pp. 35-40, jul. 2015, doi: 10.1016/j.foodcont.2014.12.018.spa
dc.relation.referencesN. Mazinanian, «Metal Release and Corrosion of Stainless Steel in Simulated Food Contact», 2016, Accedido: 31 de marzo de 2024. [En línea]. Disponible en: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191474spa
dc.relation.referencesP. Schmuki, «From Bacon to Barriers: A Review on the Passivity of Metals and Alloys», J. Solid State Electrochem., vol. 6, pp. 145-164, mar. 2002, doi: 10.1007/s100080100219.spa
dc.relation.references«The effect of weak acids on active corrosion rate in top-of-line corrosion - ScienceDirect». Accedido: 5 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0010938X24004487#bib12spa
dc.relation.references«Role Of Acetic Acid In CO2 Top Of The Line Corrosion Of Carbon Steel | NACE CORROSION | OnePetro». Accedido: 5 de octubre de 2024. [En línea]. Disponible en: https://onepetro.org/NACECORR/proceedings-abstract/CORR11/All-CORR11/119746spa
dc.relation.referencesM. H. Nazari y S. R. Allahkaram, «The effect of acetic acid on the CO2 corrosion of grade X70 steel», Mater. Des., vol. 31, n.o 9, pp. 4290-4295, oct. 2010, doi: 10.1016/j.matdes.2010.04.002.spa
dc.relation.referencesL. J. CárdenasFlechas et al., «Synthesis of nanostructured (Ti-Zr-Si)N coatings deposited on Ti6A14V alloy», Rev. Acad. Colomb. Cienc. Exactas Físicas Nat., vol. 45, n.o 175, pp. 570-581, jun. 2021, doi: 10.18257/raccefyn.1198.spa
dc.relation.referencesF. Estupiñan, C. Moreno, J. Olaya, y L. Ardila Tellez, «Wear Resistance of TiAlCrSiN Coatings Deposited by Means of the Co-Sputtering Technique», Lubricants, vol. 9, p. 64, jun. 2021, doi: 10.3390/lubricants9060064.spa
dc.relation.references«The Structural and Mechanical Properties of CrAlTiN-Si Nanostructured Coatings Deposited by the Means of High-Power Impulse Magnetron Sputtering».spa
dc.relation.referencesN. G. Yomayuza SIerra, «Resistencia a la corrosión a altas temperaturas de recubrimientos nanoestructurados de (Ti,Cr,Al,Si)N depositados con la técnica de cosputtering», Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2022. Accedido: 12 de junio de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/83935spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620.11223spa
dc.subject.lembCORROSION Y ANTICORROSIVOSspa
dc.subject.lembCorrosion and anti-corrosiveseng
dc.subject.lembMATERIALES RESISTENTES A LA CORROSIONspa
dc.subject.lembCorrosion resistant materialseng
dc.subject.lembINDUSTRIAS ALIMENTICIASspa
dc.subject.lembFood industry and tradeeng
dc.subject.lembPULVERIZACION CATODICA (METALIZACION)spa
dc.subject.lembCathode sputtering (plating process)eng
dc.subject.lembREDES CRISTALINASspa
dc.subject.lembCrystal latticeseng
dc.subject.lembDIFRACCION DE RAYOS Xspa
dc.subject.lembX-rays - diffractioneng
dc.subject.proposalRecubrimientos de alta entropíaspa
dc.subject.proposalResistencia a la corrosiónspa
dc.subject.proposalTiAlTaZrNbNspa
dc.subject.proposalHEAeng
dc.subject.proposalHiPIMSeng
dc.subject.proposalSputteringeng
dc.subject.proposalHigh entropy coatingeng
dc.subject.proposalCorrosion resistanceeng
dc.titleResistencia a la corrosión del recubrimiento TiAlTaZrNbN en acero AISI 304 con potencial aplicación en la industria de alimentosspa
dc.title.translatedCorrosion resistance of TiAlTaZrNbN coating on AISI 304 steel with potential application in the food industryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030673150.2025.pdf
Tamaño:
6.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: