Validación dosimétrica de planes de radioterapia estereotáctica en cáncer de pulmón

dc.contributor.advisorTorres Forero, Adriana Marcelaspa
dc.contributor.advisorPlazas de Pinzón, Maria Cristinaspa
dc.contributor.authorCuaspud Ruiz, Cristian Dariospa
dc.coverage.temporal2020-2023
dc.date.accessioned2024-10-15T12:56:16Z
dc.date.available2024-10-15T12:56:16Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEste trabajo presenta un análisis de los aspectos dosimétricos en planes de tratamiento de Radioterapia Corporal Estereotáctica de cáncer de pulmón, realizados utilizando el sistema de planificación de tratamiento Eclipse. Estos planes fueron calculados con el Algoritmo Analítico Anisotrópico y el algoritmo Acuros XB, y entregados en el acelerador lineal Halcyon de Varian. Se llevó a cabo un estudio de casos de tipo experimental, utilizando imágenes tomográficas de pacientes que ya han recibido SBRT pulmonar. La población de estudio consistió en imágenes tomográficas de registros de planeaciones de SBRT pulmonar de pacientes con NSCLC en etapa temprana, tratados entre los años 2020 y 2023. Se evaluaron e implementan métodos que permitan disminuir imprecisiones que se generan en el flujo clínico de los tratamientos en el Servicio de Radioterapia del Instituto Médico Oncológico S.A.S. Estos métodos incluyeron validaciones dosimétricas mediante cálculos independientes con el algoritmo SciMoCa del software VeriQA de PTW, comprobaciones de entrega de dosis utilizando el sistema para control de paciente específico Octavius 4D de PTW, la automatización del cálculo de índices dosimétricos para la evaluación clínica de los planes mediante un script implementado en la interfaz de programación de aplicaciones de Eclipse. También, se determinó el impacto del simulador físico Ruby de PTW en la realización de pruebas de extremo a extremo y la prueba Winston Lutz. Finalmente, se implementó un código en el lenguaje de programación Python que utiliza la librería PyLinac para el análisis de la prueba Winston Lutz. Los resultados ofrecen beneficios significativos en el desarrollo de un flujo clínico con mayor precisión en la entrega de dosis, reducción de los tiempos de planificación y optimización de los recursos disponibles (Texto tomado de la fuente).spa
dc.description.abstractThis work presents an analysis of dosimetric aspects in stereotactic body radiotherapy treatment plans for lung cancer, performed using the Eclipse Treatment Planning System. These plans were calculated with the Anisotropic Analytical Algorithm and the Acuros XB algorithm, and delivered on the Varian Halcyon linear accelerator. An experimental case study was carried out, utilizing tomographic images of patients who had already undergone SBRT for lung cancer. The study population consisted of tomographic images from lung SBRT planning records of patients with early-stage NSCLC, treated between the years 2020 and 2023. Methods were evaluated and implemented to reduce inaccuracies that occur in the clinical workflow of treatments at the Radiotherapy Service of the Instituto Medico Oncologico S.A.S. These methods included dosimetric validations through independent calculations with the SciMoCa algorithm from PTW’s VeriQA software, dose delivery verifications using PTW’s patient-specific QA system Octavius 4D, automation of dosimetric index calculations for clinical plan evaluation through a script implemented in the Eclipse Scripting Application Programming Interface. Additionally, the impact of PTW’s Ruby physical simulator on the execution of end-to-end tests and the Winston Lutz test was assessed. Finally, a Python code was implemented using the PyLinac library for the analysis of the Winston Lutz test. The results offer significant benefits in the development of a clinical workflow with greater accuracy in dose delivery, reduction in planning times, and optimization of available resources.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.methodsSe realizó un estudio de casos de tipo experimental utilizando imágenes tomografícas de pacientes que han recibido SBRT pulmonar. El estudio se centra en una validación dosimétrica de los planes calculados en el TPS Eclipse de Varian con los algoritmos AAA y AXB, mediante cálculos independientes realizados con el algoritmo SciMoCa del software VeriQA de PTW. Además, se evalúan métodos para mejorar aspectos en el flujo clínico de los tratamientos de SBRT pulmonar en el Servicio de Radioterapia del Instituto Médico Oncológico S.A.S, incluyeno el control de paciente especifico con el sistema Octavius de PTW, el impacto del simulador físico Ruby de PTW en la ejecución de pruebas de extremo a extremo y Winston Lutz, y la evaluación de los planes con un script que permite la obtención de índices dosimétricos.spa
dc.description.researchareaRadioterapiaspa
dc.format.extent135 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86942
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.references[1] National Cancer Institute - USA, “Radiation Therapy to Treat Cancer”. Fecha de acceso: 25 de julio de 2023. Url: https://www.cancer.gov/about-cancer/treatment.spa
dc.relation.references[2] Matthews H. et al. (2022), “Cell cycle control in cancer”, Nat Rev Mol Cell Biol, 23(1):74-88. Doi: 10.1038/s41580-02100404-3.spa
dc.relation.references[3] Zorrilla G. et al. (2004), “Papel de los radicales libres sobre el material genetico”, Revista Cubana de Investigaciones Biomedicas, 23(1):51-57.spa
dc.relation.references[4] Chinillach N. (2017), “Creaci ́on y desarrollo de un plan de control de calidad para tratamientos de IMRT”, Tesis de doctorado en Fisica - Universidad de Valencia, España.spa
dc.relation.references[5] Lopez W. (2021), “Determinacion de dosis absorbida dispersa en Tomoterapia, con respecto a VMAT para evaluacion de tratamiento de meduloblastoma”, Tesis de maestria en f isica medica - Univeridad autonoma del estado de Mexico.spa
dc.relation.references[6] Bustamante A. (2022), “Diferencias en el calculo de dosis absorbida mediante algoritmos Acuros XB y Analitico Anisotropico debido a variaciones de unidades Hounsfield”, Tesis de maestria en fısica medica - Univeridad autonoma del estado de Mexico.spa
dc.relation.references[7] Rana S. et al. (2013), “Verification and dosimetric impact of Acuros XB algorithm for stereotactic body radiation therapy and RapidArc planning for non-small-cell lung cancer patients”, International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2(01):6.spa
dc.relation.references[8] Wilke L . et al. (2019), “ICRU report 91: On prescribing, recording, and reporting of stereotactic treatments with small photon beams”, Strahlenther Onkol, 195:193-198.spa
dc.relation.references[9] Benedict S. et al. (2010), “Task Group 101 report of AAPM: Stereotactic body radiation therapy”, Medical Physics Journal, 37(8):4078-101. Doi: 10.1118/1.3438081.spa
dc.relation.references[10] Fogliata A. et al. (2011), “Dosimetric validation of Acuros XB Advanced Dose Calculation algorithm: Fundamental characterization in water”, Phys Med Biol, 56:1879-904. Doi: 10.1088/0031-9155/56/6/022.spa
dc.relation.references[11] Bush K. et al. (2011), “Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations”, Med Phys, 38:2208 - 21. Doi: 10.1118/1.3567146.spa
dc.relation.references[12] Kan M. et al. (2012), “Verification and dosimetric impact of Acuros XB algorithm on intensity modulated stereotactic radiotherapy for locally persistent nasopharyngeal carcinoma”, Med Phys, 39(8):4705 - 14. Doi: 10.1118/1.4736819.spa
dc.relation.references[13] Vassiliev O. et al. (2010), “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams”, Phys Med Biol, 55(3):581-98. Doi: 10.1088/0031-9155/55/3/002.spa
dc.relation.references[14] Fogliata A. et al. (2011), “Dosimetric evaluation of Acuros XB algorithm in heterogeneous media”, Radiat Oncol, 6:82. Doi: 10.1186/1748-717X-6-82.spa
dc.relation.references[15] Rana S. et al. (2013), “Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes”, J Med Phys, 38(1):9-14. Doi: 10.4103/0971- 6203.106600.spa
dc.relation.references[16] Kosaka T. et al. (2024), “Dosimetric evaluation in Helical TomoTherapy for lung SBRT using Monte Carlo-based independent dose verification software”, J Appl Clin Med Phys, 25(5):e14305. Doi: 10.1002/acm2.14305.spa
dc.relation.references[17] Piffer S. et al. (2021), “Validation of a secondary dose check tool against Monte Carlo and analytical clinical dose calculation algorithms in VMAT”, J Appl Clin Med Phys, 22(4):52-62. Doi: 10.1002/acm2.13209.spa
dc.relation.references[18] Pant A. et al. (2023), “Monitor unit verification for Varian TrueBeam VMAT plans using Monte Carlo calculations and phase space data”, J Appl Clin Med Phys, 24:e14063. Doi: 10.1002/acm2.14063.spa
dc.relation.references[19] Camilleri J. et al. (2019), “DoseCHECK algorithm evaluation used for secondary 3D dose calculation of 3DCRT and VMAT treatment plans”, European Journal of Medical Physics, Vol 68, 5. Doi: 10.1016/j.ejmp.2019.09.088.spa
dc.relation.references[20] McDonald D. et al. (2017), “Validation of a modern second-check dosimetry system using a novel verification phantom”, J Appl Clin Med Phys, 18: 170-177. Doi: 10.1002/acm2.12025.spa
dc.relation.references[21] Zhuang T. et al. (2019), “Script-based Automation in Treatment Planning of Head and Neck Cancer”, Physics in Medicine and Biology, 64(5).spa
dc.relation.references[22] Zhang Q. et al. (2020), “Automatic Verification of Radiation Treatment Parameters Using Scripts in Eclipse”, J Appl Clin Med Phys, 21(1):85-92.spa
dc.relation.references[23] Jackson A. et al. (2021), “Automated Planning for Stereotactic Body Radiotherapy”, Journal of Radiosurgery and SBRT, 7(2):101-109. Doi: 10.1007/s12094-023-03196-4.spa
dc.relation.references[24] Schreiner L. et al. (2020), “End to End Testing in Radiation Therapy”, American Association of Physicists in Medicine - Virtual Library.spa
dc.relation.references[25] Leonie B. et al. (2022), “Systematic end-to-end testing of multiple target treatments using the modular RUBY phantom”, Biomed. Phys. Eng. Express, 8(1):5018 Doi: 10.1088/2057-1976/ac3e37.spa
dc.relation.references[26] Poppinga D. et al. (2020), “Evaluation of the RUBY modular QA phantom for planar and non-coplanar VMAT and stereotactic radiations”, J Appl Clin Med Phys, 21:69. Doi: 10.1002/acm2.13006.spa
dc.relation.references[27] Sung H. et al. (2021), “Estadısticas mundiales sobre el c ancer 2020: estimaciones de GLOBOCAN de incidencia y mortalidad en todo el mundo para 36 canceres en 185 pa ́ıses”, Cancer J Clin, PubMed, 71(3):209-249. Doi: 10.3322/caac.21660.spa
dc.relation.references[28] Organizacion mundial de la salud – OMS, “Cancer de pulmon”. Fecha de acceso: 15 de julio de 2023. Url: https://www.who.int/lung-cancer.spa
dc.relation.references[29] Giraldo A. et al. (2022), “Tendencias en la mortalidad por c ́ancer de pulm ́on en Colombia, 1985-2018”, Rev Panam Salud Publica, 46:e127. Doi: 10.26633/ RPSP.2022.127.spa
dc.relation.references[30] Pardo C. et al. (2013), “Cancer en la Unidad de Cancerologıa de Huila, 2006-2008”, Rev Colombiana de Cancerologıa, 17(2), 62-68.spa
dc.relation.references[31] Rami R. et al. (2014), “The IASLC Lung Cancer Staging Project: the new database to inform the eight edition of the TNM classification of lung cancer”, J Thorac Oncol, 9:1618-1624. Doi: 10.1097/JTO.0000000000000334.spa
dc.relation.references[32] Grupo espanol de cancer de pulmon – EFE:Salud, “Cancer de pulmon”. Fecha de acceso: 18 de agosto de 2023. Url: https://efesalud.com/programas-piloto-deteccion-precoz-cancer-pulmon-oncologos/.spa
dc.relation.references[33] Rehman S. et al. (2015), “Lung Stereotactic Body Radiation Therapy”, Misouri Medecine, 113(6):361-366. PMID:26606817.spa
dc.relation.references[34] Nikhil T. et al. (2018), “Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC): contemporary insights and advances”, Journal of Thoracic Disease, 10(21):S2451-S2464. Doi: 10.21037/jtd.2018.04.52.spa
dc.relation.references[35] Correa R. et al. (2011), “Choroidal Melanoma”, Book Treatment of Metastatic Melanoma. Doi: 10.5772/20282.spa
dc.relation.references[36] Coello K. (2015), “Implementacion de un programa de dosimetrıa in vivo en tratamientos de radioterapia con tecnicas modernas”, Tesis de maestrıa en fısica medica - Universidad Central de Venezuela.spa
dc.relation.references[37] Podgorsak B. et al. (2013), “Radiation Oncology Physics: A Handbook for Teachers and Students”, IAEA, Cap.5 130:140.spa
dc.relation.references[38] Attix F. et al. (1986), “Introduction to radiological physics and radiation dosimetry”, John Wiley and Sons Inc, Cap.1 1:19.spa
dc.relation.references[39] Matos R. (2017), “Fabricacion de bolus que incremente la dosis hacia la superficie y cumpla con la distribucion y dosimetrıa de uso clınico ”, Tesis de maestrıa en fısica medica - Universidad Central de Venezuela.spa
dc.relation.references[40] Tipton K. et al. (2012), “Stereotactic body radiation therapy (SBRT) ”, Med. radiology. Doi: 10.1007/978-3-642-25605-9.spa
dc.relation.references[41] Abuodeh Y. et al. (2016), “Systematic review of case reports on the abscopal effect”, Curr Probl Cancer, 40(1):25-37. Doi:10.1016/j.currproblcancer.2015.10.001.spa
dc.relation.references[42] Craig D. et al. (2021), “The Abscopal Effect of Radiation Therapy”, Future Oncology, 17(13), 1683. Doi: 10.2217/fon2020-0994.spa
dc.relation.references[43] Kim M. et al. (2015), “Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery”, Radiat Oncol J, 33(4): 265 - 275. Doi: 10.3857/roj.2015.33.4.265.spa
dc.relation.references[44] Kuperman V. et al. (2021), “Impact of target dose inhomogeneity on BED and EUD in lung SBRT”, Phys Med Biol, 12;66(1):01. Doi: 10.1088/1361-6560/abd0d1.spa
dc.relation.references[45] Brown J. et al. (2016), “The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? ”, Int J Radiat Oncol Biol Phys, 1;88(2):254-62. Doi: 10.1016/j.ijrobp.2013.07.022.spa
dc.relation.references[46] Bezjak A. et al. (2019), “Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non-Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial”, J Clin Oncol, 37(15):1316-1325. Doi:10.1200/JCO.18.00622.spa
dc.relation.references[47] Videtic G. et al. (2019), “A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer: NRG Oncology/RTOG 0915 Trial”, Nt J Radiat Oncol Biol Phys, 103(5):1077-1084. Doi: 10.1016/j.ijrobp.2018.11.051.spa
dc.relation.references[48] Pelayo D. et al. (2013), “Radioterapia externa: lo que el medico general debe saber”, Revista M edica Cliınica Las Condes, 24(4):705-715. Doi: 10.1016/S0716-8640(13)70210-4.spa
dc.relation.references[49] General Electric Healthcare, “Computed tomography - Discovery RT”. Fecha de acceso: 1 de diciembre de 2023. Url: https://www.gehealthcare.com/products/discovery-rt.spa
dc.relation.references[50] Ergen S. et al. (2024), “Comparison of two different respiratory monitoring systems with 4D-CT images for target volume definition in patients undergoing para-aortic nodal irradiation”, North Clin Istanb, 11(2):120-126. Doi: 10.14744/n- ci.2023.06856.spa
dc.relation.references[51] Sprouts D. et al. (2017), “Comparison of device-based and deviceless 4DCT reconstruction”, Master of thesis - San Diego State University, CA.spa
dc.relation.references[52] Underberg R. et al. (2004), “Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer”, International Journal of Radiation Oncology and Biology and Physics, 60(4), 1283ˆa€“1290. Doi: 10.1016/j.ijrobp.2004.07.665.spa
dc.relation.references[53] Corbacho R. et al. (2021), “Implementacion de SBRT de pulmon evaluando diferentes soluciones tecnologicas”, Tesis de carrera maestria en Fısica Medica - Instituto Balseiro - Universidad Nacional de Cuyo, Argentina.spa
dc.relation.references[54] Roa D. , “Rayos Contra Cancer - SBRT/SRS for clinics course - Session 9 - Lung SBRT Case-Based Learning”. Fecha de acceso: 18 de noviembre de 2023. Url: https://www.youtube.com/watch?v=XnIcf5egttY.spa
dc.relation.references[55] CIVCO Radiotherapy. , “Inmovilizaci ́on Body Pro-Lok ONE SBRT”. Fecha de acceso: 13 de diciembre de 2023. Url: https://civcort.com/ro/Stereotactic-Body-Radiation-Therapy/Body-Pro-Lok-One..spa
dc.relation.references[56] Das J. et al. (2020), “Intensity Modulated Radiation therapy: A Clinical Overview”, IOP Publishing, 9:1618-1624. Doi: 10.1088/978-0-7503-1335-3.spa
dc.relation.references[57] The dosimetry company - PTW, “VeriQA RT, RUBY modular QA phantom, Octavius 4D, SRS 1000, PintPoin, Unidos Romeo”. Fecha de acceso: 25 de agosto de 2023. Url: https://www.ptwdosimetry.com/en/products/.spa
dc.relation.references[58] Varian Medical Systems a Siemens Healthineers company, “Halcyon”. Fecha de acceso: 21 de septiembre de 2023. Url: https://www.varian.com/es/products/radiotherapy/treatment-delivery/halcyon.spa
dc.relation.references[59] Miyasaka R. et al. (2022), “Investigation of Halcyon multileaf collimator model in Eclipse treatment planning system: A focus on the VMAT dose calculation with the Acuros XB algorithm”, Journal Of Applied Clinical Medical Physics, 23(3). Doi: 10.1002/acm2.13519.spa
dc.relation.references[60] QA Lified Building Quality, “Pruebas End-To-End”. Fecha de acceso: 27 de septiembre de 2023. Url: https://qalified. com/es/blog/end-to-end-testing/.spa
dc.relation.references[61] Pallotta S. et al. (2022), “End-to-end test for lung SBRT: An Italian multicentric pilot experience”, Physica Medica, 104:129-135. Doi: 10.1016/j.ejmp.2022.11.004.spa
dc.relation.references[62] Klein E. et al. (2009), “ Task Group 142 report of AAPM: Quality assurance of medical accelerators”, Journal of Applied Clinical Medical Physics, 36(9Part1), 4197ˆa€“4212. Doi: 10.1118/1.3190392.spa
dc.relation.references[63] Bissonnette J. et al. (2012), “ Task Group 179 report of AAPM: Quality assurance for image-guided radiation therapy utilizing CT-based technologies”, Journal of Applied Clinical Medical Physics, 39(4), 1946ˆa€“1963. Doi: 10.1118/1.3690466.spa
dc.relation.references[64] Smilowitz J. et al. (2015), “ AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams”, Journal of Applied Clinical Medical Physics, 16(5), 14ˆa€“34. Doi: 10.1120/jacmp.v16i5.5768.spa
dc.relation.references[65] Miften M. et al. (2018), “ Task Group 218 report of AAPM: Tolerance limits and methodologies for IMRT measurement based verification QA”, Journal of Applied Clinical Medical Physics, 45(4), e53ˆa€“e83. Doi: 10.1002/mp.12810.spa
dc.relation.references[66] Lutz W. et al. (1988), “ A system for stereotactic radiosurgery with a linear accelerator”, Int J Radiat Oncol Biol Phys,14(2), 373ˆa€“381. Doi: 10.1016/0360-3016(88)90446-4.spa
dc.relation.references[67] Varian Medical Systems, “Eclipse Scripting API Reference Guide”. P1021698-003-C.spa
dc.relation.references[68] Instituto Medico Oncologico, “IMO”. Fecha de acceso: 26 de mayo de 2024. Url: https://imoips.com/index.html.spa
dc.relation.references[69] Gobierno de Colombia - Ministerio de Salud, “Guıa instructiva para licenciamiento de equipos generadores de radiacion ionizante en radioterapia”. Fecha de acceso: 28 de mayo de 2024. Url: https://actualisalud.com/wp-content/uploads/ 2018/11/Gu%C3%ADa-Licenciamiento-Radioteraia.pdf.spa
dc.relation.references[70] Gobierno de Colombia - Ministerio de la Proteccion Social, “Resolucion 4816 de 2008”. Fecha de acceso: 28 de mayo de 2024. Url: https://www.saludcapital.gov.co/DSP/Tecnovigilancia/Resoluci%F3n%204816%20de%202008.pdf.spa
dc.relation.references[71] Gobierno de Colombia - Ministerio de Salud y Proteccion Social, “Resolucion 2003 de 2014”. Fecha de acceso: 28 de mayo de 2024. Url: https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%202003%20de%202014.pdf.spa
dc.relation.references[72] Gobierno de Colombia - Ministerio de Salud y Proteccion Social, “Resolucion 482 de 2018”. Fecha de acceso: 28 de mayo de 2024. Url: https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%20No.%20482%20de%202018.pdf.spa
dc.relation.references[73] Tillikainen L. et al. (2008), “A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media”, Physics in Medicine and Biology, 53(14), 3821ˆa€“3839. Doi: 10.1088/0031-9155/53/14/008.spa
dc.relation.references[74] Knoos T. et al. (2006), “Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations”, Physics in Medicine and Biology, 21;51(22):5785-807. Doi: 10.1088/0031-9155/51/22/005.spa
dc.relation.references[75] Hoffmann L. et al. (2018), “Validation of the Acuros XB dose calculation algorithm versus Monte Carlo for clinical treatment plans”, Medical Physics Journal, 45:3909-3815. Doi: 10.1002/mp.13053.spa
dc.relation.references[76] Fogliata A. et al. (2012), “Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments”, Int J Radiat Oncol Biol Phys, 83(5):1587-1595. Doi:10.1016/j.ijrobp.2011.10.078.spa
dc.relation.references[77] Kroon P. et al. (2013), “Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans”, Radiat Oncol, 24(8):149. Doi: 10.1186/1748- 717X-8-149.spa
dc.relation.references[78] Varian Medical Systems, “Eclipse Photon and Electron Algorithms Reference Guide”. P1044595-001-A.spa
dc.relation.references[79] Aswiechowski M. et al. (2023), “Monte Carlo Tree Search: a review of recent modifications and applications”, Artif Intell Rev, 56, 2497ˆa€“2562. Doi: 10.1007/s10462-022-10228-y.spa
dc.relation.references[80] Kawrakow I. et al. (2023), “The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport”, National Research Council, Canada. NRCC Report PIRS-701.spa
dc.relation.references[81] Aplicaciones Tecnologicas de la Fısica, “Historia del M ́etodo Montecarlo desde las armas nucleares a su aplicacion en fısica medica”. Fecha de acceso: 8 de diciembre de 2023. Url: https://www.atfisica.com/ metodo-montercalo-radmontecarlo-historia-fisica-medica.spa
dc.relation.references[82] International Atomic Energy Agency. (2024), “Absorbed Dose Determination in External Beam Radiotherapy, Technical Reports Series No. 398 (Rev. 1)”, IAEA, Vienna. Doi: 10.61092/iaea.ve7q-y94k.spa
dc.relation.references[83] International Atomic Energy Agency. (2017), “Dosimetry of Small Static Fields Used in External Beam Radiotherapy, Technical Reports Series No. 483”, IAEA, Vienna.spa
dc.relation.references[84] Low D. et al. (1998), “A technique for the quantitative evaluation of dose distributions”, Medical physics, 25(5), 656-661.spa
dc.relation.references[85] Petersson K. (2014), “Optimising the clinical use of tomotherapy”, Doctoral dissertation - Lund University, Sweden.spa
dc.relation.references[86] Yaparpalvi R. et al. (2018), “Evaluating which plan quality metrics are appropriate for use in lung SBRT”, Br J Radiol, 91(1083). Doi: 10.1259/bjr.20170393.spa
dc.relation.references[87] Fern ́andez L. et al. (2017), “Recomendaciones de la Sociedad Espanola de Fısica Medica (SEFM) sobre implementacion y uso clınico de radioterapia estereotaxica extracraneal (SBRT)”, Revista De Fısica Medica, Vol. 18 N ́um. 2.spa
dc.relation.references[88] Shaw E. et al. (1993), “Radiation therapy oncology group: Radiosurgery quality assurance guidelines”, Int J Radiat Oncol Biol Phys, 27(5):1231-1239. Doi: 10.1016/0360-3016(93)90548-A.spa
dc.relation.references[89] Al-Hallaq H. et al. (2016), “Evaluating which plan quality metrics are appropriate for use in lung SBRT”, Pract Radiat Oncol, 6(6):e291-e298. Doi: 10.1016/j.prro.2016.05.004.spa
dc.relation.references[90] International Commission on Radiation Units and Measurements. (1999), “ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy”, ICRU, Bethesda.spa
dc.relation.references[91] Varian Medical Systems a Siemens Healthineers company, “My Varian webinar: The Difference Between AAA and Acuros: A Focus on Lung SBRT Planning”. Fecha de acceso: 8 de agosto de 2023.spa
dc.relation.references[92] Mato C. et al. (2015), “AAPM Task Group 263: Tackling Standardization of Nomenclature for Radiation Therapy”, American Association of Physicists in Medicine, Vol 93. Doi: 10.1016/j.ijrobp.2015.07.1525.spa
dc.relation.references[93] Timmerman R. et al. (2022), “A Story of Hypofractionation and the Table on the Wall”, Int J Radiat Oncol Biol Phys, 112(1):4-21. Doi: 10.1016/j.ijrobp.2021.09.027.spa
dc.relation.references[94] Kerns J. (2023), “Pylinac: Image analysis for routine quality assurance in radiotherapy”, Journal of Open Source Software, 8(92), 6001. Doi: 10.21105/joss.06001.spa
dc.relation.references[95] Zhu T. (2021), “AAPM Task Group 269: On independent calculation-based dose/MU verification for IMRT”, American Association of Physicists in Medicine, 48(10):e808-e829. Doi: 10.1002/mp.15069.spa
dc.relation.references[96] Pokhrel D. (2021), “Clinical validation of ring-mounted halcyon linac for lung SBRT: comparison to SBRT-dedicated C-arm linac treatment”, Medical Physics Journal, 22(1):261-270. Doi: 10.1002/acm2.13146.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsCarga Corporal (Radioterapia)spa
dc.subject.decsBody Burdeneng
dc.subject.decsNeoplasias Pulmonaresspa
dc.subject.decsLung Neoplasmseng
dc.subject.decsEvaluación Preclínica de Medicamentosspa
dc.subject.decsDrug Evaluation, Preclinicaleng
dc.subject.proposalSBRT pulmonarspa
dc.subject.proposalLung SBRTeng
dc.subject.proposalAlgoritmo Analítico Anisotrópicospa
dc.subject.proposalAnisotropic Analytical Algorithmeng
dc.subject.proposalAcuros XBeng
dc.subject.proposalAcuros XBspa
dc.subject.proposalVeriQAspa
dc.subject.proposalVeriQAeng
dc.subject.proposalSciMoCaspa
dc.subject.proposalTPS Eclipsespa
dc.subject.proposalE2Espa
dc.subject.proposalWLspa
dc.titleValidación dosimétrica de planes de radioterapia estereotáctica en cáncer de pulmónspa
dc.title.translatedDosimetric validation of plans stereotactic radiotherapy in cancer lungeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060655484.2024.pdf
Tamaño:
17.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: