Identificación de los depredadores marinos ápex del Barremiano-Aptiano de la región de Villa de Leiva

dc.contributor.advisorPáramo-Fonseca, María Eurídice
dc.contributor.authorBenavides-Cabra, Cristian David
dc.date.accessioned2022-08-08T19:02:36Z
dc.date.available2022-08-08T19:02:36Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEl propósito de esta investigación fue identificar los taxones que desempeñaron el rol de depredadores ápex entre los vertebrados marinos encontrados en rocas de edad Barremiano-Aptiano del Miembro Arcillolitas abigarradas de la Formación Paja en la región de Villa de Leiva. La identificación de los depredadores ápex partió de una previa selección de especímenes, los cuales representan 15 taxones. Se propuso de manera preliminar la posición sistemática de dos especímenes; CFSTA 2-1 se identificó como Stenorhynchosaurus sp. y CFSTA090318 se identificó como Protolamna sp. Se estableció la procedencia estratigráfica precisa de los especímenes seleccionados mediante el levantamiento de columnas estratigráficas en los sitios de hallazgo y, a partir de una cuidadosa correlación estratigráfica y bioestratigráfica se establecieron 5 asociaciones de depredadores contemporáneos, una del Barremiano inferior, dos del Barremiano superior y dos del Aptiano superior. Se evaluaron 23 caracteres morfofuncionales en los 15 taxones seleccionados y, mediante un análisis morfofuncional, se identificaron los posibles depredadores ápex de las 5 asociaciones de depredadores previamente establecidas. Como complemento, se realizaron dos análisis de coordenadas principales; el primero incluyó la matriz de los 23 rasgos morfofuncionales evaluados y el segundo sólo incluyó los rasgos craneales. Finalmente, mediante la comparación de las asociaciones establecidas, se analizó la variación de los depredadores ápex a través del Barremiano-Aptiano. Los resultados obtenidos mostraron que Teleosauroidea indet. cumplió el rol de depredador ápex de hábitat costero durante el Barremiano tardío y Sachicasaurus vitae fue el depredador ápex del hábitat de aguas abiertas durante este mismo tiempo. “Kronosaurus” boyacensis fue el depredador ápex del hábitat de aguas abiertas durante el Aptiano tardío. Ninguno de los taxones incluidos en las asociaciones del Barremiano inferior, Barremiano superior alto y Aptiano superior bajo fue identificado como depredador ápex, ya que no presentaban los rasgos distintivos de un depredador ápex. El primer análisis de coordenadas principales mostró una separación de taxones con distintos modos de locomoción, pero no agrupó a los taxones conVII rasgos de depredadores ápex. Por el contrario, el segundo análisis agrupo a Sachicasaurus vitae y “Kronosaurus” boyacensis sugiriendo que este análisis es útil en la identificación de posibles depredadores ápex. Se encontró que los depredadores ápex no variaron significativamente en sus características morfofuncionales a través del Barremiano-Aptiano. Además, se encontró que el número de taxones de mesodepredadores aumentó del Barremiano al Aptiano, pero no hubo mayor variación en sus características morfofuncionales. (Texto tomado de la fuente)spa
dc.description.abstractThe purpose of this research was to identify the taxa that play the role of apex predators among the marine vertebrates found in Barremian-Aptian rocks from the Arcillolitas abigarradas Member of the Paja Formation in the Villa de Leiva region. The identification of the apex predators started from a previous selection of specimens that represent 15 taxa. The systematic position of two specimens was preliminarily proposed; CFSTA 2-1 was identified as Stenorhynchosaurus sp. and CFSTA090318 was identified as Protolamna sp. The precise stratigraphic provenance of the selected specimens was established through the description of the stratigraphic sections in the finding sites and based on a stratigraphic and biostratigraphic correlation, 5 associations of contemporary predators were established, one from the lower Barremian, two from the upper Barremian and two from the upper Aptian. 23 morphofunctional characters were evaluated in the 15 selected taxa and through a morphofunctional analysis, the possible apex predators of the 5 previously established predator associations were identified. As aVIII complement, two principal coordinate analyzes were carried out, the first one included the matrix of the 23 morphofunctional characters evaluated and the second one only included the cranial characters. Finally, by comparing the established associations, the variation of apex predators through the Barremian-Aptian was analyzed. The obtained results showed that Teleosauroidea indet. played the role of apex predator of the coastal habitat during the late Barremian and Sachicasaurus vitae was the apex predator of the open waters habitat during the same time. “Kronosaurus” boyacensis was the apex predator of the open waters habitat during the late Aptian. None of the included taxa in the lower Barremian, upper upper Barremian, and lower upper Aptian was identified as an apex predator since they did not present the distinctive features of an apex predator. The first coordinate analysis showed a separation of taxa with different modes of locomotion but did not group taxa with traits of apex predators. On the contrary, the second analysis grouped Sachicasaurus vitae and “Kronosaurus” boyacensis, suggesting that this analysis is useful in identifying possible apex predators. It was found that the apex predators did not vary significantly in their morphofuncional characteristics across the Barremian-Aptian. Furthermore, it was found that the number of mesopredator taxa increased from the Barremian to Aptian, but there was no major variation in their morphofunctional characteristics.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.researchareaPaleontología de vertebradosspa
dc.format.extent207 páginas mas anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81810
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAndrews, C. W. (1910). A descriptive catalogue of the marine reptiles of the Oxford Clay: Part I. British Museum of Natural History.spa
dc.relation.referencesAndrews, C. William. (1913). A descriptive catalogue of the marine reptiles of the Oxford Clay: Part II. British Museum of Natural History.spa
dc.relation.referencesAgassiz, L. (1843). Recherches sur les poissons fossiles. Volume 3. Imprimerie de Petitpierre, Neuchatel.spa
dc.relation.referencesBallell, A., Moon, B. C., Porro, L. B., Benton, M. J., y Rayfield, E. J. (2019). Convergence and functional evolution of longirostry in crocodylomorphs. Palaeontology, 62(6), 867–887. https://doi.org/10.1111/pala.12432spa
dc.relation.referencesBardet, N., Fischer, V. y Machalski, M. (2016). Large predatory marine reptiles from the Albian-Cenomanian of Annopol, Poland. Geological Magazine, 153(1), 1–16.spa
dc.relation.referencesBenson, R. B. J., y Druckenmiller, P. S. (2014). Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition. Biological Reviews, 89(1), 1–23. https://doi.org/10.1111/brv.12038spa
dc.relation.referencesBerg, L.S. (1958). System der rezenten und fossilen Fischartigen und Fische. Deutscher Verlag Wissenschaft.spa
dc.relation.referencesBertin, T. J. C., Thivichon-Prince, B., LeBlanc, A. R. H., Caldwell, M. W., y Viriot, L. (2018). Current Perspectives on Tooth Implantation, Attachment, and Replacement in Amniota. Frontiers in Physiology, 9(1630), 1–20. https://doi.org/10.3389/fphys.2018.01630spa
dc.relation.referencesBlainville, H. M. D. (1835). Description de quelques espèces de reptiles de la Californie, précédée de l’analyse d’un systéme général d’Erpétologie et d’Amphibiologie. Muséum d’Histoire Naturelle, 4, 233–296.spa
dc.relation.referencesBonaparte, C.L., (1838). Selachorum tabula analytica. Nuovi Annali della Science Naturali Bologna, 1, 195–214.spa
dc.relation.referencesBrown, D. S. (1981). The English Upper Jurassic Plesiosauroidea Reptilia) and a review of the phylogeny and classification of the Plesiosauria. Bulletin of the British Museum (Natural History), Geology, 17, 253–347.spa
dc.relation.referencesBuchy, M. C. (2010). Morphologie dentaire et régime alimentaire des reptiles marins du Mésozoïque: revue critique et réévaluation. Oryctos, 9, 49–82.spa
dc.relation.referencesBusbey, A. B. (1995). The structural consequences of skull flattening in crocodilians. En J. J. Thomason (Ed.). Functional morphology in vertebrate paleontology (pp. 173–192). Cambridge University Press.spa
dc.relation.referencesCadena, E. A. (2011a). Potential earliest record of Podocnemidoid Turtles from the Early Cretaceous (Valanginian) of Colombia. Journal of Paleontology, 85, 877–881.spa
dc.relation.referencesCadena, E. A. (2011b). First record of eucryptodiran turtles from the early Cretaceous (Valanginian), at the northernmost part of South America. South American Journal of Herpetology, 6, 49–53.spa
dc.relation.referencesCadena, E. A. (2015). The first South American sandownid turtle from the Lower Cretaceous of Colombia. PeerJ, 3:e1431. https://doi.org/10.7717/peerj.1431spa
dc.relation.referencesCadena, E. A. y Gaffney, E. S. (2005). Notoemys zapatocaensis, a new side-necked turtle (Pleurodira: Platychelyidae) from the Early Cretaceous of Colombia. American Museum Novitates, 3470, 1–19.spa
dc.relation.referencesCadena, E. A., Jaramillo, C. A. y Bloch, J. I. (2013). New material of the Platychelyid turtle Notoemys zapatocaensis from the Early Cretaceous of Colombia; implications for understanding Pleurodira evolution. En: D.B. Brinkman, P.A. Holroyd y J.D. Gardner (Eds.). Morphology and evolution of turtles, Vertebrate Paleobiology and Paleoanthropology (pp. 105–120). Springer.spa
dc.relation.referencesCadena, E. A. y Parham, J. F. (2015). Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. PaleoBios, 32,1–42.spa
dc.relation.referencesCadena, E. A., Parra-Ruge, M. L., Parra-Ruge, J. D. y Padilla, S. (2019). A gravid fossil turtle from the Early Cretaceous reveals a different egg development strategy to that of extant marine turtles. Palaeontology, 1–13.spa
dc.relation.referencesCampbell, C. V. (1967). Lamina, laminaset, bed and bedset. Sedimentology, 8(1), 7–26. https://doi.org/10.1111/j.1365–3091.1967.tb01301.xspa
dc.relation.referencesCappetta, H. (1975). Sélaciens et Holocéphale du Gargasien de la région de Gargas (Vaucluse). GéaI. Méditerranée/me, 2(3), 115–134.spa
dc.relation.referencesCappetta, H. (1980). Modification du statut generique de quelques especes de selaciens cretaces et tertiaires. Palaeovertebrata, 10, 29–42.spa
dc.relation.referencesCappetta, H. (1987). Handbook of Paleoichthyology Vol 3B: Chondrichthyes II Mesozoic and Cenozoic Elasmobranchii. Gustav Fischer Verlag.spa
dc.relation.referencesCappetta, H. (2012). Handbook of Paleoichthyology Vol 3B: Chondrichthyes Mesozoic and Cenozoic Elasmobranchii: Teeth. Verlag Dr. Friedrich Pfeil.spa
dc.relation.referencesCappetta, H., y Case, G. R. (1999). Additions aux faunes de sélaciens du Crétacé du Texas (Albien supérieur–Campanien). Palaeo Ichthyologica, 9, 5–111.spa
dc.relation.referencesCarpenter, K. (1999). Revision of North American elasmosaurs from the Cretaceous of the western interior. Paludicola, 2, 148–173.spa
dc.relation.referencesCarrillo-Briceño, J. D., Cadena, E. A., Dececchi, A. T., Larson, H. C. y Du, T. Y. (2016). First record of a hybodont shark (Chondrichthyes: Hybodontiformes) from the Lower Cretaceous of Colombia. Neotropical Biodiversity, 2(1), 81– 86.spa
dc.relation.referencesCarrillo-Briceño, J. D., Parra, J. D. y Luque, J. (2018). A new lamniform shark Protolamna ricaurtei sp. nov. from the Lower Cretaceous of Colombia. Cretaceous Research, 95, 336–340.spa
dc.relation.referencesCompton, R. R. (1985). Geology in the field (1a ed.). Wiley.spa
dc.relation.referencesCompagno, L. (1990). Relationships of the megamouth shark, Megachasma pelagios (Lamniformes, Megachasmidae), with comments on its feeding habits. En H. L. Pratt, S. H. Gruber, y T. Taniuchi (Eds.). Elasmobranchs as Living Resources: Advances in the biology, ecology, systematics, and the status of the fisheries (pp. 357–379). National Marine Fisheries Service.spa
dc.relation.referencesCook, T. D., Newbrey, M. G., Murray, A. M., Wilson, M. V. H., Shimada, K., Takeuchi, G. T., y Stewart, J. D. (2011). A partial skeleton of the Late Cretaceous lamniform shark, Archaeolamna kopingensis, from the Pierre Shale of western Kansas, U.S.A. Journal of Vertebrate Paleontology, 31(1), 8–21.spa
dc.relation.referencesCope, E. D. (1868). Remarks on a new enaliosaurian, Elasmosaurus platyurus. Proceedings of the Academy of Natural Sciences of Philadelphia 1868, 92– 93.spa
dc.relation.referencesCortés, D. Larsson, H. C., Maxwell, E. E., Parra-Ruge, M. L., Patarroyo, P., y Wilson, J. A. (2019). An Early Cretaceous Teleosauroid (Crocodylomorpha: Thalattosuchia) from Colombia. Ameghiniana, 56(5), 365-379 https://doi.org/10.5710/AMGH.26.09.2019.3269spa
dc.relation.referencesCortés, D., y Páramo-Fonseca, M. E. (2018). Restos apendiculares de un ictiosaurio oftalmosáurido del Barremiano inferior de Villa de Leiva, Colombia. Boletín de Geología, 40(1), 15–30.spa
dc.relation.referencesD’Amore, D. C. (2009). A Functional Explanation for Denticulation in Theropod Dinosaur Teeth. The Anatomical Record, 292(9), 1297–1314. https://doi.org/10.1002/ar.20977spa
dc.relation.referencesDe La Fuente, M. y Goñi, R. (1983). Primeras tortugas cretácicas marinas de Colombia. Geología Norandina, 7, 43–48.spa
dc.relation.referencesDe Porta, J. (1965). Estratigrafía del Cretácico Superior y Terciario en el extremo S del Valle Medio del Magdalena, Boletín Geológico de la UIS, 19, 5–50.spa
dc.relation.referencesDillon, E., Norris, R. D., O’Dea, A., y O’Dea, A. (2017). Dermal denticles as a tool to reconstruct shark communities. Marine Ecology Progress Series, 566, 117–134. https://doi.org/10.3354/meps12018spa
dc.relation.referencesDrumheller, S. K., y Wilberg, E. W. (2019). A synthetic approach for assessing the interplay of form and function in the crocodyliform snout. Zoological Journal of the Linnean Society, 188(2), 507-521. https://doi.org/10.1093/zoolinnean/zlz081spa
dc.relation.referencesElsworth, P. G., Seebacher, F., y Franklin, C. E. (2003). Sustained Swimming Performance in Crocodiles (Crocodylus porosus): Effects of Body Size and Temperature. Journal of Herpetology, 37(2), 363–368.spa
dc.relation.referencesEtayo-Serna, F. (1968). El Sistema Cretáceo en la región de Villa de Leiva y zonas próximas. Geología Colombiana, 5, 5–74. Recuperado a partir de https://revistas.unal.edu.co/index.php/geocol/article/view/30374spa
dc.relation.referencesEtayo-Serna, F. (1979). Zonation of the Cretaceous of Central Colombia by Ammonites. Publicaciones geológicas especiales del INGEOMINAS.spa
dc.relation.referencesEtayo-Serna, F. (2019). Basin development and tectonic history of the Middle Magdalena Valley. En F. Etayo-Serna (Ed.), Estudios geológicos y paleontológicos sobre el Cretácico en la región del embalse del río Sogamoso, Valle Medio del Magdalena (pp. 412–423). Servicio Geológico Colombiano, Compilación de los Estudios Geológicos en Colombia vol. XXIII.spa
dc.relation.referencesFerrón, H. G., Martínez-Pérez, C., y Botella, H. (2018). The evolution of gigantism in active marine predators. Historical Biology, 30(5), 712–716. https://doi.org/10.1080/08912963.2017.1319829spa
dc.relation.referencesFischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S., y Friedman, M. (2016). Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nature Communications, 7(1), 10825. https://doi.org/10.1038/ncomms10825spa
dc.relation.referencesFischer, V., Benson, R. B. J., Zverkov, N. G., Soul, L. C., Arkhangelsky, M. S., Lambert, O., Stenshin, I. M., Uspensky, G. N. y Druckenmiller, P. S. (2017). Plasticity and Convergence in the Evolution of Short Necked Plesiosaurs, Current Biology, 27(11), 1667–1676. https://doi.org/10.1016/j.cub.2017.04.052spa
dc.relation.referencesFoffa, D., Young, M. T., Stubbs, T. L., Dexter, K. G. y Brusatte, S. (2018). The longterm ecology and evolution of marine reptiles in a Jurassic seaway. Nature: ecology & evolution, 2(10), 1548–1555. https://doi.org/10.1038/s41559-018- 0656-6spa
dc.relation.referencesFoffa D., Johnson M. M., Young M.T., Steel L., y Brusatte, S. (2019). Revision of the Late Jurassic deep-water teleosauroid crocodylomorph Teleosaurus megarhinus Hulke, 1871, and evidence of pelagic adaptations in Teleosauroidea. PeerJ, 7, e6646. https://doi.org/10.7717/peerj.6646spa
dc.relation.referencesFoote, A. D., Morin, P. A., Durban, J. W., Willerslev, E., Orlando, L. y Gilbert, M. T. P. (2011). Out of the Pacific and back again: insights into the matrilineal history of Pacific killer whale ecotypes. PLoS ONE, 6(9), e24980. https://doi.org/10.1371/journal.pone.0024980spa
dc.relation.referencesForero, H., y Sarmiento, L. F. (1985). La facies evaporítica de la Formación Paja en la región de Villa de Leiva. En F. Etayo-Serna and F. Laverde (Eds.), Proyecto Cretácico (pp. XVII1–XVII16). Publicaciones Geológicas Especiales del INGEOMINAS.spa
dc.relation.referencesFrazzetta, T. H. (1988). The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology, 108(2), 93–107. https://doi.org/10.1007/BF00539785spa
dc.relation.referencesFrederickson, J. A., Schaefer, S. N., y Doucette–Frederickson, J. A. (2015). A Gigantic Shark from the Lower Cretaceous Duck Creek Formation of Texas. PLOS ONE, 10(6), e0127162. https://doi.org/10.1371/journal.pone.0127162spa
dc.relation.referencesGómez-Pérez, M. y Noè, L. F. (2017). Cranial anatomy of a new pliosaurid Acostasaurus pavachoquensis from the Lower Cretaceous of Colombia, South America. Palaeontographica Abteilung A, 310, 5–42.spa
dc.relation.referencesGoñi, R. y Gasparini, Z. B. (1983). Nuevos restos de ‘Alzadasaurus colombiensis’ (Reptilia, Plesiosauria) del Cretácico Temprano de Colombia. Geología Norandina, 7, 49–54.spa
dc.relation.referencesGottfried, M. D., Compagno, L., y Bowman, S. C. (1996). Chapter 7: Size and Skeletal Anatomy of the Giant ''Megatooth" Shark Carcharodon megalodon. En Klimley, A. P. y Ainley, D. G. (Eds.) Great white sharks: The biology of Carcharodon carcharias (1a ed., pp. 55–66). Academic Press.spa
dc.relation.referencesGuerrero, J. (2002). A proposal on the classification of systems tracts: application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, 27, 27–49.spa
dc.relation.referencesGuerrero, J., Sarmiento, G. y Navarrete, R. E. (2000). The stratigraphy of the W side of the Cretaceous colombian basin in the Upper Magdalena Valley. Reevaluation of selected areas and type localities including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, 25, 45–110.spa
dc.relation.referencesGuzmán, G. (1985). Los Grifeidos infracretácicos Aetostreon couloni y Ceratrostreon boussingaulti, de la Formación Rosablanca como indicadores de oscilaciones marinas. En: F. Etayo–Serna y F. Laverde (Eds.), Proyecto Cretácico.(pp. XVI1-XVI16). Publicaciones Geológicas Especiales del INGEOMINAS.spa
dc.relation.referencesHammer, Ø, Harper, D. A. T. y Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Paleontología Electrónica, 4, 1–9.spa
dc.relation.referencesHampe, O. (1992). Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungsinstitut Senckenberg, 145, 1–32.spa
dc.relation.referencesHampe, O. (1992). Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungsinstitut Senckenberg, 145, 1–32.spa
dc.relation.referencesHildebrand, M. (1974). Analysis of vertebrate structure. John Wiley & sons.spa
dc.relation.referencesHuxley, T.H., (1880). On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the Zoological Society of London, 43, 649e662.spa
dc.relation.referencesJohnson, M. M., Young, M. T., y Brusatte, S. L. (2020). The phylogenetics of Teleosauroidea (Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution. PeerJ, 8, e9808. https://doi.org/10.7717/peerj.9808spa
dc.relation.referencesJordan, D. S. (1919). New genera of fossil fishes from Brazil. Proceedings of the Academy of Natural Sciences, Philadelphia, 71(3), 208–210.spa
dc.relation.referencesKakabadze, M. V., y Hoedemaeker, P. J. (2004). Heteromorphic ammonites from the Barremian and Aptian strata of Colombia. Scripta Geologica, 128, 39– 182.spa
dc.relation.referencesKendeigh, S. C. (1961). Animal Ecology. Prentice Hall.spa
dc.relation.referencesKozuch, L., y Fitzgerald, C. (1989). A guide to identifying shark centra from southeastern archaeological sites. Southeastern Archaeology, 8, 146–157.spa
dc.relation.referencesLambert, O., Bianucci, G., Post, K., De Muizon, C., Salas-Gismondi, R., Urbina, M. y Reumer, J. (2010). The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature, 466,105–108.spa
dc.relation.referencesLarsson, H. C., Dececchi, T. A. y Montefeltro, F. C. (2011). “A New Metriorhynchid (Crocodyliformes, Thalattosuchia) From the Early Cretaceous of Colombia (Rosablanca Formation, Late Valanginian)” AMEGHINIANA 48(4). Suplemento–Resúmenesspa
dc.relation.referencesLayman, C., Giery, S. Buhler, S., Rossi, R., Penland, T., Henson, M., Bogdanoff, A., Cove, M., Irizarry, A., Schalk, C. y Archer, S. (2015). A primer on the history of food web ecology: Fundamental contributions of fourteen researches. Food webs, 4, 14–24.spa
dc.relation.referencesLingham-Soliar, T. (1999). The durophagous mosasaurs (Lepidosauromorpha, Squamata) Globidens and Carinodens from the Upper Cretaceous of Belgium and the Netherlands. Paleontological Journal, 33, 638–647.spa
dc.relation.referencesLingham-Soliar, T. (2005). Caudal Fin in the White Shark, Carcharodon carcharias (Lamnidae): A Dynamic Propeller for Fast, Efficient Swimming. Journal of Morphology, 264, 233–252.spa
dc.relation.referencesLinnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised edition]. Laurentius Salvius. https://doi.org/10.5962/bhl.title.542spa
dc.relation.referencesMartill, D. M., Taylor, M. A., Duff, K. L., Riding, J. B. y Bown, P. R. (1994). The trophic structure of the biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. Journal of the Geological Society, 151, 173–194.spa
dc.relation.referencesMassare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7(2), 121–137. https://doi.org/10.1080/02724634.1987.10011647spa
dc.relation.referencesMassare, J. A. (1988). Swimming capabilities of Mesozoic marine reptiles: implications for method of predation. Paleobiology, 14, 187–205.spa
dc.relation.referencesMaxwell, E. E., Cortés, D., Patarroyo, P. y Parra-Ruge, M. L. (2019). A new specimen of Platypterygius sachicarum (Reptilia, Ichthyosauria) from the Early Cretaceous of Colombia and its phylogenetic implications. Journal of Vertebrate Paleontology, 39(1) https://doi.org/10.1080/02724634.2019.1577875spa
dc.relation.referencesMaxwell, E. E., Cortés, D., Patarroyo, P. y Parra-Ruge, M. L. (2019). A new specimen of Platypterygius sachicarum (Reptilia, Ichthyosauria) from the Early Cretaceous of Colombia and its phylogenetic implications. Journal of Vertebrate Paleontology, 39(1) https://doi.org/10.1080/02724634.2019.1577875spa
dc.relation.referencesMazin, J. M. (1983). L’implantation dentaire chez les Ichthyopterygia (Reptilia). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 7, 406–418.spa
dc.relation.referencesMcCoy, F. (1867). On the occurrence of Ichthyosaurus and Plesiosaurus in Australia. Annals and Magazine of Natural History, Third Series, 19, 355– 356.spa
dc.relation.referencesMcCurry, M. R., Evans, A. R., Fitzgerald, E. M. G., Adams, J. W., Clausen, P. D., y McHenry, C. R. (2017). The remarkable convergence of skull shape in crocodilians and toothed whales. Proceedings of the Royal Society B: Biological Sciences, 284(1850), 20162348. https://doi.org/10.1098/rspb.2016.2348spa
dc.relation.referencesMcCurry, M. R., Evans, A. R., Fitzgerald, E. M. G., McHenry, C. R., Bevitt, J., y Pyenson, N. D. (2019). The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles. Biological Journal of the Linnean Society, XX, 1–15.spa
dc.relation.referencesMcGowan, C., y Motani, R. (2003). Handbook of Paleoherpetology Part 8 Ichthyopterygia (1a ed.). Verlag Dr. Friedrich Pfeil.spa
dc.relation.referencesMcHenry, C. R. (2009). Devourer of gods: the palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. [PhD Dissertation, University of Newcastle, Faculty of Science & Information Technology, School of Environmental and Life Sciences].spa
dc.relation.referencesMcHenry, C. R., Clausen, P. D., Daniel, W. J., Meers, M. B., y Pendharkar, A. (2006). Biomechanics of the Rostrum in Crocodilians: A Comparative Analysis Using Finite-Element Modeling. The Anatomical Record Part A, 288(A), 827–849.spa
dc.relation.referencesMorales, L.G., Podesta, D.J., Hatfield, W.C., Tanner, H., Jones, S.H., Barker, M.H.S., O´Donoghue, D.J., Mohler, C.E., Dubois, E.P., Jacobs, C. y Goss, C.R. (1958). General Geology and oil occurrence of Middle Magdalena Valley, Colombia. Habitat of Oil, Symposium of the American Association of Petroleum Geologist, Tulsa, Estados Unidos.spa
dc.relation.referencesMunsell (2009). Munsell rock color chart. Munsell Color Company.spa
dc.relation.referencesNewbrey, M., Siverson, M., Cook, T. D., Fotheringham, A., y Sanchez, R. (2015). Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki. Acta Palaeontologica Polonica, 60(4), 877–897. https://doi.org/10.4202/app.2012.0047spa
dc.relation.referencesNichols, G. (2009). Sedimentology and Stratigraphy (2da. Ed.). Wiley-Blackwell.spa
dc.relation.referencesNiño-García, A., Parra-Mosquera, J. D. y Macias-Villarraga, P. A. (2019). Registro de dientes de Condrictios del Cretácico Superior en fosforitas de la Formación Loma Gorda, Revista Boletín de Ciencias de la Tierra, 46: 27– 32.spa
dc.relation.referencesPadilla, C. B., Páramo-Fonseca, M. E., Noè, L., Gómez-Pérez, M., y Parra, M. L. (2010). Acid preparation of large vertebrate specimens. Geological Curator, 9, 213–220.spa
dc.relation.referencesPáramo, M. E. (1994). Posición sistemática de un reptil marino con base en los restos fósiles encontrados en capas del Cretácico Superior en Yaguará Huila. Revista de La Academia Colombiana de Ciencias Exactas Físicas y Naturales, 72, 63–80.spa
dc.relation.referencesPáramo-Fonseca, M. E. (1997a). Les vertébrés marins du Turonien de la Vallée Supérieure du Magdalena, Colombie, systématique, paléoécologie et paléobiogéographie. [Tesis doctoral, Université de Poitiers, Poitiers, Francia].spa
dc.relation.referencesPáramo-Fonseca, M. E. (1997b). Bachea huilensis nov. gen., nov. sp., premier Tselfatoidei (Teleostei) de Colombie. Comptes Rendus de l'Académie des Sciences, Paris, Sciences de la terre et des planètes, 325, 147–150.spa
dc.relation.referencesPáramo-Fonseca, M. E. (1997c). Platypterygius sachicarum (Reptilia, Ichthyosauria) nueva especie del Cretácico de Colombia. Revista Ingeominas, 6, 1–12.spa
dc.relation.referencesPáramo-Fonseca, M. E. (2000). Yaguarasaurus columbianus (Reptilia, Mosasauridae), a primitive mosasaur from Turonian (Upper Cretaceous) of Colombia. Historical Biology, 14, 121–131.spa
dc.relation.referencesPáramo-Fonseca, M. E. (2001). Los peces de la familia Pachyrhizodontidae (Teleostei) del Turoniano del valle superior del Magdalena, Colombia, dos nuevas especies. Boletín Geológico, 39(1–3), 47–83.spa
dc.relation.referencesPáramo-Fonseca, M. E. (2012). Mosasauroids from Colombia. Bulletin de la Société Géologique de France, 183, 103–109.spa
dc.relation.referencesPáramo-Fonseca, M. E. (2013). Eonatator coellensis nov. sp. (Squamata: Mosasauridae), a new species from the Upper Cretaceous of Colombia. Revista de La Academia Colombiana de Ciencias Exactas Físicas y Naturales, 37, 499–518.spa
dc.relation.referencesPáramo-Fonseca, M. E. (2015). Estado actual del conocimiento de los reptiles marinos Cretácicos de Colombia. Asociación Paleontológica Argentina, 15(1), 40–57.spa
dc.relation.referencesPáramo-Fonseca, M. E., Gómez-Pérez, M., Noé, L. F. y Etayo-Serna, F. (2016). Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the Upper Barremian (Lower Cretaceous) of Villa de Leiva, Colombia, South America. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 40(154), 84–103.spa
dc.relation.referencesPáramo-Fonseca, M. E., Benavides-Cabra, C. D. y Gutiérrez, I. E. (2018). A new large Pliosaurid from the Barremian (Lower Cretaceous) of Sáchica, Boyacá, Colombia. Earth Sciences Research Journal, 22(4), 223–238.spa
dc.relation.referencesPáramo-Fonseca, M. E., Benavides-Cabra, C. D. y Gutiérrez, I. E. (2019). A new specimen of Stenorhynchosaurus munozi Páramo-Fonseca et al., 2016 (Plesiosauria, Pliosauridae), from the Barremian of Colombia: new morphological features and ontogenetic implications, Journal of Vertebrate Paleontology, 39 (4): e1663426. https://doi.org/10.1080/02724634.2019.1663426spa
dc.relation.referencesPáramo-Fonseca, M. E., O'Gorman, J. P., Gasparini, Z., Padilla, S. y Parra-Ruge, M. L. (2019) A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia, Cretaceous Research, 99, 30-40 https://doi.org/10.1016/j.cretres.2019.02.010spa
dc.relation.referencesPáramo-Fonseca, M. E., García-Guerrero, J., Benavides-Cabra, C. D., PadillaBernal, S. y Castañeda-Gómez, A. J. (2021). A benchmark specimen of Muiscasaurus catheti from the upper Aptian of Villa de Leiva, Colombia: New anatomical features and phylogenetic implications, Cretaceous Research, 119, e104685. https://doi.org/10.1016/j.cretres.2020.104685spa
dc.relation.referencesPatarroyo, P. (2000). Distribución de Amonitas del Barremiano de la Formación Paja en el Sector de Villa de Leyva (Boyacá, Colombia). Geología Colombiana, 25, 149–162.spa
dc.relation.referencesPatarroyo, P. (2020). Barremian deposits of Colombia: A special emphasis on marine succesions. En J. Gómez, y A. O. Pinilla-Pachon. (Eds.), The Geology of Colombia, Volume 2 Mesozoic (pp. 403–439). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36. https://doi.org/10.32685/pub.esp.36.2019.12spa
dc.relation.referencesPierce, S. E., Angielczyk, K. D., y Rayfield, E. J. (2009). Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: Implications for feeding behaviour and niche partitioning. Journal of Anatomy, 215(5), 555–576. https://doi.org/10.1111/j.1469-7580.2009.01137.xspa
dc.relation.referencesPotter, P. E., Maynard, J. B., y Pryor, W. A. (1980). Sedimentology of Shale. Springer.spa
dc.relation.referencesRamos-Clavijo, M. P. (2015). Posición estratigráfica de los fósiles de pliosaurios encontrados en Sáchica, Boyacá. [Trabajo de grado, Universidad Nacional de Colombia, Sede Bogotá].spa
dc.relation.referencesRaschi, W., y Tabit, C. (1992). Functional aspects of placoid scales: A review and update. Marine and Freshwater Research, 41(1), 123–147.spa
dc.relation.referencesReboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Idakieva, V., Ivanov, M., Kakabadze, M. V., Moreno-Bedmar, J. A., Sandoval, J., Baraboshkin, E. J., Çağlar, M. K., Főzy, I., González-Arreola, C., Kenjo, S., Lukeneder, A., Raisossadat, S. N., Rawson, P. F., y Tavera, J. M. (2014). Report on the 5th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Ankara, Turkey, 31st August 2013). Cretaceous Research, 50, 126–137. https://doi.org/10.1016/j.cretres.2014.04.001spa
dc.relation.referencesReeves, J. C., Moon, B. C., Benton, M. J., y Stubbs, T. L. (2020). Evolution of ecospace occupancy by Mesozoic marine tetrapods. Palaeontology, 64(1), 31–49. https://doi.org/10.1111/pala.12508spa
dc.relation.referencesReif, W. E. (1982). Morphogenesis and function of the squamation in sharks. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 164,172–183.spa
dc.relation.referencesReif, W. E. (1985). Morphology and hydrodynamic effects of the scales of fast swimming sharks. Fortschritte der Zoologie, 30, 483–485.spa
dc.relation.referencesReif, W. E. y Dinkelacker, A. (1982). Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 164, 184–187.spa
dc.relation.referencesRidgway, S. H., y Harrison, R. (1999). The second book of Dolhpins and the Porpoise (1a ed., Vol. 6). Academic Press.spa
dc.relation.referencesRomer, A. S., y Lewis, A. D. (1959). A mounted skeleton of the giant plesiosaur Kronosaurus. Breviora, 112, 1–15.spa
dc.relation.referencesRoot, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37, 317–350.spa
dc.relation.referencesSachs, S. y Kear, B. P. (2015). Fossil Focus: Elasmosaurs. Palaeontology Online, 5(2), 1–8.spa
dc.relation.referencesSachs, S., Kear, B. P. y Everhart, M. J. 2013. Revised vertebral count in the ‘‘longest-necked vertebrate’’ Elasmosaurus platyurus Cope 1868, and clarification of the cervical-dorsal transition in Plesiosauria. PLoS ONE 8, e70877. https://doi.org/10.1371/journal.pone.0070877spa
dc.relation.referencesSchultze, H. P. y Stöhr, D. (1996). Vinctifer (Pisces, Aspidorhynchidae) aus der Unterkreide (oberes Aptium) von Kolumbien. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 199, 395–415.spa
dc.relation.referencesSennikov, A. G. (2019). Peculiarities of the Structure and Locomotor Function of the Tail in Sauropterygia. Biology Bulletin, 46(7), 751–762. https://doi.org/10.1134/S1062359019070100spa
dc.relation.referencesShimada, K. (1997a). Paleoecological relationships of the Late Cretaceous lamniform shark, Cretoxyrhina mantelli (Agassiz). Journal of Paleontology, 71, 926–933.spa
dc.relation.referencesShimada, K. (1997b). Gigantic lamnoid shark vertebra from the Lower Cretaceous Kiowa Shale of Kansas. Journal of Paleontology, 71(3), 522–524. https://doi.org/10.1017/S0022336000039536spa
dc.relation.referencesShimada, K., y Everhart, M. J. (2019). A new large Late Cretaceous lamniform shark from North America, with comments on the taxonomy, paleoecology, and evolution of the genus Cretodus. Journal of Vertebrate Paleontology, 39(4), e1673399.spa
dc.relation.referencesSiverson, M. (1992). Biology, dental morphology and taxonomy of lamniform sharks from the Campanian of the Kristianstad Basin, Sweden. Palaeontology, 35, 519–554.spa
dc.relation.referencesSiversson, M., y Machalski, M. (2017). Late late Albian (Early Cretaceous) shark teeth from Annopol, Poland. Alcheringa, 41, 433–463spa
dc.relation.referencesTaylor, M. A. (1987). How tetrapods feed in water: A functional analysis paradigm. Zoological Journal of the Linnean Society, 91, 171–195.spa
dc.relation.referencesTaylor, M. A., y Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150, 141–148.spa
dc.relation.referencesTennant, J., Mannion, P. y Upchurch, P. (2016). Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nature communications, 7, 12737.spa
dc.relation.referencesTomita, T. (2011). Mouth-Size Estimation of a Primitive Lamniform Shark, Protolamna: low trophic position in Lamniform shark origin. Paleontological Research, 15(2), 68e76. https://doi.org/10.2517/1342-8144-15.2.068spa
dc.relation.referencesVaeth, R. H., Rossman, D. A., y Shoop, W. (1985). Observations of tooth surface morphology in snakes. Journal of Herpetology, 19, 20–26.spa
dc.relation.referencesVermeij, G. J. (2016). Gigantism and Its Implications for the History of Life. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0146092spa
dc.relation.referencesVincent, P., Bardet, N., Houssaye, A., Amaghzaz, M. y Meslouh, S. (2013). New plesiosaur specimens from the Maastrichtian Phosphates of Morocco and their implications for the ecology of the latest Cretaceous marine apex predators. Gondwana Research, 24, 796–805.spa
dc.relation.referencesWade, M. 1984. Platypterygius australis, an Australian Cretaceous ichthyosaur. Lethaia, 17, 99–113.spa
dc.relation.referencesWallach, A. D, Izhaki, I., Toms, J. D., Ripple, W. J., y Shanas, U. (2015). What is an apex predator?. Oikos, 124, 1453–1461.spa
dc.relation.referencesWalmsley, C. W., Smits, P. D., Quayle, M. R., McCurry, M. R., Richards, H. S., Oldfield, C. C., Wroe, S., Clausen, P. D., y McHenry, C. R. (2013). Why the Long Face? The Mechanics of Mandibular Symphysis Proportions in Crocodiles. PLoS ONE, 8(1): e53873. https://doi.org/10.1371/journal.pone.0053873spa
dc.relation.referencesWelles, S. P. (1943). Elasmosaurid plesiosaurs with description of new material from California and Colorado. University of California Press.spa
dc.relation.referencesWelles, S. P. (1952). A review of the North American Cretaceous elasmosaurs. University of California Publications in Geological Sciences, 29, 44–143.spa
dc.relation.referencesWelles, S. P. (1962). A new species of Elasmosaur from the Aptian of Colombia and a review of the Cretaceous Plesiosaurs. University of California publications in Geological Sciences, 44(1), 1–96.spa
dc.relation.referencesWelton, B. J., y Farish, R. F. (1993). The Collector’s Guide to Fossil Sharks and Rays from the Cretaceous of Texas. Before Time.spa
dc.relation.referencesWilliston, S. W. (1914). Water Reptiles of the Past and Present. University of Chicago Press.spa
dc.relation.referencesWright, C. (1996). Cretaceous Ammonoidea (Vol. 4). Geological Society of America & University of Kansas.spa
dc.relation.referencesYoung, M. T., Brusatte, S. L., De Andrade, M. B., Desojo, J. B., Beatty, B. L., Steel, L., Fernández, M. S., Sakamoto, M., Ruiz-Omeñaca, J. I. y Schoch, R. R. (2012). The cranial osteology and feeding ecology of the metriorhynchid crocodylomorph genera Dakosaurus and Plesiosuchus from the Late Jurassic of Europe. PLoS ONE, 7:e44985.spa
dc.relation.referencesYoung, M. T., Hua, S., Steel, L., Foffa, D., Brusatte, S. L., Thüring, S., Mateus, O., Ruiz-Omeñaca, J. I., Havlik, P., Lepage, Y., y De Andrade, M. B. (2014). Revision of the Late Jurassic teleosaurid genus Machimosaurus (Crocodylomorpha, Thalattosuchia). Royal Society Open Science, 1(2), 140222. https://doi.org/10.1098/rsos.140222spa
dc.relation.referencesYoung, B. A., y Kardong, K. (1996). Dentitional surface features in snakes (Reptilia: Serpentes). Amphibia-Reptilia, 17, 261–276. https://doi.org/10.1163/156853896X00432spa
dc.relation.referencesYoung, M. T., Sachs, S., y Abel, P. (2018). Fossil Focus: Thalattosuchia. Paleontology Online, 8(5), 1–13.spa
dc.relation.referencesZammit, M., Kear, B. P., y Norris, R. M. (2014). Locomotory capabilities in the Early Cretaceous ichthyosaur Platypterygius australis based on osteological comparisons with extant marine mammals. Geological Magazine, 151(1), 87–99. https://doi.org/10.1017/S0016756813000782spa
dc.relation.referencesZverkov, N. G., Fischer, V., Madzia, D., y Benson, R. B. J. (2018). Increased pliosaurid dental disparity across the Jurassic-Cretaceous transition. Palaeontology, 61(6), 825–846. https://doi.org/10.1111/pala.12367spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc560 - Paleontología::567 - Vertebrados fósiles de sangre fríaspa
dc.subject.lembANIMALES PREDADORESspa
dc.subject.lembPredatory animalseng
dc.subject.lembPALEOECOLOGIAspa
dc.subject.lembPaleocologyeng
dc.subject.proposalDepredadores ápexspa
dc.subject.proposalMorfofuncionalspa
dc.subject.proposalBarremianospa
dc.subject.proposalAptianospa
dc.subject.proposalFormación Pajaspa
dc.subject.proposalVilla de Leiva
dc.subject.proposalColombia
dc.subject.proposalApex predatorseng
dc.subject.proposalMorphofunctionaleng
dc.subject.proposalBarremian-Aptianeng
dc.subject.proposalPaja Formationeng
dc.titleIdentificación de los depredadores marinos ápex del Barremiano-Aptiano de la región de Villa de Leivaspa
dc.title.translatedIdentification of the marine apex predators from the Barremian-Aptian of the Villa de Leiva regioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1032462069.2022.pdf
Tamaño:
2.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología
Cargando...
Miniatura
Nombre:
1032462069.2022-anexos.pdf
Tamaño:
24.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Anexos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: