Desarrollo y evaluación de planta piloto automatizada para la fabricación de películas delgadas de óxido de zinc para uso en celdas solares

dc.contributor.advisorGordillo Guzmán, Gerardospa
dc.contributor.authorPeña Bermúdez , Julián Camilospa
dc.contributor.researchgroupGrupo de materiales semiconductores y energía solarspa
dc.date.accessioned2021-10-25T13:58:26Z
dc.date.available2021-10-25T13:58:26Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficasspa
dc.description.abstractEn este trabajo se reportan los principales aportes realizados para cumplir los objetivos de esta propuesta de tesis, donde se hizo especial énfasis en el desarrollo y evaluación de un sistema automatizado para la deposición de películas delgadas de ZnO con propiedades adecuadas para uso en celdas solares, usando el método de Evaporación Reactiva Asistida por Plasma (PARE). Se incluye una descripción del equipo implementado para depositar películas delgadas de ZnO por el método PARE, mencionando los avances y mejoras realizadas en este trabajo en relación con el equipo usado previamente por nuestro Grupo, describiendo en detalle los nuevos componentes del hardware y el software desarrollado, así como del diseño novedoso que se hizo a la fuente de evaporación de Zn, basado en el concepto de celda de efusión tipo celda Knudsen. De esta forma se logró mejorar significativamente tanto la baja reproducibilidad de las propiedades optoeléctricas de las películas delgadas de ZnO como la inhomogeneidad en el espesor que presentaban las películas de ZnO depositadas usando la versión anterior de reactor desarrollado por nuestro Grupo. El trabajo de tesis incluye también resultados de caracterización realizada a las películas de ZnO depositadas, usando diferentes técnicas para evaluar las propiedades ópticas, eléctricas y morfológicas; además, se presenta un estudio de la influencia de la configuración de la tapa de la celda Knudsen sobre la homogeneidad en espesor y las pruebas de verificación del funcionamiento del sensor que indica la presencia de Zn en el reactor. A través de un estudio de parámetros de deposición se logró encontrar condiciones para la preparación de películas delgadas de ZnO con propiedades optoeléctricas adecuadas para su uso como ventana óptica en celdas basadas en compuestos con estructura chalcopirita (CIGS) y estructura kesterita (CZTS) y como capa ETL en celdas solares basadas en compuestos con estructura perovskita. (Texto tomado de la fuente).spa
dc.description.abstractThis paper reports the main contributions made to meet the objectives of this thesis proposal, where special emphasis was placed on the development and evaluation of an automated system for the deposition of thin ZnO films with properties suitable for use in solar cells, using the Plasma Assisted Reactive Evaporation (PARE) method. A description of the equipment implemented to deposit ZnO thin films by the PARE method is included, mentioning the advances and improvements made in this work in relation to the equipment previously used by our Group, describing in detail the new hardware components and the software developed. as well as the novel design that was made to the Zn evaporation source, based on the concept of a Knudsen cell-type effusion cell. In this way, it was possible to significantly improve both the low reproducibility of the optoelectric properties of the thin ZnO films and the inhomogeneity in the thickness presented by the ZnO films deposited using the previous version of the reactor developed by our Group. The thesis work also includes the results of the characterization carried out on the deposited ZnO films, using different techniques to evaluate the optical, electrical and morphological properties; In addition, a study of the influence of the configuration of the lid of the Knudsen cell on the homogeneity in thickness and the verification tests of the operation of the sensor that indicates the presence of Zn in the reactor is presented. Through a study of deposition parameters it was possible to find conditions for the preparation of thin ZnO films with optoelectric properties suitable for use as an optical window in cells based on compounds with chalcopyrite structure (CIGS) and kesterite structure (CZTS) and as ETL layer in solar cells based on compounds with perovskite structure.eng
dc.description.curricularareaDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngeniería de superficiesspa
dc.description.sponsorshipFundación para la promoción de la investigación y la tecnologíaspa
dc.format.extentxviii, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80605
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] M. K. H. Rabaia et al., “Environmental impacts of solar energy systems: A review,” Sci. Total Environ., vol. 754, p. 141989, 2021, doi: https://doi.org/10.1016/j.scitotenv.2020.141989.spa
dc.relation.references[2] C.-N. Wang, T.-T. Dang, H. Tibo, and D.-H. Duong, “Assessing Renewable Energy Production Capabilities Using DEA Window and Fuzzy TOPSIS Model,” Symmetry , vol. 13, no. 2. 2021, doi: 10.3390/sym13020334spa
dc.relation.references[3] W. S. de Amorim et al., “The nexus between water, energy, and food in the context of the global risks: An analysis of the interactions between food, water, and energy security,” Environ. Impact Assess. Rev., vol. 72, pp. 1–11, 2018, doi: https://doi.org/10.1016/j.eiar.2018.05.002.spa
dc.relation.references[4] N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev., vol. 62, pp. 1092–1105, 2016, doi: https://doi.org/10.1016/j.rser.2016.05.022.spa
dc.relation.references[5] J. C. Pena and G. Gordillo, “Photovoltaic energy in the Dominican Republic: current status, policies, currently implemented projects, and plans for the future.,” Int. J. Energy, Environ. Econ., vol. 26, no. 4, pp. 270–284, 2020.spa
dc.relation.references[6] N. M. Haegel et al., “Terawatt-scale photovoltaics: Transform global energy,” Science (80-. )., vol. 364, no. 6443, pp. 836 LP – 838, May 2019, doi: 10.1126/science.aaw1845.spa
dc.relation.references[7] Global Atlas Carbon, “Fossil Fuels Emissions,” 2019. http://www.globalcarbonatlas.org/en/CO2-emissions (accessed Apr. 26, 2021).spa
dc.relation.references[8] Fraunhofer-Institut für Solare Energiesysteme ISE, “Photovoltaics report,” Freiburg, 2019spa
dc.relation.references[9] N. AL-Rousan, N. A. M. Isa, and M. K. M. Desa, “Advances in solar photovoltaic tracking systems: A review,” Renew. Sustain. Energy Rev., vol. 82, pp. 2548–2569, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.077.spa
dc.relation.references[10] G. H. Bauer, Photovoltaic Solar Energy Conversion. Springer Berlin Heidelberg, 2015.spa
dc.relation.references[11] J. Bisquert, The Physics of Solar Energy Conversion: Perovskites, Organics, and Photovoltaic Fundamentals. CRC Press, 2020.spa
dc.relation.references[12] Y. Xu, J. Li, Q. Tan, A. L. Peters, and C. Yang, “Global status of recycling waste solar panels: A review,” Waste Manag., vol. 75, pp. 450–458, 2018, doi: https://doi.org/10.1016/j.wasman.2018.01.036.spa
dc.relation.references[13] VDMA, “International Technology Roadmap for Photovoltaic (ITRPV) 2020 Results,” 2021.spa
dc.relation.references[14] V. Bheemreddy, J. J. B. Liu, A. Wills, and C. P. Murcia, “Life Prediction Model Development for Flexible Photovoltaic Modules using Accelerated Damp Heat Testing,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018, pp. 1249–1251, doi: 10.1109/PVSC.2018.8547610.spa
dc.relation.references[15] C. Brabec, V. Dyakonov, J. Parisi, and N. Sariciftci, Organic Photovoltaics: Concepts and Realization. 2003.spa
dc.relation.references[16] A. Cherouana and R. Labbani, “Study of CZTS and CZTSSe solar cells for buffer layers selection,” Appl. Surf. Sci., vol. 424, pp. 251–255, 2017, doi: https://doi.org/10.1016/j.apsusc.2017.05.027.spa
dc.relation.references[17] C. Brabec, V. Dyakonov, J. Parisi, and N. Sariciftci, Organic Photovoltaics: Concepts and Realization. 2003.spa
dc.relation.references[18] Q. Liu et al., “18% Efficiency organic solar cells,” Sci. Bull., Jan. 2020, doi: 10.1016/j.scib.2020.01.001.spa
dc.relation.references[19] W. Wang et al., “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Adv. Energy Mater., vol. 4, no. 7, p. 1301465, May 2014, doi: https://doi.org/10.1002/aenm.201301465.spa
dc.relation.references[20] NREL, “Best Research-Cell Efficiencies,” 2021.spa
dc.relation.references[21] Y. Liang, “Chemical vapor deposition synthesis of Ge doped ZnO nanowires and the optical property investigation,” Phys. Lett. A, vol. 383, no. 24, pp. 2928–2932, 2019, doi: https://doi.org/10.1016/j.physleta.2019.06.024.spa
dc.relation.references[22] L. Montoya and P. ARANGO, “Structural and morphological characterization of zno films deposited on glass supports,” DYNA, vol. 74, pp. 37–45, Mar. 2007.spa
dc.relation.references[23] M. R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, and L. M. Torres-Martínez, “ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 43, no. 22, pp. 10301–10310, 2018, doi: https://doi.org/10.1016/j.ijhydene.2018.04.054.spa
dc.relation.references[24] N. Kumari, S. R. Patel, and J. V Gohel, “Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application,” Opt. Quantum Electron., vol. 50, no. 4, p. 180, 2018, doi: 10.1007/s11082-018-1376-5.spa
dc.relation.references[25] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954, doi: 10.1063/1.1721711.spa
dc.relation.references[26] A. Gueddim, N. Bouarissa, A. Naas, F. Daoudi, and N. Messikine, “Characteristics and optimization of ZnO/CdS/CZTS photovoltaic solar cell,” Appl. Phys. A, vol. 124, p. 199, Feb. 2018, doi: 10.1007/s00339-018-1626-1.spa
dc.relation.references[27] A. Manor, E. A. Katz, T. Tromholt, and F. C. Krebs, “Enhancing functionality of ZnO hole blocking layer in organic photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 98, pp. 491–493, 2012, doi: https://doi.org/10.1016/j.solmat.2011.11.026.spa
dc.relation.references[28] J. Luo, Y. Wang, and Q. Zhang, “Progress in perovskite solar cells based on ZnO nanostructures,” Sol. Energy, vol. 163, pp. 289–306, 2018, doi: https://doi.org/10.1016/j.solener.2018.01.035.spa
dc.relation.references[29] S. Cornelius, “Charge transport limits and electrical dopant activation in transparent conductive (Al,Ga):ZnO and Nb:TiO2 thin films prepared by reactive magnetron sputtering,” Tesis doctoral (Technische Universität Dresden, Dresden), 2013.spa
dc.relation.references[30] J. I. Clavijo Penagos, “Síntesis y caracterización de películas delgadas de CuIn1-xGaxSe2 e In2Se,” Tesis doctoral (Universidad Nacional de Colombia), 2011.spa
dc.relation.references[31] B. Chen, H. Hu, T. Salim, and Y. M. Lam, “A facile method to evaluate the influence of trap densities on perovskite solar cell performance,” J. Mater. Chem. C, vol. 7, no. 19, pp. 5646–5651, 2019, doi: 10.1039/C9TC00816K.spa
dc.relation.references[32] F. Mesa, A. Dussan, and G. Gordillo, “Evidence of trapping levels and photoelectric properties of Cu3BiS3 thin films,” Phys. B Condens. Matter, vol. 404, no. 23, pp. 5227–5230, 2009, doi: https://doi.org/10.1016/j.physb.2009.08.302.spa
dc.relation.references[33] A. Wibowo et al., “ZnO nanostructured materials for emerging solar cell applications,” RSC Adv., vol. 10, pp. 42838–42859, Nov. 2020, doi: 10.1039/D0RA07689A.spa
dc.relation.references[34] K. Wang, C. Liu, T. Meng, C. Yi, and X. Gong, “Inverted organic photovoltaic cells,” Chem. Soc. Rev., vol. 45, no. 10, pp. 2937–2975, 2016, doi: 10.1039/C5CS00831J.spa
dc.relation.references[35] J. S. Jang et al., “Comparison study of ZnO-based quaternary TCO materials for photovoltaic application,” J. Alloys Compd., vol. 793, pp. 499–504, 2019, doi: https://doi.org/10.1016/j.jallcom.2019.04.042spa
dc.relation.references[36] G. Gordillo, A. A. Ramirez Botero, and E. A. Ramirez, “Development of novel control system to grow ZnO thin films by reactive evaporation,” J. Mater. Res. Technol., vol. 5, no. 3, pp. 219–225, 2016, doi: https://doi.org/10.1016/j.jmrt.2015.11.004.spa
dc.relation.references[37] S. Chen et al., “Aerosol assisted chemical vapour deposition of conformal ZnO compact layers for efficient electron transport in perovskite solar cells,” Mater. Lett., vol. 217, pp. 251–254, 2018, doi: https://doi.org/10.1016/j.matlet.2018.01.090.spa
dc.relation.references[38] K. Rakstys, “Molecularly Engineered Hole Transporting Materials for High Performance Perovskite Solar Cells,” Tesis doctoral (École Polytechnique Fédérale de Lausanne), 2018.spa
dc.relation.references[39] M. F. Mohamad Noh et al., “The architecture of the electron transport layer for a perovskite solar cell,” J. Mater. Chem. C, vol. 6, no. 4, pp. 682–712, 2018, doi: 10.1039/C7TC04649A.spa
dc.relation.references[40] A. A. R. Botero, “Diseño y desarrolllo de un sistema automático para la síntesis de películas delgadas de ZnO utilizadas para la fabricación de celdas solares por el método de evaporación reactiva,” Tesis de Maestría (Universidad Nacional de Colombia, Bogotá), 2015.spa
dc.relation.references[41] A. Fridman, Plasma Chemistry. Cambridge: Cambridge University Press, 2008.spa
dc.relation.references[42] K. J. Åström and T. Hägglund, Control PID avanzado. España: Pearson, 2009.spa
dc.relation.references[43] Norman S. Nise, Sistemas de control para ingenería, Tercera ed. México: Compañia editorial continental, 2004.spa
dc.relation.references[44] C. Suryanarayana and M. Grant Norton, X-Ray Diffraction: A Practical Approach. New York: Springer, 1988.spa
dc.relation.references[45} S. Nandi, S. A. Mishra, R. N. Sahoo, R. Swain, and S. Mallick, “Influence of TiO2 on Mucosal Permeation of Aceclofenac: Analysis of Crystal Strain and Dislocation Density,” Acta Chim. Slov. Vol 67, No 4 (2020)DO - 10.17344/acsi.2020.6129 , Dec. 2020.spa
dc.relation.references[46] R. García, “Dynamic Atomic Force Microscopy Methods,” Surf. Sci. Rep., vol. 47, pp. 197–301, Sep. 2002, doi: 10.1016/S0167-5729(02)00077-8.spa
dc.relation.references[47] F. Ruske, M. Wimmer, G. Köppel, A. Pflug, and B. Rech, “Optical characterization of high mobility polycrystalline ZnO:Al films,” in Proc.SPIE, Feb. 2012, vol. 8263, [Online]. Available: https://doi.org/10.1117/12.908969spa
dc.relation.references[48] Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express, vol. 5, no. 11, pp. 2415–2430, 2015, doi: 10.1364/OME.5.002415.spa
dc.relation.references[49] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E., vol. 16, no. 12, pp. 1214–1222, 1983, doi: 10.1088/0022-3735/16/12/023spa
dc.relation.references[50] J. Estrella, “Mediciones eléctricas por el método de cuatro puntas en películas delgadas de interés fotovoltaico,” Tesis de maestría (Instituro Politécnico Nacional), 2016.spa
dc.relation.references[51] P.N. Paraskevopoulos, Modern Control Engineering. CRC Press, 2002.spa
dc.relation.references[52] M. S. Fadali and A. Visioli, Digital Control Engineering 2nd Edition. Academic Press, 2012.spa
dc.relation.references[53] R. Popov, N. Paunkov, V. Rangelova, and A. Georgiev, “Study of hybrid thermal system with photovoltaic panels using virtual instruments,” Renew. Energy, vol. 154, pp. 1053–1064, 2020, doi: https://doi.org/10.1016/j.renene.2020.03.024.spa
dc.relation.references[54] A. A. Ramirez, I. Gil, G. Gordillo, and A. M. Latifi, “Analysis of a plasma-assisted reactive evaporation process for preparation of ZnO thin films: Modeling and experimentation,” Thin Solid Films, vol. 698, p. 137846, 2020, doi: https://doi.org/10.1016/j.tsf.2020.137846.spa
dc.relation.references[55] G. Hanket, S. Fields, and J. Elliott, Design and testing of pilot-scale Cu and mixed-vapor Ga-In evaporation sources. 2014.spa
dc.relation.references[56] C. Wang and C. Yu, “Detection of chemical pollutants in water using gold nanoparticles as sensors: a review,” Rev. Anal. Chem., vol. 32, no. 1, pp. 1–14, 2013, doi: https://doi.org/10.1515/revac-2012-0023.spa
dc.relation.references[57] A. Ramírez, J. S. Oyola, C. L. Calderón, and G. Gordillo, “OPTO-ELECTRICAL CHARACTERIZATION OF n+-ZnO/i-ZnO BILAYERS GROWN IN SITU BY REACTIVE EVAPORATION WITHOUT USING EXTRINSIC DOPING,” Momento, pp. 25–42, 2016, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-44702016000100003&nrm=iso.spa
dc.relation.references[58] J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells, vol. 102, pp. 137–141, 2012, doi: https://doi.org/10.1016/j.solmat.2012.03.011.spa
dc.relation.references[59] R. Aisuwarya and Y. Hidayati, “Implementation of Ziegler-Nichols PID Tuning Method on Stabilizing Temperature of Hot-water Dispenser,” in 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, 2019, pp. 1–5, doi: 10.1109/QIR.2019.8898259.spa
dc.relation.references[60] O. Gupta, “New Techniques of PID Controller Tuning of a DC Motor—Development of a Toolbox,” MIT Int. J. Electr. Instrum. Eng., vol. 2, pp. 65–69, Aug. 2012.spa
dc.relation.references[61] A. B. Corripio, Tuning of Industrial Control Systems, Second Edi. ISA—The Instrumentation, Systems, and Automation Society, 2001.spa
dc.relation.references[62] A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules, Second edi. Imperial College Press, 2006.spa
dc.relation.references[63] A. Barrios, “Análisis de métodos de sintonización para controladores PI industriales,” Tesis (Universidad tTecnologica de Bolivar), 2007.spa
dc.relation.references[64] J.-H. Song, Y. Her, J. Park, K.-D. Lee, and M.-S. Kang, “Simulink Implementation of a Hydrologic Model: A Tank Model Case Study,” Water , vol. 9, no. 9. 2017, doi: 10.3390/w9090639.spa
dc.relation.references[65] J. Kodosky, “LabVIEW,” Proc. ACM Program. Lang., vol. 4, no. HOPL, 2020, doi: 10.1145/3386328.spa
dc.relation.references[66] G. Zhang, X. Xie, and Y. You, “Multi-Channel Eddy Current Detector Based on Virtual Instrument Technology and Self-Balancing Technology,” Sens. Imaging, vol. 22, no. 1, p. 12, 2021, doi: 10.1007/s11220-021-00333-7.spa
dc.relation.references[67] L. Wang, PID Control system design and automatic tuning using MATLAB/Simulink. Wiley, 2020.spa
dc.relation.references[68] G.-C. Wang and T.-M. Lu, “Crystal Lattices and Reciprocal Lattices BT - RHEED Transmission Mode and Pole Figures: Thin Film and Nanostructure Texture Analysis,” G.-C. Wang and T.-M. Lu, Eds. New York, NY: Springer New York, 2014, pp. 7–22.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembMetallic filmseng
dc.subject.lembPelículas metálicasspa
dc.subject.lembSolar cellseng
dc.subject.lembCélulas solaresspa
dc.subject.lembFactory automationeng
dc.subject.lembFábricas - Automatizaciónspa
dc.subject.proposalLabVIEWeng
dc.subject.proposalCeldas solaresspa
dc.subject.proposalPelículas delgadasspa
dc.subject.proposalÓxido de zincspa
dc.subject.proposalEvaporación reactivaspa
dc.subject.proposalSolar cellseng
dc.subject.proposalThin filmseng
dc.subject.proposalZinc oxideeng
dc.subject.proposalReactive evaporationeng
dc.titleDesarrollo y evaluación de planta piloto automatizada para la fabricación de películas delgadas de óxido de zinc para uso en celdas solaresspa
dc.title.translatedDevelopment and evaluation of an automated pilot plant for the fabrication of zinc oxide thin films for use in solar cellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018476548.2021.pdf
Tamaño:
4.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingenería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: