mRNA profiles of human monocytes and macrophages from patients with active pulmonary tuberculosis and infected with two Colombian clinical isolates of Mycobacterium tuberculosis
| dc.contributor.advisor | Barrera Robledo, Luis Fernándo | spa |
| dc.contributor.advisor | Espejo Benavides, Blanca Fabiola | spa |
| dc.contributor.author | Lavalett Oñate, Lelia Leonor | spa |
| dc.contributor.researchgroup | Grupo de investigación de Inmunología e Inmunogenética GICIG | spa |
| dc.date.accessioned | 2020-02-24T19:00:20Z | spa |
| dc.date.available | 2022 | spa |
| dc.date.available | 2020-02-24T19:00:20Z | spa |
| dc.date.issued | 2019 | spa |
| dc.description.abstract | Alveolar macrophages (AMs) and monocytes (Mo) are an important focus in tuberculosis (TB) research since play an essential role in the immune response to Mycobacterium tuberculosis (Mtb). During lung infection, Mtb subverts the bactericidal mechanisms of these professional phagocytes. Comprehension of this host-pathogen relationship is fundamental for the development of new therapies to cure and prevent TB. We hypothesized that there is an effect of the disease (TB) on patterns of gene expression of Mo and AMs from patients with active TB compared to control subjects. The systemic effects of TB could have an impact on the response to infection with Mtb during active disease. Additionally, Mtb can spread and infect other organs, leading to extra-pulmonary forms of the disease. There is limited evidence of the global mRNA response of human Mo and AMs to infection with Mtb, and the response of other tissue macrophages to Mtb is almost unknown. In addition, the virulence of Mtb strain can also modify the transcriptional responses of monocytes and macrophages. Therefore, the transcriptional profiles of these cells in response to infection by virulent Mtb strains could highlight the clinical spectrum of the disease. Therefore, in the present study, we examined the mRNA profiles of Mo and AMs from patients with active TB, as well as splenic macrophages (SMs) as a study model of extrapulmonary TB. These mRNA profiles were also analyzed in response to in vitro infection with two Colombian clinical isolates of the LAM family of Mtb (UT127 and UT205). The LAM family is one of the most frequent circulating in our city, and there is evidence that the virulence of the strain is an important component of TB. Some data from our group suggest that clinical isolates UT127 and UT205 may differ in virulence and there are interesting genomic differences between them. In this scenario, our main questions were: In response to the disease (TB): ¿Is there a systemic effect of TB on gene expression patterns of Mo and AMs of patients with TB? ¿Are there differences between the transcriptome from Mo and AMs of patients with TB compared to healthy individuals? In response to in vitro infection: ¿How different is the response to in vitro Mtb infection between Mo from patients with TB and healthy individuals? ¿Are there differences between the in vitro response to infection with Mtb between AMs of patients with TB and AMs of healthy individuals? ¿Do AMs and SMs respond differently to clinical isolates of Mtb with different virulence? VI Circulating monocytes from TB patients displays a pro-inflammatory transcriptome characterized by increased gene expression for proinflammatory cytokines, monocytopoiesis, and downregulation of MHC class II gene expression. In response to in vitro infection with two clinical isolates the LAM family of Mtb, monocytes from TB patients displayed and attenuated inflammatory mRNA profile associated with upregulation of a SIRT1 deacetylase pathway and downregulation the TREM1 signaling pathway. These results suggest that circulating monocytes from TB patients display an altered transcriptome that upon infection with Mtb may help to maintain the infection. Moreover, this functional abnormality of monocytes may also depend on potential differences in virulence of circulating clinical strains of Mtb. In contrast, AMsTB show unique gene expression profile dominated by 51 differentially expressed genes (DEGs) associated with pathways and networks related to altered functions in AMsTB. An exacerbated inflammatory response was observed, consistent with the expression of genes involved in cell migration, tissue damage, and cell proliferation. On the other hand, down-regulation of genes involved in control of Mtb infection was also observed, suggesting that the balance between the pro and anti-inflammatory response is required. In response to infection with Mtb, AMsTB display and attenuated transcriptomic response to Mtb infection, compared to AMs from individuals without active TB. AMsTB regulated genes associated with IFN-signaling pathways, and several critical pathways in active TB were induced such as inflammasome (AIM2), FC pathway receptor (FCGR1A), and myeloid inflammatory pathway (TREM1). Surprisingly, the analysis of the mRNA profiles of the SMs infected with UT127 or UT205 showed lower transcriptomic response compared to AMs, suggesting a clear-cut difference in the transcriptomic response between AMs and SMs in their capacity to respond to Mtb | spa |
| dc.description.abstract | Macrófagos alveolares (AMs) y monocitos (Mo) son un foco importante en la investigación de la tuberculosis (TB), ya que desempeñan un papel esencial en la respuesta inmune a Mycobacterium tuberculosis (Mtb). Durante la infección pulmonar, Mtb manipula los mecanismos bactericidas de estos fagocitos profesionales. La comprensión de esta relación huésped-patógeno es fundamental para el desarrollo de nuevas terapias para curar y prevenir la TB. Nuestra hipótesis es que existe un efecto de la enfermedad (TB) sobre los patrones de expresión génica de Mo y AMs de pacientes con TB activa en comparación con los sujetos controles sanos. Los efectos sistémicos de la TB podrían tener un impacto en la respuesta a la infección con Mtb durante la enfermedad activa. Adicionalmente, Mtb puede diseminarse e infectar otros órganos, dando lugar a formas extra-pulmonares de la enfermedad. Existe evidencia limitada sobre la respuesta global de ARNm de AMs humanos a la infección con Mtb; y la respuesta de otros macrófagos tisulares hacia Mtb es casi desconocida. Además, la virulencia de la cepa de Mtb también puede modificar las respuestas transcripcionales de los monocitos y macrófagos. Por lo tanto, los perfiles transcripcionales de estas células en respuesta a la infección por cepas de Mtb virulentas podrían resaltar el espectro clínico de la enfermedad. Por lo tanto, en el presente estudio, nosotros examinamos los perfiles de ARNm de Mo y AMs de pacientes con TB activa, así como macrófagos esplénicos (SMs) como modelo de estudio de la TB extrapulmonar. Estos perfiles de mRNA también fueron analizados en respuesta a la infección in vitro con dos aislados clínicos colombianos de la familia LAM de Mtb (UT127 y UT205). La familia LAM es una de las más frecuentes que circulan en nuestra ciudad, y existen evidencias que indican que la virulencia de la cepa es un componente importante de la TB. Algunos datos de nuestro grupo sugieren que los aislados clínicos UT127 y UT205 pueden diferir en virulencia y existen diferencias genómicas interesantes entre ellos. En este escenario, nuestras preguntas principales fueron: En respuesta a la enfermedad (TB): ¿Existe un efecto sistémico de la TB sobre patrones de expresión génica de Mo y AMs de pacientes con TB? ¿Son diferentes los transcriptomas de Mo y AMs de pacientes con TB comparados con los individuos sanos? En respuesta a la infección in vitro: ¿Qué tan diferente es la respuesta a la infección entre Mo de individuos sanos y la de los pacientes con TB? ¿Es diferente la respuesta a la infección con Mtb entre AMs de pacientes con TB y AMs de individuos sanos? ¿AMs y SMs responden de manera diferente a los aislados clínicos de Mtb con diferente virulencia? Nosotros encontramos que monocitos circulantes de pacientes con TB muestran un transcriptoma pro-inflamatorio caracterizado por una mayor expresión génica para las citocinas proinflamatorias, la monocitopoyesis y la regulación negativa de la expresión génica de MHC de clase II. En respuesta a la infección in vitro con los aislados clínicos de Mtb, los monocitos de pacientes con TB mostraron y atenuación en el perfil inflamatorio de ARNm asociado con la regulación positiva de la vía de señalización desacetilasa SIRT1 y la regulación negativa de la vía de señalización TREM1. Estos resultados sugieren que los monocitos circulantes de pacientes con TB muestran un transcriptoma alterado que, tras la infección con Mtb, puede ayudar a mantener la infección. Además, esta anormalidad funcional de los monocitos también puede depender de posibles diferencias en la virulencia de las cepas clínicas circulantes de Mtb. En contraste, AMsTB mostraron un perfil de expresión génica único dominado por 51 genes expresados diferencialmente asociados con una respuesta inflamatoria exacerbada, consistente con la expresión de genes involucrados en la migración celular, daño tisular y proliferación celular. Por otro lado, también se observó una baja regulación de genes involucrados en el control de la infección por Mtb, sugiriendo que el equilibrio entre la respuesta pro-inflmatorias y anti-inflamatorias ess requerido. En respuesta a la infección con Mtb, AMsTB muestran una respuesta transcriptómica atenuada en comparación con AMs de individuos controles sanos. Los genes regulados por AMsTB fueron asociados con las vías de señalización de IFNs, inflamasoma (AIM2), el receptor de la vía FC (FCGR1A) y la vía inflamatoria mieloide (TREM1). Sorprendentemente, el análisis de los perfiles de ARNm en los SMs infectadas con UT127 o UT205 mostró una respuesta transcriptómica más baja en comparación con las AMs, lo que sugiere una diferencia clara en la respuesta transcriptomica entre AMs y SMs y su capacidad de responder a Mtb. | spa |
| dc.description.additional | Doctora en Biotecnología | spa |
| dc.description.degreelevel | Doctorado | spa |
| dc.format.extent | 123 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/75704 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Escuela de biociencias | spa |
| dc.relation.references | WHO guidelines on tuberculosis infection prevention and control: 2019 update. Geneva. | spa |
| dc.relation.references | Cohen, S. B., Gern, B. H., Delahaye, J. L., Adams, K. N., Plumlee, C. R., Winkler, J. K., . . . Urdahl, K. B. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe. 2018; 24(3), 439-446 e43 | spa |
| dc.relation.references | Sia, J. K., & Rengarajan, J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr. 2019; 7(4). | spa |
| dc.relation.references | Keane, J., Remold, H. G., & Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000; 164(4), 2016-2020. | spa |
| dc.relation.references | Lee, J., Hartman, M., & Kornfeld, H. Macrophage apoptosis in tuberculosis. Yonsei Med J. 2009; 50(1), 1-11. | spa |
| dc.relation.references | Sanchez, M. D., Garcia, Y., Montes, C., Paris, S. C., Rojas, M., Barrera, L. F., . . . Garcia, L. F. Functional and phenotypic changes in monocytes from patients with tuberculosis are reversed with treatment. Microbes Infect. 2006; 8(9-10), 2492-2500 | spa |
| dc.relation.references | Balboa, L., Romero, M. M., Basile, J. I., Sabio y Garcia, C. A., Schierloh, P., Yokobori, N., . . . Aleman, M. Paradoxical role of CD16+CCR2+CCR5+ monocytes in tuberculosis: efficient APC in pleural effusion but also mark disease severity in blood. J Leukoc Biol. 2011; 90(1), 69-75. | spa |
| dc.relation.references | Castano, D., Garcia, L. F., & Rojas, M. Differentiation of human mononuclear phagocytes increases their innate response to Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2014; 94(3), 207-218. | spa |
| dc.relation.references | Agrawal, N., Streata, I., Pei, G., Weiner, J., Kotze, L., Bandermann, S., . . . Dorhoi, A. Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Front Immunol. 2018; 9, 2417. | spa |
| dc.relation.references | Kramnik, I., & Beamer, G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin Immunopathol. 2016; 38(2), 221-237. | spa |
| dc.relation.references | Cadena, A. M., Ma, Y., Ding, T., Bryant, M., Maiello, P., Geber, A., . . . Ghedin, E. Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome. 2018; 6(1), 180. | spa |
| dc.relation.references | Burel, J. G., Babor, M., Pomaznoy, M., Lindestam Arlehamn, C. S., Khan, N., Sette, A., & Peters, B. Host Transcriptomics as a Tool to Identify Diagnostic and Mechanistic Immune Signatures of Tuberculosis. Front Immunol. 2019; 10, 221 | spa |
| dc.relation.references | Fonseca, K. L., Rodrigues, P. N. S., Olsson, I. A. S., & Saraiva, M. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog. 2017; 13(8), e1006421. | spa |
| dc.relation.references | Duque, C., Arroyo, L., Ortega, H., Montufar, F., Ortiz, B., Rojas, M., & Barrera, L. F. Different responses of human mononuclear phagocyte populations to Mycobacterium tuberculosis. Tuberculosis (Edinb). 2014; 94(2), 111-122 | spa |
| dc.relation.references | Ehrt, S., Schnappinger, D., Bekiranov, S., Drenkow, J., Shi, S., Gingeras, T. R., . . . Nathan, C. Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med. 2001; 194(8), 1123-1140. | spa |
| dc.relation.references | Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., . . . Cole, S. T. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002; 99(6), 3684-3689. | spa |
| dc.relation.references | Portevin, D., Gagneux, S., Comas, I., & Young, D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 2011; 7(3), e1001307. | spa |
| dc.relation.references | Tientcheu, L. D., Koch, A., Ndengane, M., Andoseh, G., Kampmann, B., & Wilkinson, R. J. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Eur J Immunol. 2017; 47(3), 432-445. | spa |
| dc.relation.references | Tram, T. T. B., Nhung, H. N., Vijay, S., Hai, H. T., Thu, D. D. A., Ha, V. T. N., . . . Thuong, N. T. T. Virulence of Mycobacterium tuberculosis Clinical Isolates Is Associated With Sputum Pre-treatment Bacterial Load, Lineage, Survival in Macrophages, and Cytokine Response. Front Cell Infect Microbiol. 2018; 8, 417 | spa |
| dc.relation.references | Henao, J., Sanchez, D., Munoz, C. H., Mejia, N., Arias, M. A., Garcia, L. F., & Barrera, L. F. Human splenic macrophages as a model for in vitro infection with Mycobacterium tuberculosis. Tuberculosis (Edinb). 2007; 87(6), 509-517 | spa |
| dc.relation.references | Scott, L. E., Beylis, N., Nicol, M., Nkuna, G., Molapo, S., Berrie, L., . . . Stevens, W. S. Diagnostic accuracy of Xpert MTB/RIF for extrapulmonary tuberculosis specimens: establishing a laboratory testing algorithm for South Africa. J Clin Microbiol. 2014; 52(6), 1818-1823. | spa |
| dc.relation.references | Sharma, S. K., Vashishtha, R., Chauhan, L. S., Sreenivas, V., & Seth, D. Comparison of TST and IGRA in Diagnosis of Latent Tuberculosis Infection in a High TB-Burden Setting. PLoS One. 2017; 12(1), e0169539 | spa |
| dc.relation.references | Marakalala, M. J., Raju, R. M., Sharma, K., Zhang, Y. J., Eugenin, E. A., Prideaux, B., . . . Rubin, E. J. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med. 2016; 22(5), 531-538 | spa |
| dc.relation.references | Gideon, H. P., & Flynn, J. L. Latent tuberculosis: what the host "sees"? Immunol Res. 2011; 50(2-3), 202-212. | spa |
| dc.relation.references | Singh, B., Ramdial, P. K., Royeppen, E., Moodley, J., & Chetty, R. Isolated splenic tuberculosis. Trop Doct. 2005; 35(1), 48-49. | spa |
| dc.relation.references | Barrios-Payan, J., Saqui-Salces, M., Jeyanathan, M., Alcantara-Vazquez, A., Castanon-Arreola, M., Rook, G., & Hernandez-Pando, R. Extrapulmonary locations of mycobacterium tuberculosis DNA during latent infection. J Infect Dis. 2012; 206(8), 1194-1205. | spa |
| dc.relation.references | Lieberman, T. D., Wilson, D., Misra, R., Xiong, L. L., Moodley, P., Cohen, T., & Kishony, R. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med. 2016; 22(12), 1470-1474 | spa |
| dc.relation.references | Watson, R. O., Bell, S. L., MacDuff, D. A., Kimmey, J. M., Diner, E. J., Olivas, J., . . . Cox, J. S. The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. Cell Host Microbe. 2015; 17(6), 811-819. | spa |
| dc.relation.references | Khan, A., Singh, V. K., Hunter, R. L., & Jagannath, C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol. 2019. | spa |
| dc.relation.references | Lugo-Villarino, G., & Neyrolles, O. Manipulation of the mononuclear phagocyte system by Mycobacterium tuberculosis. Cold Spring Harb Perspect Med. 2014; 4(11), a018549. | spa |
| dc.relation.references | BoseDasgupta, S., & Pieters, J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol. 2018; 40(6), 577-591. | spa |
| dc.relation.references | Ouimet, M., Koster, S., Sakowski, E., Ramkhelawon, B., van Solingen, C., Oldebeken, S., . . . Moore, K. J. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol. 2016; 17(6), 677-686. | spa |
| dc.relation.references | Mayer-Barber, K. D., Andrade, B. B., Barber, D. L., Hieny, S., Feng, C. G., Caspar, P., . . . Sher, A. Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity. 2011; 35(6), 1023-1034. | spa |
| dc.relation.references | Serbina, N. V., Jia, T., Hohl, T. M., & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008; 26, 421-452. | spa |
| dc.relation.references | Srivastava, S., Ernst, J. D., & Desvignes, L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev. 2014; 262(1), 179-192. | spa |
| dc.relation.references | Das, B., Kashino, S. S., Pulu, I., Kalita, D., Swami, V., Yeger, H., . . . Campos-Neto, A. CD271(+) bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci Transl Med. 2013; 5(170), 170ra113. | spa |
| dc.relation.references | La Manna, M. P., Orlando, V., Dieli, F., Di Carlo, P., Cascio, A., Cuzzi, G., . . . Caccamo, N. Quantitative and qualitative profiles of circulating monocytes may help identifying tuberculosis infection and disease stages. PLoS One. 2017; 12(2), e0171358. | spa |
| dc.relation.references | Young, C., Ahlers, P., Hiemstra, A. M., Loxton, A. G., Gutschmidt, A., Malherbe, S. T., . . . the, S. U. I. R. G. c. Performance and immune characteristics of bronchoalveolar lavage by research bronchoscopy in pulmonary tuberculosis and other lung diseases in the Western Cape, South Africa. Translational Medicine Communications. 2019; 4(1), 7. | spa |
| dc.relation.references | Chatterjee, S. The Lung Immune Niche in Tuberculosis: Insights from Studies on Human Alveolar Macrophages. Current Tropical Medicine Reports. 2015; 2(2), 49-53. | spa |
| dc.relation.references | Golde, D. W., Byers, L. A., & Finley, T. N. Proliferative capacity of human alveolar macrophage. Nature. 1974; 247(5440), 373-375. | spa |
| dc.relation.references | Guirado, E., Schlesinger, L. S., & Kaplan, G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013; 35(5), 563-583. | spa |
| dc.relation.references | Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., . . . Altare, F. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008; 4(11), e1000204. | spa |
| dc.relation.references | Jaisinghani, N., Dawa, S., Singh, K., Nandy, A., Menon, D., Bhandari, P. D., . . . Gandotra, S. Necrosis Driven Triglyceride Synthesis Primes Macrophages for Inflammation During Mycobacterium tuberculosis Infection. Front Immunol. 2018; 9, 1490. | spa |
| dc.relation.references | Goenka, A., Casulli, J., & Hussell, T. Mycobacterium tuberculosis Joyrides Alveolar Macrophages into the Pulmonary Interstitium. Cell Host Microbe. 2018; 24(3), 331-333. | spa |
| dc.relation.references | Law, K., Weiden, M., Harkin, T., Tchou-Wong, K., Chi, C., & Rom, W. N. Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am J Respir Crit Care Med. 1996; 153(2), 799-804. | spa |
| dc.relation.references | McNab, F. W., Ewbank, J., Howes, A., Moreira-Teixeira, L., Martirosyan, A., Ghilardi, N., . . . O'Garra, A. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-gamma for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol. 2014; 193(7), 3600-3612. | spa |
| dc.relation.references | Krishnan, N., Robertson, B. D., & Thwaites, G. Pathways of IL-1beta secretion by macrophages infected with clinical Mycobacterium tuberculosis strains. Tuberculosis (Edinb). 2013; 93(5), 538-547 | spa |
| dc.relation.references | Gomez, L. M., Camargo, J. F., Castiblanco, J., Ruiz-Narvaez, E. A., Cadena, J., & Anaya, J. M. Analysis of IL1B, TAP1, TAP2 and IKBL polymorphisms on susceptibility to tuberculosis. Tissue Antigens. 2006; 67(4), 290-296. | spa |
| dc.relation.references | Hasan, Z., Cliff, J. M., Dockrell, H. M., Jamil, B., Irfan, M., Ashraf, M., & Hussain, R. CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis. PLoS One. 2009; 4(12), e8459 | spa |
| dc.relation.references | Chin, K. L., Anis, F. Z., Sarmiento, M. E., Norazmi, M. N., & Acosta, A. Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J Immunol Res. 2017; 2017, 5212910 | spa |
| dc.relation.references | Maertzdorf, J., Ota, M., Repsilber, D., Mollenkopf, H. J., Weiner, J., Hill, P. C., & Kaufmann, S. H. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS One. 2011; 6(10), e26938. | spa |
| dc.relation.references | Maertzdorf, J., Weiner, J., 3rd, Mollenkopf, H. J., Bauer, T., Prasse, A., Muller-Quernheim, J., & Kaufmann, S. H. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A. 2012; 109(20), 7853-7858. | spa |
| dc.relation.references | Singhania, A., Verma, R., Graham, C. M., Lee, J., Tran, T., Richardson, M., . . . O'Garra, A. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun. 2018; 9(1), 2308. | spa |
| dc.relation.references | Esmail, H., Lai, R. P., Lesosky, M., Wilkinson, K. A., Graham, C. M., Horswell, S., . . . Wilkinson, R. J. Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proc Natl Acad Sci U S A. 2018; 115(5), E964-E973. | spa |
| dc.relation.references | Zuniga, J., Torres-Garcia, D., Santos-Mendoza, T., Rodriguez-Reyna, T. S., Granados, J., & Yunis, E. J. Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol. 2012; 2012, 193923. | spa |
| dc.relation.references | Tammaro, A., Derive, M., Gibot, S., Leemans, J. C., Florquin, S., & Dessing, M. C. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol Ther. 2017; 177, 81-95. | spa |
| dc.relation.references | Amaral, E. P., Costa, D. L., Namasivayam, S., Riteau, N., Kamenyeva, O., Mittereder, L., . . . Sher, A. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med. 2019; 216(3), 556-570. | spa |
| dc.relation.references | Srivastava, S., & Ernst, J. D. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe. 2014; 15(6), 741-752. | spa |
| dc.relation.references | Jorgensen, I., Rayamajhi, M., & Miao, E. A. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017; 17(3), 151-164. | spa |
| dc.relation.references | Bumgarner, R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013; Chapter 22, Unit 22 21. | spa |
| dc.relation.references | Martineau, A. R., Newton, S. M., Wilkinson, K. A., Kampmann, B., Hall, B. M., Nawroly, N., . . . Wilkinson, R. J. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007; 117(7), 1988-1994. | spa |
| dc.relation.references | Sutherland, J. S., Loxton, A. G., Haks, M. C., Kassa, D., Ambrose, L., Lee, J. S., . . . Ottenhoff, T. H. Differential gene expression of activating Fcgamma receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clin Microbiol Infect. 2014; 20(4), O230-238 | spa |
| dc.relation.references | Marakalala, M. J., Martinez, F. O., Pluddemann, A., & Gordon, S. Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Front Microbiol. 2018; 9, 1028. | spa |
| dc.relation.references | Yang, X., Yang, J., Wang, J., Wen, Q., Wang, H., He, J., . . . Ma, L. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep. 2016; 6, 38963 | spa |
| dc.relation.references | Lavalett, L., Rodriguez, H., Ortega, H., Sadee, W., Schlesinger, L. S., & Barrera, L. F. Alveolar macrophages from tuberculosis patients display an altered inflammatory gene expression profile. Tuberculosis. 2017; 107(Supplement C), 156-167 | spa |
| dc.relation.references | Norden, M. A., Kurzynski, T. A., Bownds, S. E., Callister, S. M., & Schell, R. F. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J Clin Microbiol. 1995; 33(5), 1231-1237. | spa |
| dc.relation.references | Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., . . . von Mering, C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011; 39(Database issue), D561-568 | spa |
| dc.relation.references | Pfaffl, M. W., Horgan, G. W., & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002; 30(9), e36 | spa |
| dc.relation.references | Jo, E. K., Park, J. K., & Dockrell, H. M. Dynamics of cytokine generation in patients with active pulmonary tuberculosis. Curr Opin Infect Dis. 2003; 16(3), 205-210. | spa |
| dc.relation.references | Dlugovitzky, D., Luchesi, S., Torres-Morales, A., Ruiz-Silva, J., Canosa, B., Valentini, E., & Bottasso, O. Circulating immune complexes in patients with advanced tuberculosis and their association with autoantibodies and reduced CD4+ lymphocytes. Braz J Med Biol Res. 1995; 28(3), 331-335. | spa |
| dc.relation.references | Gleeson, L. E., Sheedy, F. J., Palsson-McDermott, E. M., Triglia, D., O'Leary, S. M., O'Sullivan, M. P., . . . Keane, J. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J Immunol. 2016; 196(6), 2444-2449. | spa |
| dc.relation.references | Huang, J., Jiao, J., Xu, W., Zhao, H., Zhang, C., Shi, Y., & Xiao, Z. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol Med Rep. 2015; 12(5), 7102-7108. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso cerrado | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | Biología::Historia natural microorganismos, hongos, algas | spa |
| dc.subject.proposal | Macrófagos humanos | spa |
| dc.subject.proposal | Human macrophages | eng |
| dc.subject.proposal | tuberculosis | spa |
| dc.subject.proposal | monocytes | eng |
| dc.subject.proposal | Monocitos | spa |
| dc.subject.proposal | mRNA profile | eng |
| dc.subject.proposal | mRNA profile | eng |
| dc.subject.proposal | Perfil de ARNm | spa |
| dc.subject.proposal | Micromatrices | spa |
| dc.subject.proposal | Microarray | eng |
| dc.title | mRNA profiles of human monocytes and macrophages from patients with active pulmonary tuberculosis and infected with two Colombian clinical isolates of Mycobacterium tuberculosis | spa |
| dc.type | Documento de trabajo | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_8042 | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/workingPaper | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/WP | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 22866214.2019.pdf
- Tamaño:
- 6.97 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

