Resistencia a la corrosión del recubrimiento TiAlTaZrNbN en acero AISI 304 con potencial aplicación en la industria de alimentos
dc.contributor.advisor | Olaya Floréz, Jhon Jairo | spa |
dc.contributor.advisor | Piamba Tulcán, Oscar Edwin | spa |
dc.contributor.author | Castañeda Beltran, Maria Camila | spa |
dc.date.accessioned | 2025-04-07T15:36:13Z | |
dc.date.available | 2025-04-07T15:36:13Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías a color, tablas | spa |
dc.description.abstract | En el presente estudio se investigan las propiedades estructurales y la resistencia a la corrosión del recubrimiento de alta entropía TiAlTaZrNbN, depositado sobre un sustrato de acero AISI 304, material comúnmente usado en la industria alimentaria. Se empleó la técnica de pulverización catódica con magnetrón de impulso de alta potencia (HiPIMS) para la deposición del recubrimiento. La caracterización del recubrimiento se realizó a través de diferentes métodos analíticos. La estructura cristalina y las fases presentes en el recubrimiento fueron determinadas por medio de la técnica de difracción de rayos X (XRD), mientras que la composición química se determinó por medio de la espectroscopía de energía dispersada (EDS). La morfología del recubrimiento se examinó utilizando microscopía electrónica de barrido (SEM), y la rugosidad de la superficie se evaluó a través de microscopía confocal. Por otro lado, se estudió el comportamiento del recubrimiento ante la corrosión en tres electrolitos a temperatura ambiente: solución de ácido acético, de ácido cítrico y agua de grifo, utilizando técnicas de polarización potenciodinámica (PDP) y espectroscopía de impedancia electroquímica (EIS). Los resultados indicaron que el recubrimiento TiAlTaZrNbN presenta una estructura densa y homogénea, con una composición equilibrada de los elementos constitutivos. La caracterización mediante XRD reveló la presencia de fases cristalinas FCC, que contribuyeron significativamente a su destacada resistencia a la corrosión. Además, el recubrimiento demostró un excelente comportamiento ante la corrosión en los electrolitos de ácido acético y ácido cítrico (simulando alimentos con pH ≤ 4.5), evidenciando una disminución considerable en la densidad de corriente (Icorr) y un desplazamiento hacia valores más positivos del potencial de corrosión (Ecorr). También se observó una resistencia a la polarización mayor en contraste con el sustrato sin recubrimiento. Estos resultados proporcionan una valiosa perspectiva sobre las propiedades del recubrimiento TiAlTaZrNbN y su potencial aplicación en entornos que simulan condiciones alimentarias, lo que puede contribuir significativamente a mejorar la durabilidad de componentes utilizados en el sector alimentario (Texto tomado de la fuente). | spa |
dc.description.abstract | The present study investigates the structural properties and corrosion resistance of the high-entropy coating TiAlTaZrNbN, deposited on a substrate of AISI 304 steel, a material widely used in the food industry. High-power impulse magnetron sputtering (HiPIMS) technique was used for coating deposition. The characterization of the coating was carried out through different analytical methods. The crystal structure and phases present in the coating were determined by X-ray diffraction (XRD), while the chemical composition was analyzed by dispersed energy spectroscopy (EDS). The coating’s morphology was examined using scanning electron microscopy (SEM), and surface roughness was evaluated through confocal microscopy. Furthermore, the coating’s corrosion behavior was evaluated in three electrolytes at ambient temperature: acetic acid solution, citric acid and tap water, using potentiodynamic polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS) techniques. The results indicated that the TiAlTaZrNbN coating has a dense and homogeneous structure with well-balanced composition of its constituent elements. XRD characterization identified the presence of FCC crystalline phases, which significantly contributed to its outstanding corrosion resistance. In addition, the coating demonstrated excellent corrosion behavior on acetic acid and citric acid electrolytes, evidenced by a notable reduction in current density (Icorr) and a shift towards more positive corrosion potential (Ecorr) values. Additionally, the coating’s polarization resistance was significantly higher than that of the substrate without coating. These findings provide valuable insights into the properties of TiAlTaZrNbN coating and its potential application in environments simulating food conditions, which could substantially enhance the durability of components used in the food sector. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería - Materiales y procesos | spa |
dc.description.researcharea | Ingeniería de Superficies | spa |
dc.format.extent | xviii, 134 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87862 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | F. Abdi, H. Aghajani, y S. K. Asl, «Evaluation of the corrosion resistance of AlCoCrFeMnNi high entropy alloy hard coating applied by electro spark deposition», Surf. Coat. Technol., vol. 454, p. 129156, feb. 2023, doi: 10.1016/j.surfcoat.2022.129156. | spa |
dc.relation.references | H. Zhou et al., «Interstitial boron-doped FeCoNiCr high entropy alloys with excellent electromagnetic-wave absorption and resistance to harsh environments», J. Alloys Compd., vol. 959, p. 170579, oct. 2023, doi: 10.1016/j.jallcom.2023.170579. | spa |
dc.relation.references | V. Braic, A. Vladescu, M. Balaceanu, C. R. Luculescu, y M. Braic, «Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings», Surf. Coat. Technol., vol. 211, pp. 117-121, oct. 2012, doi: 10.1016/j.surfcoat.2011.09.033. | spa |
dc.relation.references | S. K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, y J.-W. Lee, «Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics», J. Alloys Compd., vol. 873, p. 159605, ago. 2021, doi: 10.1016/j.jallcom.2021.159605. | spa |
dc.relation.references | A. D. Pogrebnjak, V. M. Beresnev, K. V. Smyrnova, Ya. O. Kravchenko, P. V. Zukowski, y G. G. Bondarenko, «The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings», Mater. Lett., vol. 211, pp. 316-318, ene. 2018, doi: 10.1016/j.matlet.2017.09.121. | spa |
dc.relation.references | M. Karimzadeh, M. Malekan, H. Mirzadeh, L. Li, y N. Saini, «Effects of titanium addition on the microstructure and mechanical properties of quaternary CoCrFeNi high entropy alloy», Mater. Sci. Eng. A, vol. 856, p. 143971, oct. 2022, doi: 10.1016/j.msea.2022.143971. | spa |
dc.relation.references | «Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys - ScienceDirect». Accedido: 7 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S092150931400999X | spa |
dc.relation.references | P. E. Hovsepian et al., «Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components», J. Alloys Compd., vol. 746, pp. 583-593, may 2018, doi: 10.1016/j.jallcom.2018.02.312. | spa |
dc.relation.references | R. Ananthakumar, B. Subramanian, A. Kobayashi, y M. Jayachandran, «Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings», Ceram. Int., vol. 38, n.o 1, pp. 477-485, ene. 2012, doi: 10.1016/j.ceramint.2011.07.030. | spa |
dc.relation.references | A. R. Shugurov y M. S. Kazachenok, «Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings», Surf. Coat. Technol., vol. 353, pp. 254-262, nov. 2018, doi: 10.1016/j.surfcoat.2018.09.001. | spa |
dc.relation.references | M.-R. Alhafian et al., «Comparison on the structural, mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation», Surf. Coat. Technol., vol. 423, p. 127529, oct. 2021, doi: 10.1016/j.surfcoat.2021.127529. | spa |
dc.relation.references | A. Mendez et al., «Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS», Surf. Coat. Technol., vol. 422, p. 127513, sep. 2021, doi: 10.1016/j.surfcoat.2021.127513. | spa |
dc.relation.references | P. Mohamadian Samim, A. Fattah-Alhosseini, H. Elmkhah, y O. Imantalab, «Structure and corrosion behavior of ZrN/CrN nano-multilayer coating deposited on AISI 304 stainless steel by CAE-PVD technique», J. Asian Ceram. Soc., vol. 8, n.o 2, pp. 460-469, abr. 2020, doi: 10.1080/21870764.2020.1750102. | spa |
dc.relation.references | «Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings - ScienceDirect». Accedido: 31 de marzo de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1359645419303313 | spa |
dc.relation.references | C. Hernández-Navarro, L. P. Rivera, M. Flores-Martínez, E. Camps, S. Muhl, y E. García, «Tribological study of a mono and multilayer coating of TaZrN/TaZr produced by magnetron sputtering on AISI-316L stainless steel», Tribol. Int., vol. 131, pp. 288-298, mar. 2019, doi: 10.1016/j.triboint.2018.10.034. | spa |
dc.relation.references | R. Shu et al., «Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films», Surf. Coat. Technol., vol. 404, p. 126485, dic. 2020, doi: 10.1016/j.surfcoat.2020.126485. | spa |
dc.relation.references | A. Kahyarian, A. Schumaker, B. Brown, y S. Nesic, «Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction», Electrochimica Acta, vol. 258, pp. 639-652, dic. 2017, doi: 10.1016/j.electacta.2017.11.109. | spa |
dc.relation.references | P. Li, M. Du, J. Hou, Y. Zhang, L. Fan, y C. Lin, «Corrosion Behavior of 316L Stainless Steel in Oilfield Produced Water in Presence of CO2 and Acetic Acid», Int. J. Electrochem. Sci., vol. 15, n.o 5, pp. 4287-4307, may 2020, doi: 10.20964/2020.05.23. | spa |
dc.relation.references | P. Zhang et al., «Corrosion Behavior of Aluminum in Dilute Acetic Acid Solution Simulating Cooling Water in HVDC Transmission», Int. J. Electrochem. Sci., vol. 17, n.o 3, p. 220324, mar. 2022, doi: 10.20964/2022.03.05. | spa |
dc.relation.references | K. Zuñiga-Diaz, C. D. Arrieta-Gonzalez, J. Porcayo-Calderon, J. G. Gonzalez-Rodriguez, M. Casales-Diaz, y L. Martinez-Gomez, «Electrochemical Behavior of Austenitic Stainless Steels Exposed to Acetic Acid Solution», Int. J. Electrochem. Sci., vol. 15, n.o 2, pp. 1242-1263, feb. 2020, doi: 10.20964/2020.02.13. | spa |
dc.relation.references | N. Mazinanian, G. Herting, I. Odnevall, y Y. Hedberg, «Metal Release and Corrosion Resistance of Different Stainless Steel Grades in Simulated Food Contact», Corros. -Houst. Tx-, vol. 72, pp. 775-790, mar. 2016, doi: 10.5006/2057. | spa |
dc.relation.references | X. Li y S. Deng, «Ce(SO4)2 as an efficient corrosion inhibitor for cold rolled steel in citric acid solution», J. Taiwan Inst. Chem. Eng., vol. 122, pp. 273-283, may 2021, doi: 10.1016/j.jtice.2021.04.057. | spa |
dc.relation.references | M. Shahidi y M. R. Gholamhosseinzadeh, «Electrochemical evaluation of AA6061 aluminum alloy corrosion in citric acid solution without and with chloride ions», J. Electroanal. Chem., vol. 757, pp. 8-17, nov. 2015, doi: 10.1016/j.jelechem.2015.09.003. | spa |
dc.relation.references | Y.-S. Choi, J.-J. Shim, y J.-G. Kim, «Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water», J. Alloys Compd., vol. 391, n.o 1, pp. 162-169, abr. 2005, doi: 10.1016/j.jallcom.2004.07.081. | spa |
dc.relation.references | G.-M. Chow, I. A. Ovid’ko, y T. Tsakalakos, Nanostructured Films and Coatings. Springer Science & Business Media, 2012. | spa |
dc.relation.references | M. Aliofkhazraei, Nanocoatings: Size Effect in Nanostructured Films. Springer Science & Business Media, 2011. | spa |
dc.relation.references | A. Cavaleiro y J. T. de Hosson, Nanostructured Coatings. Springer Science & Business Media, 2007. | spa |
dc.relation.references | S. Bose, «Chapter 6 - OXIDATION- AND CORROSION-RESISTANT COATINGS», en High Temperature Coatings, S. Bose, Ed., Burlington: Butterworth-Heinemann, 2007, pp. 71-154. doi: 10.1016/B978-075068252-7/50007-X. | spa |
dc.relation.references | «Hard Coating - an overview | ScienceDirect Topics». Accedido: 17 de junio de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/topics/materials-science/hard-coating | spa |
dc.relation.references | P. Gao, Q. Guo, Y. Xing, y Y. Guo, «Structural, Mechanical, and Tribological Properties of Hard Coatings», Coatings, vol. 13, n.o 2, Art. n.o 2, feb. 2023, doi: 10.3390/coatings13020325. | spa |
dc.relation.references | J. Chen et al., «Microstructure and tribological properties of CrAlTiN coating deposited via multi-arc ion plating», Mater. Today Commun., vol. 30, p. 103136, mar. 2022, doi: 10.1016/j.mtcomm.2022.103136. | spa |
dc.relation.references | I. Hamidah et al., «Corrosion study of AISI 304 on KOH, NaOH, and NaCl solution as an electrode on electrolysis process», J. Eng. Sci. Technol., vol. 13, pp. 1345-1351, may 2018. | spa |
dc.relation.references | A. K. Bisht, R. O. Vaishya, R. S. Walia, y G. Singh, «Nitrides ceramic coatings for tribological applications: A journey from binary to high-entropy compositions», Ceram. Int., vol. 50, n.o 6, pp. 8553-8585, mar. 2024, doi: 10.1016/j.ceramint.2023.12.245. | spa |
dc.relation.references | J. Deng, F. Wu, Y. Lian, Y. Xing, y S. Li, «Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings», Int. J. Refract. Met. Hard Mater., vol. 35, pp. 10-16, nov. 2012, doi: 10.1016/j.ijrmhm.2012.03.002. | spa |
dc.relation.references | «Effect of Si-addition on structure and thermal stability of Ti-Al-N coatings - ScienceDirect». Accedido: 18 de junio de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0925838822018746?via%3Dihub | spa |
dc.relation.references | M. Diserens, J. Patscheider, y F. Lévy, «Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films», Surf. Coat. Technol., vol. 120-121, pp. 158-165, nov. 1999, doi: 10.1016/S0257-8972(99)00481-8. | spa |
dc.relation.references | «Coatings | Free Full-Text | Structure and Properties of CrN/TiN Multi-Layer Coatings Obtained by Vacuum-Arc Plasma-Assisted Deposition Method». Accedido: 18 de junio de 2024. [En línea]. Disponible en: https://www.mdpi.com/2079-6412/13/2/351 | spa |
dc.relation.references | L. Toth, Transition Metal Carbides and Nitrides. Elsevier, 2014. | spa |
dc.relation.references | M.-H. Tsai y J.-W. Yeh, «High-Entropy Alloys: A Critical Review», Mater. Res. Lett., vol. 2, n.o 3, pp. 107-123, jul. 2014, doi: 10.1080/21663831.2014.912690. | spa |
dc.relation.references | S. Kumar, «Comprehensive review on high entropy alloy-based coating», Surf. Coat. Technol., vol. 477, p. 130327, feb. 2024, doi: 10.1016/j.surfcoat.2023.130327. | spa |
dc.relation.references | S. Shuang, Z. Y. Ding, D. Chung, S. Q. Shi, y Y. Yang, «Corrosion resistant nanostructured eutectic high entropy alloy», Corros. Sci., vol. 164, p. 108315, mar. 2020, doi: 10.1016/j.corsci.2019.108315. | spa |
dc.relation.references | «A critical review of high entropy alloys and related concepts - ScienceDirect». Accedido: 15 de septiembre de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1359645416306759 | spa |
dc.relation.references | A. Rashidy Ahmady, A. Ekhlasi, A. Nouri, M. haghbin nazarpak, P. Gong, y A. Solouk, «High entropy alloy coatings for biomedical applications: A review», sep. 2022. | spa |
dc.relation.references | S.-Y. Lin, S.-Y. Chang, Y.-C. Huang, F.-S. Shieu, y J.-W. Yeh, «Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias», Surf. Coat. Technol., vol. 206, n.o 24, pp. 5096-5102, ago. 2012, doi: 10.1016/j.surfcoat.2012.06.035. | spa |
dc.relation.references | A. Aliyu y C. Srivastava, «Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings», Materialia, vol. 5, p. 100249, mar. 2019, doi: 10.1016/j.mtla.2019.100249. | spa |
dc.relation.references | A. Meghwal, A. Anupam, B. S. Murty, C. C. Berndt, R. S. Kottada, y A. S. M. Ang, «Thermal Spray High-Entropy Alloy Coatings: A Review», J. Therm. Spray Technol., vol. 29, n.o 5, pp. 857-893, jun. 2020, doi: 10.1007/s11666-020-01047-0. | spa |
dc.relation.references | L. Dobrzanski, L. K, D. Pakuła, y J. Mikula, «Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques», Arch. Mater. Sci. Eng., vol. 28, ene. 2007. | spa |
dc.relation.references | J.-W. Yeh, «Alloy Design Strategies and Future Trends in High-Entropy Alloys», JOM, vol. 65, dic. 2013, doi: 10.1007/s11837-013-0761-6. | spa |
dc.relation.references | E. Rocha-Rangel, J. A. Castillo-Robles, J. Rodríguez-García, y A.-M. Eddie Nahúm, «Manufactura y caracterización de aleaciones de alta entropía», Rev. InGenio, vol. 5, pp. 31-39, jul. 2022, doi: 10.18779/ingenio.v5i2.519. | spa |
dc.relation.references | D. J. M. King, S. C. Middleburgh, A. G. McGregor, y M. B. Cortie, «Predicting the formation and stability of single phase high-entropy alloys», Acta Mater., vol. 104, pp. 172-179, feb. 2016, doi: 10.1016/j.actamat.2015.11.040. | spa |
dc.relation.references | N. Nadzri, A. Khemar, J. A Wahab, y M. M. Mahat, «High Entropy Alloy Towards Functional Materials Application: A Review», J. Phys. Conf. Ser., vol. 2169, p. 012007, ene. 2022, doi: 10.1088/1742-6596/2169/1/012007. | spa |
dc.relation.references | A. Baptista, J. Porteiro, J. Míguez, y G. Pinto, «Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands», Coatings, vol. 8, p. 402, nov. 2018, doi: 10.3390/coatings8110402. | spa |
dc.relation.references | F. A. P. Scacchetti, E. Pinto, y G. M. B. Soares, «Functionalization and characterization of cotton with phase change materials and thyme oil encapsulated in beta-cyclodextrins», Prog. Org. Coat., vol. 107, pp. 64-74, jun. 2017, doi: 10.1016/j.porgcoat.2017.03.015. | spa |
dc.relation.references | A. Inspektor y P. A. Salvador, «Architecture of PVD coatings for metalcutting applications: A review», Surf. Coat. Technol., vol. 257, pp. 138-153, oct. 2014, doi: 10.1016/j.surfcoat.2014.08.068. | spa |
dc.relation.references | D. M. Mattox, «Chapter 4 - Physical Sputtering and Sputter Deposition», en The Foundations of Vacuum Coating Technology (Second Edition), D. M. Mattox, Ed., William Andrew Publishing, 2018, pp. 87-149. doi: 10.1016/B978-0-12-813084-1.00004-2. | spa |
dc.relation.references | H. C. Barshilia, A. Ananth, J. Khan, y G. Srinivas, «Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates», Vacuum, vol. 86, n.o 8, pp. 1165-1173, feb. 2012, doi: 10.1016/j.vacuum.2011.10.028. | spa |
dc.relation.references | A. Ehiasarian, «High-power impulse magnetron sputtering and its applications», Pure Appl. Chem. - PURE APPL CHEM, vol. 82, pp. 1247-1258, ene. 2010, doi: 10.1351/PAC-CON-09-10-43. | spa |
dc.relation.references | D. Lundin, «The HiPIMS Process», 2010, Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56748 | spa |
dc.relation.references | A. P. Ehiasarian, R. New, W.-D. Münz, L. Hultman, U. Helmersson, y V. Kouznetsov, «Influence of high power densities on the composition of pulsed magnetron plasmas», Vacuum, vol. 65, n.o 2, pp. 147-154, abr. 2002, doi: 10.1016/S0042-207X(01)00475-4. | spa |
dc.relation.references | «On the film density using high power impulse magnetron sputtering - ScienceDirect». Accedido: 23 de junio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0257897210005633 | spa |
dc.relation.references | N. F. Lopes Dias, A. L. Meijer, D. Biermann, y W. Tillmann, «Structure and mechanical properties of TiAlTaN thin films deposited by dcMS, HiPIMS, and hybrid dcMS/HiPIMS», Surf. Coat. Technol., vol. 487, p. 130987, jul. 2024, doi: 10.1016/j.surfcoat.2024.130987. | spa |
dc.relation.references | J. Gudmundsson, «Ionized physical vapor deposition (IPVD): Magnetron sputtering discharges», J. Phys. Conf. Ser., vol. 100, p. 082002, mar. 2008, doi: 10.1088/1742-6596/100/8/082002. | spa |
dc.relation.references | «Fundamentals Of Thin Film Growth». Accedido: 17 de octubre de 2024. [En línea]. Disponible en: https://www.materion.com/en/about-materion/news/coating-materials-news/fundamentals-of-thin-film-growth | spa |
dc.relation.references | A. Anders, «A structure zone diagram including plasma-based deposition and ion etching», Thin Solid Films, vol. 518, n.o 15, pp. 4087-4090, may 2010, doi: 10.1016/j.tsf.2009.10.145. | spa |
dc.relation.references | X. Pardell, «El microscopio electrónico de barrido (SEM) - Apuntes de Electromedicina Xavier Pardell». Accedido: 14 de septiembre de 2024. [En línea]. Disponible en: https://www.pardell.es/microscopia-electronica-de-barrido.html | spa |
dc.relation.references | B. Ohl, «What is Scanning Electron Microscopy? (How it Works, Applications, and Limitations)», Materials Science & Engineering Student. Accedido: 27 de junio de 2024. [En línea]. Disponible en: https://msestudent.com/what-is-scanning-electron-microscopy-how-it-works-applications-and-limitations/ | spa |
dc.relation.references | «Energy-Dispersive X-ray Spectroscopy (EDS)», Chemistry LibreTexts. Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Spectroscopy/Energy-Dispersive_X-ray_Spectroscopy_(EDS) | spa |
dc.relation.references | M. Zepeda, «Difracción de Rayos X», Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://www.academia.edu/37651012/Difracci%C3%B3n_de_Rayos_X | spa |
dc.relation.references | M. E. Aparicio Ceja, G. G. Carbajal Arizaga, M. E. Aparicio Ceja, y G. G. Carbajal Arizaga, «Utilidad de la difracción de rayos x en las nanociencias», Mundo Nano Rev. Interdiscip. En Nanociencias Nanotecnología, vol. 3, n.o 2, pp. 62-72, dic. 2010. | spa |
dc.relation.references | «Difracción de rayos X (XRD): descripción general | Malvern Panalytical». Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://www.malvernpanalytical.com/es/products/technology/xray-analysis/x-ray-diffraction | spa |
dc.relation.references | «X-ray diffraction (XRD) basics and application», Chemistry LibreTexts. Accedido: 24 de junio de 2024. [En línea]. Disponible en:https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Diffraction_Techniques/X-ray_diffraction_(XRD)_basics_and_application | spa |
dc.relation.references | «Difracción de Rayos X - Introducción FUNDAMENTOS 1 Espectro electromagnético y Rayos X. 1 Estado - Studocu». Accedido: 14 de septiembre de 2024. [En línea]. Disponible en: https://www.studocu.com/co/document/universidad-pedagogica-y-tecnologica-de-colombia/quimica/difraccion-de-rayos-x/22167019 | spa |
dc.relation.references | «(PDF) Principios y aplicaciones de la microscopia láser confocal en la investigación biomédica». Accedido: 9 de julio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/312498787_Principios_y_aplicaciones_de_la_microscopia_laser_confocal_en_la_investigacion_biomedica | spa |
dc.relation.references | javierpn1@gmail.com, « Microscopio Confocal de Barrido Láser », Microscopio Online. Accedido: 9 de julio de 2024. [En línea]. Disponible en: https://microscopioonline.com/tipos-de-microscopio/segun-iluminacion/opticos/de-fluorescencias/confocal-de-barrido-laser/ | spa |
dc.relation.references | J.-A. Salazar-Jiménez, «Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica)», Rev. Tecnol. En Marcha, vol. 28, p. 127, sep. 2015, doi: 10.18845/tm.v28i3.2417. | spa |
dc.relation.references | D.-H. Xia et al., «Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review», J. Mater. Sci. Technol., vol. 112, pp. 151-183, jun. 2022, doi: 10.1016/j.jmst.2021.11.004. | spa |
dc.relation.references | A. Berradja, «Electrochemical Techniques for Corrosion and Tribocorrosion Monitoring: Methods for the Assessment of Corrosion Rates», 2019. doi: 10.5772/intechopen.86743. | spa |
dc.relation.references | P. Marcus, Ed., Corrosion Mechanisms in Theory and Practice, 3.a ed. Boca Raton: CRC Press, 2011. doi: 10.1201/b11020. | spa |
dc.relation.references | «Corrosion testing: what is potentiodynamic polarization? | Surface Technology Journal», KosarTech. Accedido: 24 de junio de 2024. [En línea]. Disponible en: https://kosartech.com/en/journal/posts/Corrosion-testing--what-is-potentiodynamic-polarization- | spa |
dc.relation.references | «Electrochemical Corrosion Measurements-Galvanic Corrosion Gamry Instruments». Accedido: 25 de junio de 2024. [En línea]. Disponible en: https://www.gamry.com/application-notes/corrosion-coatings/basics-of-electrochemical-corrosion-measurements/ | spa |
dc.relation.references | E. McCafferty, «Validation of corrosion rates measured by the Tafel extrapolation method», Corros. Sci., vol. 47, n.o 12, pp. 3202-3215, dic. 2005, doi: 10.1016/j.corsci.2005.05.046. | spa |
dc.relation.references | Y. González, Y. Pineda, y E. Vera -Rodríguez, «MEDICIONES EIS PARA MONITOREO DE LA CORROSIÓN BAJO CONDICIONES DE FLUJO MULTIFÁSICO», feb. 2009. | spa |
dc.relation.references | «Basics of EIS: Electrochemical Research-Impedance Gamry Instruments». Accedido: 25 de junio de 2024. [En línea]. Disponible en: https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/ | spa |
dc.relation.references | N. Mazinanian, I. Odnevall Wallinder, y Y. Hedberg, «Comparison of the influence of citric acid and acetic acid as simulant for acidic food on the release of alloy constituents from stainless steel AISI 201», J. Food Eng., vol. 145, pp. 51-63, ene. 2015, doi: 10.1016/j.jfoodeng.2014.08.006. | spa |
dc.relation.references | C. G. Dariva, A. F. Galio, C. G. Dariva, y A. F. Galio, «Corrosion Inhibitors – Principles, Mechanisms and Applications», en Developments in Corrosion Protection, IntechOpen, 2014. doi: 10.5772/57255. | spa |
dc.relation.references | W. Yang, J. Shen, Z. Wang, G. Ma, P. Ke, y A. Wang, «Mechanical and electrochemical properties of (MoNbTaTiZr)1-xNx high-entropy nitride coatings», J. Mater. Sci. Technol., vol. 208, pp. 78-91, feb. 2025, doi: 10.1016/j.jmst.2024.04.062. | spa |
dc.relation.references | S. Sreehari, N. S. George, L. M. Jose, S. Nandakumar, R. T. Subramaniam, y A. Aravind, «A review on 2D transition metal nitrides: Structural and morphological impacts on energy storage and photocatalytic applications», J. Alloys Compd., vol. 950, p. 169888, jul. 2023, doi: 10.1016/j.jallcom.2023.169888. | spa |
dc.relation.references | A. L. Greenaway et al., «Ternary Nitride Materials: Fundamentals and Emerging Device Applications», Annu. Rev. Mater. Res., vol. 51, n.o 1, pp. 591-618, jul. 2021, doi: 10.1146/annurev-matsci-080819-012444. | spa |
dc.relation.references | Y. Wang et al., «Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature», Appl. Surf. Sci., vol. 574, p. 151677, feb. 2022, doi: 10.1016/j.apsusc.2021.151677. | spa |
dc.relation.references | B. Ren, S. Q. Yan, R. F. Zhao, y Z. X. Liu, «Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering», Surf. Coat. Technol., vol. 235, pp. 764-772, nov. 2013, doi: 10.1016/j.surfcoat.2013.08.064. | spa |
dc.relation.references | «Sputtering Yields». Accedido: 26 de junio de 2024. [En línea]. Disponible en: https://www.angstromsciences.com/sputtering-yields | spa |
dc.relation.references | «(PDF) Fundamentals of Plasma Sputtering». Accedido: 26 de junio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/283490139_Fundamentals_of_Plasma_Sputtering | spa |
dc.relation.references | Q. Huaizhi et al., «Effect of heat treatment time on the microstructure and properties of FeCoNiCuTi high-entropy alloy», J. Mater. Res. Technol., vol. 24, pp. 4510-4516, may 2023, doi: 10.1016/j.jmrt.2023.04.078. | spa |
dc.relation.references | R. Shu et al., «Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings», Surf. Coat. Technol., vol. 389, p. 125651, may 2020, doi: 10.1016/j.surfcoat.2020.125651. | spa |
dc.relation.references | C. Tian, H. Cai, y Y. Xue, «Effect of Working Pressure on Tribological Properties of Ce-Ti/MoS2 Coatings Using Magnetron Sputter», Coatings, vol. 12, n.o 10, Art. n.o 10, oct. 2022, doi: 10.3390/coatings12101576. | spa |
dc.relation.references | A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, y J. Kovač, «Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering», Surf. Coat. Technol., vol. 241, pp. 105-111, feb. 2014, doi: 10.1016/j.surfcoat.2013.10.050. | spa |
dc.relation.references | «Multi-technique study of corrosion resistant CrN/Cr/CrN and CrN : C coatings - ScienceDirect». Accedido: 3 de julio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S025789720501340X | spa |
dc.relation.references | P. Cui et al., «Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films», J. Alloys Compd., vol. 834, p. 155063, sep. 2020, doi: 10.1016/j.jallcom.2020.155063. | spa |
dc.relation.references | K.-H. Cheng, C.-H. Lai, S.-J. Lin, y J.-W. Yeh, «Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering», Thin Solid Films, vol. 519, n.o 10, pp. 3185-3190, mar. 2011, doi: 10.1016/j.tsf.2010.11.034. | spa |
dc.relation.references | B. Ren, Z. Shen, y Z. Liu, «Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering», J. Alloys Compd., vol. 560, pp. 171-176, may 2013, doi: 10.1016/j.jallcom.2013.01.148. | spa |
dc.relation.references | J.-W. Yeh, «Recent progress in high-entropy alloys», Eur. J. Control - EUR J CONTROL, vol. 31, pp. 633-648, dic. 2006, doi: 10.3166/acsm.31.633-648. | spa |
dc.relation.references | «(PDF) Primeras etapas de corrosión de metales en agua de mar AISI». Accedido: 3 de julio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/305721545_Primeras_etapas_de_corrosion_de_metales_en_agua_de_mar_AISI | spa |
dc.relation.references | D. M. Marulanda Cardona, «Multicapas nanoestructuradas de Cr/CrNx como barrera de difusión entre Cu y Si», 2011, Accedido: 3 de julio de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/8240 | spa |
dc.relation.references | L. V. Ramos Adame, «Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering», Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2023. Accedido: 31 de marzo de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/85347 | spa |
dc.relation.references | «Nitriding high entropy alloy films: Opportunities and challenges - ScienceDirect». Accedido: 7 de julio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0257897223009325 | spa |
dc.relation.references | M. C. Rossi, P. A. Bazaglia Kuroda, L. Solano de Almeida, L. S. Rossino, y C. R. Moreira Afonso, «A detailed analysis of the structural, morphological characteristics and micro-abrasive wear behavior of nitrided layer produced in α (CP–Ti), α+β (Ti–6Al–4V), and β (TNZ33) type Ti alloys», J. Mater. Res. Technol., vol. 27, pp. 2399-2412, nov. 2023, doi: 10.1016/j.jmrt.2023.10.109. | spa |
dc.relation.references | E. Mohammadpour, M. Altarawneh, J. Al-Nu’airat, Z.-T. Jiang, N. Mondinos, y B. Z. Dlugogorski, «Thermo-mechanical properties of cubic titanium nitride», Mol. Simul., vol. 44, n.o 5, pp. 415-423, mar. 2018, doi: 10.1080/08927022.2017.1393810. | spa |
dc.relation.references | «In-situ synthesis of dual-phase nitrides and multiple strengthening mechanisms in FeCoCrNiAl0.5 high entropy matrix composite coatings by laser cladding and plasma nitriding - ScienceDirect». Accedido: 6 de julio de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0925838824009873 | spa |
dc.relation.references | «Heats of Formation of Niobium Nitride, Tantalum Nitride and Zirconium Nitride from Combustion Calorimetry | Journal of the American Chemical Society». Accedido: 7 de julio de 2024. [En línea]. Disponible en: https://pubs.acs.org/doi/pdf/10.1021/ja01595a007 | spa |
dc.relation.references | M. A. Tit, O. S. Yulmetova, V. D. Andreeva, A. N. Sisyukov, y R. F. Yulmetova, «Application of Niobium Nitride Thin Films for Improvement of Performance Characteristics of Cryogenic Gyroscope», en 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), ene. 2021, pp. 1232-1235. doi: 10.1109/ElConRus51938.2021.9396714. | spa |
dc.relation.references | Y. Xu, G. Li, y Y. Xia, «Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS», Appl. Surf. Sci., vol. 523, p. 146529, sep. 2020, doi: 10.1016/j.apsusc.2020.146529. | spa |
dc.relation.references | B.-S. Lou, R.-Z. Lin, C.-L. Li, y J.-W. Lee, «Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition», Surf. Coat. Technol., vol. 483, p. 130772, may 2024, doi: 10.1016/j.surfcoat.2024.130772. | spa |
dc.relation.references | C.-H. Lai, S.-J. Lin, J.-W. Yeh, y S.-Y. Chang, «Preparation and characterization of AlCrTaTiZr multi-element nitride coatings», Surf. Coat. Technol., vol. 201, n.o 6, pp. 3275-3280, dic. 2006, doi: 10.1016/j.surfcoat.2006.06.048. | spa |
dc.relation.references | M. Zhang, X. Zhou, X. Yu, y J. Li, «Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding», Surf. Coat. Technol., vol. 311, pp. 321-329, feb. 2017, doi: 10.1016/j.surfcoat.2017.01.012. | spa |
dc.relation.references | E. Kusano, «Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review», Appl. Sci. Converg. Technol., vol. 28, n.o 6, pp. 179-185, nov. 2019, doi: 10.5757/ASCT.2019.28.6.179. | spa |
dc.relation.references | A. Kumar, G. Malik, R. Chandra, y R. S. Mulik, «Sputter-grown hierarchical nitride (TiN & h-BN) coatings on BN nanoplates reinforced Al7079 alloy with improved corrosion resistance», Surf. Coat. Technol., vol. 432, p. 128061, feb. 2022, doi: 10.1016/j.surfcoat.2021.128061. | spa |
dc.relation.references | V. S. Rao y L. K. Singhal, «Corrosion Behavior of Cr-Mn-Ni Stainless Steel in Acetic Acid Solution», Accedido: 22 de julio de 2024. [En línea]. Disponible en: https://dx.doi.org/10.5006/1.3479954 | spa |
dc.relation.references | F. Mohammadi, T. Nickchi, M. M. Attar, y A. Alfantazi, «EIS study of potentiostatically formed passive film on 304 stainless steel», Electrochimica Acta, vol. 56, n.o 24, pp. 8727-8733, oct. 2011, doi: 10.1016/j.electacta.2011.07.072. | spa |
dc.relation.references | M. J. K. Lodhi, K. M. Deen, y W. Haider, «Corrosion behavior of additively manufactured 316L stainless steel in acidic media», Materialia, vol. 2, pp. 111-121, oct. 2018, doi: 10.1016/j.mtla.2018.06.015. | spa |
dc.relation.references | «Rapid Electrochemical Assessment of Paint (REAP) Gamry Instruments». Accedido: 15 de julio de 2024. [En línea]. Disponible en: https://www.gamry.com/application-notes/corrosion-coatings/rapid-electrochemical-assessment-of-paint/ | spa |
dc.relation.references | H. Bayramoglu y A. Peksoz, «Electronic energy levels and electrochemical properties of co-electrodeposited CdSe thin films», Mater. Sci. Semicond. Process., vol. 90, pp. 13-19, feb. 2019, doi: 10.1016/j.mssp.2018.09.021. | spa |
dc.relation.references | C. Liu, Q. Bi, A. Leyland, y A. Matthews, «An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour», Corros. Sci., vol. 45, n.o 6, pp. 1257-1273, jun. 2003, doi: 10.1016/S0010-938X(02)00214-7. | spa |
dc.relation.references | «(PDF) Electrochemical comparison of SAN/PANI/FLG and 2 ZnO/GO coated cast iron subject to corrosive environments». Accedido: 20 de julio de 2024. [En línea]. Disponible en: https://www.researchgate.net/publication/328828586_Electrochemical_comparison_of_SANPANIFLG_and_2_ZnOGO_coated_cast_iron_subject_to_corrosive_environments | spa |
dc.relation.references | J. C. BERRÍOS, «▷ Propiedades dieléctricas de los materiales aislantes (fórmula y constante) | TELCOM® 2024», TELCOM: Aprenda ingeniería eléctrica y electrónica (gratis). Accedido: 20 de julio de 2024. [En línea]. Disponible en: https://telcomplus.org/propiedades-dielectricas-del-aislamiento/ | spa |
dc.relation.references | «Corrosion and electrochemical evaluation of an Al–Si–Cu aluminum alloy in ethanol solutions», Corros. Sci., vol. 72, pp. 73-81, jul. 2013, doi: 10.1016/j.corsci.2013.03.009. | spa |
dc.relation.references | «Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron - ScienceDirect». Accedido: 20 de julio de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0300944011004140?via%3Dihub | spa |
dc.relation.references | A. González-Hernández, A. B. Morales-Cepeda, M. Flores, J. C. Caicedo, W. Aperador, y C. Amaya, «Electrochemical Properties of TiWN/TiWC Multilayer Coatings Deposited by RF-Magnetron Sputtering on AISI 1060», Coatings, vol. 11, n.o 7, Art. n.o 7, jul. 2021, doi: 10.3390/coatings11070797. | spa |
dc.relation.references | S. K. Singh y A. K. Mukherjee, «Kinetics of Mild Steel Corrosion in Aqueous Acetic Acid Solutions», J. Mater. Sci. Technol., vol. 26, n.o 3, pp. 264-269, mar. 2010, doi: 10.1016/S1005-0302(10)60044-8. | spa |
dc.relation.references | P. Ju, Y. Zuo, J. Tang, Y. Tang, y Z. Han, «The characteristics of a Pd–Ni/Pd–Cu double coating on 316L stainless steel and the corrosion resistance in stirred boiling acetic and formic acids mixture», Mater. Chem. Phys., vol. 144, n.o 3, pp. 263-271, abr. 2014, doi: 10.1016/j.matchemphys.2013.12.024. | spa |
dc.relation.references | S. An, S. Zhang, W. Liu, H. Fang, M. Zhang, y Y. Yu, «Dealloying behavior of Mn–30Cu alloy in acetic acid solution», Corros. Sci., vol. 75, pp. 256-261, oct. 2013, doi: 10.1016/j.corsci.2013.06.008. | spa |
dc.relation.references | M. Moreno Amado, «Resistencia a la corrosión y al desgaste de recubrimientos nanoestructurados de Zirconia (ZrO2) – Plata (Ag) y/o Alúmina (Al2O3) obtenidos con técnica de “Sputtering” reactivo con magnetrón desbalanceado», jun. 2019, Accedido: 25 de julio de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/78428 | spa |
dc.relation.references | A. Obeydavi, A. Shafyei, A. Rezaeian, P. Kameli, y J.-W. Lee, «Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering», J. Non-Cryst. Solids, vol. 527, p. 119718, ene. 2020, doi: 10.1016/j.jnoncrysol.2019.119718. | spa |
dc.relation.references | D. Rodriguez, A. F. R. Garcés, y A. del S. A. Consuegra, «Extracción de pectina a partir de la hidrólisis ácida del cacao (Theobroma Cacao L.) y su aplicación en la obtención de biopelículas», Rev. Mutis, vol. 13, n.o 1, Art. n.o 1, ene. 2023, doi: 10.21789/22561498.1885. | spa |
dc.relation.references | S. B. Anoraga, R. Shamsudin, M. H. Hamzah, S. Sharif, A. D. Saputro, y M. S. M. Basri, «Optimization of subcritical water extraction for pectin extraction from cocoa pod husks using the response surface methodology», Food Chem., vol. 459, p. 140355, nov. 2024, doi: 10.1016/j.foodchem.2024.140355. | spa |
dc.relation.references | F. Priyangini, S. G. Walde, y R. Chidambaram, «Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology», Carbohydr. Polym., vol. 202, pp. 497-503, dic. 2018, doi: 10.1016/j.carbpol.2018.08.103. | spa |
dc.relation.references | «Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: Experimental and theoretical approaches - ScienceDirect». Accedido: 5 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0144861715001502 | spa |
dc.relation.references | L. Zhang et al., «Study of okra pectin prepared by sweeping frequency ultrasound/freeze-thaw pretreatment on corrosion inhibition of ANSI 304 stainless steel in acidic environment», Int. J. Biol. Macromol., vol. 253, p. 126587, dic. 2023, doi: 10.1016/j.ijbiomac.2023.126587. | spa |
dc.relation.references | N. Saidi et al., «Using pectin extract as eco-friendly inhibitor for steel corrosion in 1M HCl media», Pharma Chem., vol. 7, pp. 87-94, ene. 2015. | spa |
dc.relation.references | S. A. Umoren y A. Madhankumar, «Effect of addition of CeO2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium», J. Mol. Liq., vol. 224, pp. 72-82, dic. 2016, doi: 10.1016/j.molliq.2016.09.082. | spa |
dc.relation.references | M. M. Fares, A. K. Maayta, y M. M. Al-Qudah, «Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution», Corros. Sci., vol. 60, pp. 112-117, jul. 2012, doi: 10.1016/j.corsci.2012.04.002. | spa |
dc.relation.references | «Influence of Citric Acid on the Metal Release of Stainless Steels -Corrosion Science and Technology | Korea Science». Accedido: 11 de agosto de 2024. [En línea]. Disponible en: https://koreascience.kr/article/JAKO201528551642095.page | spa |
dc.relation.references | N. Mazinanian y Y. S. Hedberg, «Metal Release Mechanisms for Passive Stainless Steel in Citric Acid at Weakly Acidic pH», J. Electrochem. Soc., vol. 163, n.o 10, p. C686, ago. 2016, doi: 10.1149/2.1041610jes. | spa |
dc.relation.references | A. Wetzel, M. von der Au, P. M. Dietrich, J. Radnik, O. Ozcan, y J. Witt, «The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy», Appl. Surf. Sci., vol. 601, p. 154171, nov. 2022, doi: 10.1016/j.apsusc.2022.154171. | spa |
dc.relation.references | «The influence of flow rate on corrosion of mild steel in hot tap water - ScienceDirect». Accedido: 4 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0010938X15002024 | spa |
dc.relation.references | V. K. W. Grips, V. Ezhil Selvi, H. C. Barshilia, y K. S. Rajam, «Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering», Electrochimica Acta, vol. 51, n.o 17, pp. 3461-3468, abr. 2006, doi: 10.1016/j.electacta.2005.09.042. | spa |
dc.relation.references | J. Yang et al., «Effect of Au-ions irradiation on mechanical and LBE corrosion properties of amorphous AlCrFeMoTi HEA coating: Enhanced or deteriorated?», Corros. Sci., vol. 192, p. 109862, nov. 2021, doi: 10.1016/j.corsci.2021.109862. | spa |
dc.relation.references | Z. Zhang, E.-H. Han, y C. Xiang, «Effect of helium ion irradiation on short-time corrosion behavior of two novel high-entropy alloys in simulated PWR primary water», Corros. Sci., vol. 191, p. 109742, oct. 2021, doi: 10.1016/j.corsci.2021.109742. | spa |
dc.relation.references | S. K. Bachani, C.-J. Wang, B.-S. Lou, L.-C. Chang, y J.-W. Lee, «Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content», Surf. Coat. Technol., vol. 403, p. 126351, dic. 2020, doi: 10.1016/j.surfcoat.2020.126351. | spa |
dc.relation.references | M. Kazan, B. Rufflé, Ch. Zgheib, y P. Masri, «Oxygen behavior in aluminum nitride», J. Appl. Phys., vol. 98, n.o 10, p. 103529, nov. 2005, doi: 10.1063/1.2137461. | spa |
dc.relation.references | L. Lyu, J. Yang, M. Zhou, M. Yan, y J. Yang, «Microstructure, mechanical properties and lead-bismuth eutectic corrosion behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO high entropy metal sublattice ceramic coatings», Vacuum, vol. 209, p. 111774, mar. 2023, doi: 10.1016/j.vacuum.2022.111774. | spa |
dc.relation.references | J. Yang et al., «Influence of coating thickness on microstructure, mechanical and LBE corrosion performance of amorphous AlCrFeTiNb high-entropy alloy coatings», Surf. Coat. Technol., vol. 441, p. 128502, jul. 2022, doi: 10.1016/j.surfcoat.2022.128502. | spa |
dc.relation.references | W. Chen, T. Hu, C. Wang, H. Xiao, y X. Meng, «The effect of microstructure on corrosion behavior of a novel AlCrTiSiN ceramic coating», Ceram. Int., vol. 46, n.o 8, Part B, pp. 12584-12592, jun. 2020, doi: 10.1016/j.ceramint.2020.02.022. | spa |
dc.relation.references | N. D. Nam, M. Vaka, y N. Tran Hung, «Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment», J. Power Sources, vol. 268, pp. 240-245, dic. 2014, doi: 10.1016/j.jpowsour.2014.05.144. | spa |
dc.relation.references | X. Zhao, P. Munroe, D. Habibi, y Z. Xie, «Roles of compressive residual stress in enhancing the corrosion resistance of nano nitride composite coatings on steel», J. Asian Ceram. Soc., vol. 1, n.o 1, pp. 86-94, mar. 2013, doi: 10.1016/j.jascer.2013.03.002. | spa |
dc.relation.references | J. Xu et al., «Role of oxidants in the anodic oxidation of 2024 aluminum alloy by dominating anodic and cathodic processes», Colloids Surf. Physicochem. Eng. Asp., vol. 703, p. 135229, nov. 2024, doi: 10.1016/j.colsurfa.2024.135229. | spa |
dc.relation.references | B. Rahmati, A. A. D. Sarhan, W. J. Basirun, y W. A. B. W. Abas, «Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti6Al4V alloy», J. Alloys Compd., vol. 676, pp. 369-376, ago. 2016, doi: 10.1016/j.jallcom.2016.03.188. | spa |
dc.relation.references | J. Yang, Y. Song, K. Dong, y E.-H. Han, «Research progress on the corrosion behavior of titanium alloys», Corros. Rev., vol. 41, n.o 1, pp. 5-20, feb. 2023, doi: 10.1515/corrrev-2022-0031. | spa |
dc.relation.references | C. Nico, T. Monteiro, y M. P. F. Graça, «Niobium oxides and niobates physical properties: Review and prospects», Prog. Mater. Sci., vol. 80, pp. 1-37, jul. 2016, doi: 10.1016/j.pmatsci.2016.02.001. | spa |
dc.relation.references | J. Hu, W. Lin, Q. Lv, C. Gao, y J. Tan, «Oxide formation mechanism of a corrosion-resistant CZ1 zirconium alloy», J. Mater. Sci. Technol., vol. 147, pp. 6-15, jun. 2023, doi: 10.1016/j.jmst.2022.12.002. | spa |
dc.relation.references | T. Hagiwara, S. Hagihara, A. Handa, N. Sasagawa, R. Kawashima, y T. Sakiyama, «Pretreatment with citric acid or a mixture of nitric acid and citric acid to suppress egg white protein deposit formation on stainless steel surfaces and to ease its removal during cleaning», Food Control, vol. 53, pp. 35-40, jul. 2015, doi: 10.1016/j.foodcont.2014.12.018. | spa |
dc.relation.references | N. Mazinanian, «Metal Release and Corrosion of Stainless Steel in Simulated Food Contact», 2016, Accedido: 31 de marzo de 2024. [En línea]. Disponible en: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191474 | spa |
dc.relation.references | P. Schmuki, «From Bacon to Barriers: A Review on the Passivity of Metals and Alloys», J. Solid State Electrochem., vol. 6, pp. 145-164, mar. 2002, doi: 10.1007/s100080100219. | spa |
dc.relation.references | «The effect of weak acids on active corrosion rate in top-of-line corrosion - ScienceDirect». Accedido: 5 de octubre de 2024. [En línea]. Disponible en: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0010938X24004487#bib12 | spa |
dc.relation.references | «Role Of Acetic Acid In CO2 Top Of The Line Corrosion Of Carbon Steel | NACE CORROSION | OnePetro». Accedido: 5 de octubre de 2024. [En línea]. Disponible en: https://onepetro.org/NACECORR/proceedings-abstract/CORR11/All-CORR11/119746 | spa |
dc.relation.references | M. H. Nazari y S. R. Allahkaram, «The effect of acetic acid on the CO2 corrosion of grade X70 steel», Mater. Des., vol. 31, n.o 9, pp. 4290-4295, oct. 2010, doi: 10.1016/j.matdes.2010.04.002. | spa |
dc.relation.references | L. J. CárdenasFlechas et al., «Synthesis of nanostructured (Ti-Zr-Si)N coatings deposited on Ti6A14V alloy», Rev. Acad. Colomb. Cienc. Exactas Físicas Nat., vol. 45, n.o 175, pp. 570-581, jun. 2021, doi: 10.18257/raccefyn.1198. | spa |
dc.relation.references | F. Estupiñan, C. Moreno, J. Olaya, y L. Ardila Tellez, «Wear Resistance of TiAlCrSiN Coatings Deposited by Means of the Co-Sputtering Technique», Lubricants, vol. 9, p. 64, jun. 2021, doi: 10.3390/lubricants9060064. | spa |
dc.relation.references | «The Structural and Mechanical Properties of CrAlTiN-Si Nanostructured Coatings Deposited by the Means of High-Power Impulse Magnetron Sputtering». | spa |
dc.relation.references | N. G. Yomayuza SIerra, «Resistencia a la corrosión a altas temperaturas de recubrimientos nanoestructurados de (Ti,Cr,Al,Si)N depositados con la técnica de cosputtering», Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2022. Accedido: 12 de junio de 2024. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/83935 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 620.11223 | spa |
dc.subject.lemb | CORROSION Y ANTICORROSIVOS | spa |
dc.subject.lemb | Corrosion and anti-corrosives | eng |
dc.subject.lemb | MATERIALES RESISTENTES A LA CORROSION | spa |
dc.subject.lemb | Corrosion resistant materials | eng |
dc.subject.lemb | INDUSTRIAS ALIMENTICIAS | spa |
dc.subject.lemb | Food industry and trade | eng |
dc.subject.lemb | PULVERIZACION CATODICA (METALIZACION) | spa |
dc.subject.lemb | Cathode sputtering (plating process) | eng |
dc.subject.lemb | REDES CRISTALINAS | spa |
dc.subject.lemb | Crystal lattices | eng |
dc.subject.lemb | DIFRACCION DE RAYOS X | spa |
dc.subject.lemb | X-rays - diffraction | eng |
dc.subject.proposal | Recubrimientos de alta entropía | spa |
dc.subject.proposal | Resistencia a la corrosión | spa |
dc.subject.proposal | TiAlTaZrNbN | spa |
dc.subject.proposal | HEA | eng |
dc.subject.proposal | HiPIMS | eng |
dc.subject.proposal | Sputtering | eng |
dc.subject.proposal | High entropy coating | eng |
dc.subject.proposal | Corrosion resistance | eng |
dc.title | Resistencia a la corrosión del recubrimiento TiAlTaZrNbN en acero AISI 304 con potencial aplicación en la industria de alimentos | spa |
dc.title.translated | Corrosion resistance of TiAlTaZrNbN coating on AISI 304 steel with potential application in the food industry | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030673150.2025.pdf
- Tamaño:
- 6.22 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: