Modelos de fuente de sismicidad LP para la actividad del volcán Galeras 2004-2010 (Colombia)

dc.contributor.advisorSánchez Aguilar, John Jairospa
dc.contributor.authorCadena Ibarra, Oscar Ernestospa
dc.contributor.researchgroupGrupo de Investigación en Vulcanología Givspa
dc.coverage.countryColombiaspa
dc.coverage.temporal2004-2010
dc.date.accessioned2022-02-09T13:48:04Z
dc.date.available2022-02-09T13:48:04Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEn este estudio se analiza la sismicidad tipo LP del volcán Galeras para el periodo 2004 – 2010, desde los aspectos relacionados con: 1) su distribución temporal, mediante la aplicación de la técnica de variación de la dimensión fractal, 2) la segmentación de la sismicidad en familias y grupos de familias, utilizando correlación cruzada y la caracterización de familias y grupos mediante información espectral, 3) los resultados generados en 1 y 2, sirven de apoyo contextual para la generación de modelos de resonancia de una columna de magma, dentro de la cual se aplica una perturbación que se propaga en forma de ondas sísmicas por la interfase de la columna y la corteza superficial, hasta alcanzar un receptor. La información para la parametrización de la corteza superficial y el magma, se obtuvo de estudios específicos preexistentes, y la solución de los sistemas de ecuaciones se realiza mediante el método de elementos finitos. Los resultados muestran un comportamiento anómalo en la dimensión fractal durante el emplazamiento de los domos de lava de 2006 y 2008. La caracterización sísmica evidencia la existencia de 9 familias de sismos LP que se distribuyeron en dos grupos G1 y G2, asociados respectivamente con el emplazamiento de los domos de lava en superficie y la sismicidad precedente a estos domos. Se parametrizaron modelos para los grupos, G1 y G2, los cuales tienen por diferencias principales: la longitud de la columna de magma y el tipo de acción de la fuente sísmica. Se propone la resonancia de una columna de magma de aproximadamente 2800 m de largo, cuyo tope casi alcanza la superficie, como posible causante de la sismicidad del grupo G1 y una columna cercana a los 2000 m como responsable de los sismos del grupo G2. Adicionalmente, los resultados de este estudio ponen en duda la efectividad de la localización de sismicidad de fluidos basda en el método de atenuación de amplitudes. (Texto tomado de la fuente).spa
dc.description.abstractThis study analyzes the Long Period-type seismicity (LP) registered in Galeras volcano in the 2004 – 2010 period, from aspects related to: 1) its temporal distribution by applying the technique of the variation in the fractal dimension, 2) the segmentation of the seismicity into families and groups of families, using cross-correlation method and the characterization of families and groups using spectral information, 3) the results generated in 1 and 2, serve as contextual support for the generation of resonance models of a magma column, within from which a disturbance is applied. This disturbance is propagated in the form of seismic waves through the interface between the column and the superficial crust until to reach a receptor. The reference information used for the parameterization of the superficial crust and magma properties was obtained from specific pre-existing studies, and the solution for the system of the equations is carried out using the finite element method (FEM). The results show anomalous behavior in the fractal dimension during the emplacement of the lava domes of 2006 and 2008. Seismic characterization reveals the existence of 9 families of LP earthquakes that were distributed into two groups, G1 and G2, associated with the seismicity preceding the lava domes (G2) and that associated with their emplacement on the surface (G1). Models for groups G1 and G2 were parameterized, which have as main differences: the length of the magma column and the form of action of the seismic source. The resonance of a magma column of approximately 2000 m long is proposed as a possible cause of the seismicity of G2 group, while a 2800 m long column, whose top almost reaches the surface, as responsible for the earthquakes of the G1 group. Additionally, the results of this study cast doubt on the effectiveness of locating fluids seismicity based on seismic waves amplitude attenuation method.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Geocienciasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaSismología volcánicaspa
dc.format.extentxxi, 170 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80915
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Geocienciasspa
dc.relation.referencesAki, K., Fehler, M., & Das, S. (1977). Source mechanism of volcanic tremor : fluid-driven crack models and their application to the 1963 kilauea eruption. Department of Earth and Planetary Sciences , Massachusetts Institute of Technology.spa
dc.relation.referencesBain, et al., (2019). Textural and geochemical constraints on andesitic plug emplacement prior to the 2004 – 2010 vulcanian explosions at Galeras volcano, Colombia. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/j.jvolgeores.2019.05.001 0377-0273spa
dc.relation.referencesBrocher, T. (2005). Earthquake Hazard Assessment of Southern California View project Yucca Mountain Project View project Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120050077spa
dc.relation.referencesBuurman, H., & West, M. (2010). Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano. US Geological Survey Professional Paper. https://doi.org/10.3133/pp17692.spa
dc.relation.referencesCalvache, M., (1990). Geology and Vulcanology of the recent evolution of the Galeras Volcano, Colombia. Ms. Thesis. Louisiana State University.spa
dc.relation.referencesCalvache V, M. L., & Williams, S. N. (1997). Emplacement and petrological evolution of the andesitic dome of Galeras volcano, 1990–1992. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/S0377-0273(96)00086-8.spa
dc.relation.referencesCampagnola, S., Romano, C., Mastin, L. G., & Vona, A. (2016). Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contributions to Mineralogy and Petrology, 171(6). https://doi.org/10.1007/s00410-016-1265-5spa
dc.relation.referencesCarcolé, E., Ugalde, A., & Vargas, C. A. (2006). Three-dimensional spatial distribution of scatterers in Galeras volcano, Colombia. Geophysical Research Letters, 33(8). https://doi.org/10.1029/2006GL025751spa
dc.relation.referencesCaruso, F., Vinciguerra, S., Lotora, V., Rapisarda, A. & Malone, S. (2006). Multifractal analysis of Mt. St. Helens seismicity as a tool for identifying eruptive activity. Fractals. Vol 14. 179-186. https://doi.org/10.1142/S0218348X06003180spa
dc.relation.referencesCepeda, H. (1985). Anotaciones a cerca de la geología del volcán Galeras, Colombia. Encyclopedia of Volcanoes. 421-430.spa
dc.relation.referencesChouet, B. (1988). Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. Journal of Geophysical Research, 93(B5), 4375–4400. https://doi.org/10.1029/JB093iB05p04375spa
dc.relation.referencesChouet, B. A. (1996). Long-period volcano seismicity: Its source and use in eruption forecasting. In Nature (Vol. 380, Issue 6572, pp. 309–316). Macmillan Magazines Ltd. https://doi.org/10.1038/380309a0spa
dc.relation.referencesChouet, B. (1986). Dynamics of a fluid-driven crack in three dimensions by the finite difference method. Journal of Geophysical Research, 91(B14), 13967. https://doi.org/10.1029/jb091ib14p13967spa
dc.relation.referencesChouet, B., Saccorotti, G., Dawson, P., Martini, M., Scarpa, R., De Luca, G., Milana, G., & Cattaneo, M. (1999). Broadband measurements of the sources of explosions at Stromboli Volcano, Italy. Geophysical Research Letters, 26(13), 1937–1940. https://doi.org/10.1029/1999GL900400spa
dc.relation.referencesCollier, L., & Neuberg, J. (2006). Incorporating seismic observations into 2D conduit flow modeling. Journal of Volcanology and Geothermal Research, 152(3–4), 331–346. https://doi.org/10.1016/j.jvolgeores.2005.11.009spa
dc.relation.referencesEspinoza, A. (2001). Erupciones históricas de los volcanes colombianos (1500-1995). Editorial Guadalupe Ltda. Bogotá.spa
dc.relation.referencesFeder, J. (1988). Fractals. Plenum Press, New York.spa
dc.relation.referencesFerrazzini, V., & Aki, K. (1987). Slow waves trapped in a fluid-filled infinite crack: Implication for volcanic tremor. Journal of Geophysical Research, 92(B9), 9215. https://doi.org/10.1029/jb092ib09p09215spa
dc.relation.referencesFord, S. R., & Walter, W. R. (2013). An Explosion Model Comparison with Insights from the Source Physics Experiments. In pubs.geoscienceworld.org. https://pubs.geoscienceworld.org/ssa/bssa/article/103/5/2937/350029spa
dc.relation.referencesFraga, F., & Mondragón, R. (2016). Cálculo de dimensión fractal para series de tiempo con el método de multiresolución de conteo de cajas. Komputer Sapiens Vol. 2. 25-36.spa
dc.relation.referencesFrías, V. (2004). Aportaciones al estudio de las máquinas eléctricas de flujo axial mediante la aplicación del método de los elementos finitos. Tesis Doctoral. Departamento de Ingeniería Eléctrica, UPC.spa
dc.relation.referencesGoff, F., Stimac, J., Larocque, A., & Jr, P. T. (1994). Gold Degassing and Deposition. GSA Today from https://www.geosociety.org/gsatoday/archive/4/10/pdf/i1052-5173-4-10-sci.pdfspa
dc.relation.referencesGómez ,D., Torres, R. (1997). Unusual low-frequency volcanic seismic events with slowly decaying coda waves observed at Galeras and other volcanoes. Journal of Volcanology and Geothermal Research. 77, 173–193.spa
dc.relation.referencesGómez, D., Laverde, C., Narváez, L., Ortega, A., Silva, B., Torres, J. & Torres, R. (2004). Catalogo de señales sísmicas volcánicas de Colombia. INGEOMINAS. Pasto-Colombia.spa
dc.relation.referencesGoto, A. (1999). A new model for volcanic earthquake at Unzen Volcano:Melt rupture model. Geophysical Research Letters, vol. 26, No. 16, Pages 2541-2544.spa
dc.relation.referencesHarnett, C. E., Thomas, M. E., Purvance, M. D., & Neuberg, J. (2018). Using a discrete element approach to model lava dome emplacement and collapse. Journal of Volcanology and Geothermal Research, 359, 68–77. https://doi.org/10.1016/j.jvolgeores.2018.06.017spa
dc.relation.referencesINGEOMINAS. (2005). Boletín semestral de actividad del volcán Galeras julio a diciembre de 2004. Pasto-Combia. Informe público.spa
dc.relation.referencesINGEOMINAS. (2005). Boletín semestral de actividad del volcán Galeras enero a junio de 2005. Pasto-Colombia. Informe público.spa
dc.relation.referencesINGEOMINAS. (2006). Boletín semestral de actividad del volcán Galeras enero a junio de 2006. Pasto-Colombia. Informe público.spa
dc.relation.referencesINGEOMINAS. (2008). Boletín semestral de actividad del volcán Galeras enero a junio de 2008. Pasto-Colombia. Informe público.spa
dc.relation.referencesINGEOMINAS. (2008). Informe de resultados, análisis de oxidos mayores muestra roca volcán Galeras. Laboratorio de Geoquímica INGEOMINAS. Bogotá-Colombia.spa
dc.relation.referencesJousset, P., Neuberg, J. & Jolly, A. (2004). Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography. Journal of Volcanology and Geothermal Research.spa
dc.relation.referencesJousset, P., Neuberg, J., & Sturton, S. (2003). Modelling the time-dependent frequency content of low-frequency volcanic earthquakes. Journal of Volcanology and Geothermal Research, 128(1–3), 201–223. https://doi.org/10.1016/S0377-0273(03)00255-5spa
dc.relation.referencesJulian, B. R. (1994). Volcanic tremor: nonlinear excitation by fluid flow. Journal of Geophysical Research, 99(B6). https://doi.org/10.1029/93jb03129spa
dc.relation.referencesKumagai, H., & Chouet, B. A. (1999). The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes. Geophysical Journal International, 138(2). https://doi.org/10.1046/j.1365-246X.1999.00911.xspa
dc.relation.referencesLahr, J. C., Chouet, B. A., Stephens, C. D., Power, J. A., & Page, R. A. (1994). Earthquake classification , location , and error analysis in a volcanic environment : implications for the magmatic system of the 1989-1990 eruptions at Redoubt Volcano , Alaska. Journal of Volcanology and Geothermal Research 62(93), 137–151.spa
dc.relation.referencesLatter, J. (1979). Volcanological observations at Tangariro National Park, 2: types and classification of volcanic earthquakes. Report/Geophysics Division. Legrand, D., Cisternas, A., Dorbath L. (1996). Multifractal analysis of the 1992 Erzincan aftershock sequence. Geophysical Research Letters 23., 933-936.spa
dc.relation.referencesLegrand, D., Cisternas, A., Dorbath L. (1996). Multifractal analysis of the 1992 Erzincan aftershock sequence. Geophysical Research Letters 23., 933-936.spa
dc.relation.referencesLondoño, J. M. & Ospina, M. F. (2008). Estructura tridimensional de velocidad de onda P para el volcán Galeras. Boletín Geológico INGEOMINAS. 42(1-2), 7-24.spa
dc.relation.referencesMastin, L. G. (2002). Insights into volcanic conduit flow from an open-source numerical model. Geochemistry Geophysics Geosystems. Vol 3. No.7.spa
dc.relation.referencesMurcia, L. & Cepeda, H. (1991). Mapa Geológico de Colombia, Plancha 410, La Unión, Memoria explicativa. INGEOMINAS.spa
dc.relation.referencesMedwin, H., Clay, C. (1997). Fundamentals of Acoustic Oceanography. Departament of Geology and Geophysics. University of Wisconsin at Madison. ACADEMIC PRESS.spa
dc.relation.referencesMolina, I., Kumagai, H., García, A., Nakano, M., & Mothes, P. (2008). Source process of very-long-period events accompanying long-period signals at Cotopaxi Volcano , Ecuador. Journal of Volcanology and Geothermal Research 176. 119–133. https://doi.org/10.1016/j.jvolgeores.2007.07.019spa
dc.relation.referencesMoncayo, E. (2004). Tomografía por coda Q en el volcán Galeras Nariño. Thesis de pregrado. Universidad Nacional de Colombia. https://doi.org/10.1016/j.jvolgeores.2007.07.019spa
dc.relation.referencesNava, A. (2013). Procesamiento de series de tiempo. Ediciones científicas Universitarias. Mexico.spa
dc.relation.referencesNeuberg, J., Luckett, R., Baptie, B., & Olsen, K. (2000). Models of tremor and low-frequency earthquake swarms on Montserrat. Journal of Volcanology and Geothermal Research, 101(1–2), 83–104. https://doi.org/10.1016/S0377-0273(00)00169-4spa
dc.relation.referencesNeuberg, J. W., Tuffen, H., Collier, L., Green, D., Powell, T., & Dingwell, D. (2006). The trigger mechanism of low-frequency earthquakes on Montserrat. Journal of Volcanology and Geothermal Research, 153(1-2 SPEC. ISS.), 37–50. https://doi.org/10.1016/j.jvolgeores.2005.08.008spa
dc.relation.referencesOrtega, A. (2014). Modelo de fuentes de anomalías gravimétricas regional y locales del volcán Galeras, asociadas a su estado de actividad entre junio 2008 – abril de 2009. Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/12895spa
dc.relation.referencesPereiro, O. (2006). Aprendiendo sobre el método de elementos finitos. Facultad de Ingeniería Mecánic, Instituto Superior Politécnico José Antonio Echeverría. Vol 9. No. 3.spa
dc.relation.referencesProakis, J. & Manolakis, D. (2009). Digital Signal Processing. Printice Hall. 4th edition.spa
dc.relation.referencesPulgarín, B. (2006). Informe del apoyo en las labores geológicas del volcán Galeras en el periodo del 13 al 17 de junio de 2006 (Erupción del 12 de julio de 2006). INGEOMINAS. Informe interno.spa
dc.relation.referencesRodgers, M., Rodgers, S., & Roman, D. C. (2015). Peakmatch: A Java program for multiplet analysis of large seismic datasets. Seismological Research Letters, 86(4), 1208–1218. https://doi.org/10.1785/0220140160spa
dc.relation.referencesRougier, E., & Patton, H. J. (2015). Seismic source functions from free-field ground motions recorded on SPE: Implications for source models of small, shallow explosions. Journal of Geophysical Research: Solid Earth, 120(5), 3459–3478. https://doi.org/10.1002/2014JB011773spa
dc.relation.referencesSakuraba, A., Oikawa, J., & Imanishi, Y. (2002). Free oscillations of a fluid sphere in an infinite elastic medium and long-period volcanic earthquakes. Earth Planets Space. 54. 91–106.spa
dc.relation.referencesSanchez, J., Gomez, D.,Torres, R., Calvache, M., Ortega, A., Ponce, P., Acevedo, A., Gil, F., Londoño, J., Rodriguez, S., Patiño, J. & Bohórquez, O. (2005). Spatial mapping of the b-value at Galeras volcano, Colombia, using earthquakes recorded from 1995 to 2002. Earth Science Research Journal. Vol 9. No 1. 30-66.spa
dc.relation.referencesSmith, P. (2006). Combining magma flow models with seismic signals. Msc. Thesis. School of Earth and Enviroment The University of Leeds.spa
dc.relation.referencesSmith, P. J. (2010). Attenuation of Volcanic Seismic Signals. PhD Thesis, School of Earth and Enviroment The University of Leeds.spa
dc.relation.referencesSpinadel, V. (2002). Geometría fractal y geometría euclideana. Revista educación y pedagogía., Universidad de Antioquia, Facultad de educación. Vol.XV, No 35. Pp. 85-91.spa
dc.relation.referencesStix, J., Zapata, J., Calvache, M., Cortés, G., Fischer, T., Gómez, D., Narváez, L., Ordoñez, M., Ortega, A., Torres, R. & Williams, S. (1997). A model of vulcanian eruptions at Galeras volcano , Colombia. The Geological Society of America. 77, 285–303.spa
dc.relation.referencesStix, J., Zapata, J., Calvache, M., Cortés, G., Fischer, T., Gómez, D., Narváez, L., Ordoñez, M., Ortega, A., Torres, R. & Williams, S. (1993). A model of degassing at Galeras Volcano, Colombia, 1988-1993. October 2009, 1988–1993. The Geological Society of America. 21. 963-967. https://doi.org/10.1130/0091-7613(1993)021<0963spa
dc.relation.referencesSturton, S., & Neuberg, J. (2003). The effects of a decompression on seismic parameter profiles in a gas-charged magma. Journal of Volcanology and Geothermal Research, 128(1–3), 187–199. https://doi.org/10.1016/S0377-0273(03)00254-3spa
dc.relation.referencesSturton, S., & Neuberg, J. (2006). The effects of conduit length and acoustic velocity on conduit resonance: Implications for low-frequency events. Journal of Volcanology and Geothermal Research, 151(4), 319–339. https://doi.org/10.1016/j.jvolgeores.2005.09.009spa
dc.relation.referencesTibaldi, A., & Romero, J. (2000). Morphometry of late Pleistocene-Holocene faulting and volcanotectonic relationship in the southern Andes of Colombia. Tectonics, 19(2), 358–377. https://doi.org/10.1029/1999TC900063spa
dc.relation.referencesTorres, R. (2012). Modelo 3D del volcán Galeras utilizando tomografía sísmica. Universidad Nacional de Colombia. http://bdigital.unal.edu.co/9836/spa
dc.relation.referencesTuffen, H. (2003). Repeated fracture and healing of silicic magma generate flow banding and earthquakes ?. Geological Society of America, Vol 31. No 12. 1089–1092.spa
dc.relation.referencesVargas, C. A., Duran, J. P., & Pujades, L. G. (2006). Coda Q tomography at the Galeras volcano, Colombia. Universidad Nacional de Colombia. Departamento de Geociencias.spa
dc.relation.referencesWatts, R., Herd, R., Sparks, J. & Young, S. (2002). Growth patterns and emplacement of the andesitic lava dome at Soufrière Hills Volcano, Montserrat. Geological Society of London. Vol 21. https://doi.org/10.1144/GSL.MEM.2002.021.01.06spa
dc.relation.referencesZimanowski, B. (1998). Phreatomagmatic explosions. In Freudt, A. & Rossi, M., From magma to tephra: modelling physical processes of explosive volcanic eruptions. Elsevier, Amsterdam.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembVolcanoeseng
dc.subject.lembVolcanesspa
dc.subject.lembSeismologyeng
dc.subject.lembSismologíaspa
dc.subject.lembSeismic zoneseng
dc.subject.lembZonas de actividad sísmicaspa
dc.subject.proposalVolcán Galerasspa
dc.subject.proposalGaleras volcanoeng
dc.subject.proposalSismos largo periodospa
dc.subject.proposalLong period seismicityeng
dc.subject.proposalConduit resonanceeng
dc.subject.proposalResonancia de conductosspa
dc.titleModelos de fuente de sismicidad LP para la actividad del volcán Galeras 2004-2010 (Colombia)spa
dc.title.translatedLP seismicity source models for the activity of the Galeras volcano 2004-2010 (Colombia)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
87104422.2021.pdf
Tamaño:
11.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Geociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: