Analysis of a depropanizer column with internal energy integration of concentric configuration

dc.contributor.advisorMartínez Riascos, Carlos Arturo
dc.contributor.advisorMendoza Muñoz, Diego Fernando
dc.contributor.authorMancera Apolinar, Javier Alexander
dc.contributor.cvlacJavier Alexander Mancera (https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349782)spa
dc.contributor.orcid0000-0003-4793-7442spa
dc.date.accessioned2023-08-24T16:35:29Z
dc.date.available2023-08-24T16:35:29Z
dc.date.issued2022-11
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIn this study, the performance of a concentric distillation column with internal energy integration (HIDiC) was analyzed, considering the system propylene-propane and based on the second thermodynamic law. Additionally, the hydraulic behavior was studied and the efficiency of some trays in different points of column was estimated by CFD. To achieve that, five specific objectives were established: 1) Select the most suitable type of concentric HIDiC configuration for the separation of the propylene-propane mixture, considering second thermodynamic law, as well as the effect of the configuration on the entropy generation, the energy and exergy required for the separation. 2) Fit a CFD model for predicting the hydraulic behavior and mass transfer efficiency in a tray of the selected HIDiC. 3) Identify effects of column design and operating variables on thermal, hydraulic and mass transfer performance in a HIDiC tray. 4) Analyze the second law efficiency in the selected HIDiC, distinguishing the exergetic losses by phenomena, and 5) Propose a preliminary methodology for the conceptual design of concentric HIDiCs, considering the operational viability and its thermodynamic efficiency. In the development of the first objective, it was possible to determine that the HIDiC column that presents the best exergetic behavior, for the separation of the studied system, is the Top-HIDiC (Chapter 1). In the second objective, due to the absence of experimental data for the chosen system, we first proceeded to validate the use of CFD for a known binary system with experimental data of its hydrodynamic behavior (Chapter 2), and mass transfer, through tray efficiency (Chapter 3). Once the hydrodynamic and mass transfer components were validated, the CFD was applied to a tray of the HIDiC for the propylene-propane system (Chapter 4), predicting the clear liquid height and the tray efficiency in rectification and stripping sections, obtained results were coherent with the studied phenomenon. For the third objective (Chapter4), three integrated trays ‒located in different places of the HIDiC: above, in the middle and in the lower‒ were analyzed to check the influence of initial and boundary conditions on the studied properties (clear liquid height and tray efficiency). For the fourth objective, it was possible to discriminate the exergetic losses for each component of the HIDiC column and they were compared with the losses generated in a Conventional Column and a Vapor Recompression Column, confirming a higher thermodynamic performance for the HIDiC (Chapter 5). Finally, in the development of the last objective, it was possible to establish a preliminary conceptual design through 5 general steps, with the exergetic loss as the main design criteria (Chapter 6). (Texto tomado de la fuente)eng
dc.description.abstractEn este estudio se analizó el desempeño termodinámico de una columna de destilación concéntrica, con integración energética interna, para separar la mezcla propileno-propano, mediante el análisis de segunda ley de la columna. Adicional, se estudió el comportamiento hidráulico y se determinó la eficiencia de un plato en diferentes secciones de este tipo de columnas mediante CFD. Para lograr esto, se establecieron cinco objetivos específicos: 1) Seleccionar del tipo de configuración HIDiC concéntrica más adecuado para la separación de la mezcla propileno-propano mediante el análisis de segunda ley de la termodinámica aplicado en la columna completa considerando el efecto de la configuración sobre la entropía generada, la energía y exergía requerida para la separación. 2) Predecir el comportamiento hidráulico y la eficiencia de transferencia de masa en un plato de la HIDiC seleccionada usando CFD. 3) Identificar efectos de las variables de diseño y de operación de la columna sobre el desempeño térmico, hidráulico y de transferencia de masa en un plato de la columna HIDiC. 4) Analizar la eficiencia de segunda ley en la HIDiC seleccionada considerando las pérdidas exergéticas generadas por cada uno de los fenómenos, y 5) Proponer una metodología preliminar para el diseño conceptual de columnas HIDiC concéntricas, considerando la viabilidad operacional y su eficiencia termodinámica. En el desarrollo del primer objetivo, se logró determinar que la columna HIDiC que presenta mejores resultados exergéticos (segunda ley), para la separación del sistema de estudio, fue la HIDiC de tope (Capítulo 1). En el segundo objetivo, debido a la ausencia de datos experimentales del sistema en este tipo de columnas, se procedió primeramente a validar el uso de CFD para el caso de un sistema binario conocido que contara con datos experimentales tanto en la parte hidrodinámica mediante la propiedad altura del líquido claro (Capítulo 2), como de transferencia de masa mediante la eficiencia de plato (Capítulo 3) obteniéndose resultados muy cercanos a los experimentales; éstas simulaciones se realizaron sobre un plato perforado rectangular. Una vez validado la parte hidrodinámica y de transferencia de masa, se procedió a aplicar el CFD a una sección de plato de la columna HIDiC (Capítulo 4), prediciendo la altura del líquido claro y la eficiencia de plato, en ambas secciones, rectificación y agotamiento, obteniéndose resultados coherentes con los fenómenos estudiados. Para dar cumplimento al objetivo tres, se tomaron tres platos integrados ubicados en diferentes lugares de la columna HIDiC, uno arriba, otro en el medio y otro en la parte de debajo de la columna las cuales contaban con tres condiciones diferentes (Capítulo 4) comprobando la influencia de estas condiciones iniciales y de frontera sobre las propiedades estudiadas (altura del líquido claro y eficiencia de plato). En el cuarto objetivo se logró discriminar las perdidas exergéticas por cada componente de la columna HIDiC y se compararon con las pérdidas generadas con la columna convencional y la de recompresión de vapor obteniéndose mejores resultados en la columna HIDiC (Capítulo 5). Para finalizar, en el desarrollo del último objetivo, se logró establecer un diseño conceptual preliminar mediante 5 pasos generales teniendo como base principal del diseño el principio de pérdida exergética (Capítulo 6).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería Químicaspa
dc.description.sponsorshipColciencias - Beca 617spa
dc.format.extentxxvi, 164 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84597
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesBejan, A. (2013). Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press.spa
dc.relation.referencesHanley, N., McGregor, P., Swales, J., & Tuner, K. (2009). Do increases in resource productivity improve environmental quality and sustainability? Ecological Economics, 68(3), 692–709. https://dspace.stir.ac.uk/bitstream/1893/7707/1/Hanley et al Ecological Economics 2009_turner last.pdfspa
dc.relation.referencesHepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12(3), 593–661. https://doi.org/10.1016/j.rser.2006.10.001spa
dc.relation.referencesKemp, I. C. (2007). Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy (I. C. B. T.-P. A. and P. I. (Second E. Kemp (ed.); Second). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-075068260-2.50006-7spa
dc.relation.referencesKotas, T. J. (1995). The exergy method of thermal plant analysis. Krieger Pub.spa
dc.relation.referencesKrishna, R., & Van Baten, J. M. (2003). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Research and Design, 81(1), 27–38. https://doi.org/10.1205/026387603321158168spa
dc.relation.referencesMorar, M., & Agachi, P. S. (2010). Review: Important contributions in development and improvement of the heat integration techniques. Computers and Chemical Engineering, 34(8), 1171–1179. https://doi.org/10.1016/j.compchemeng.2010.02.038spa
dc.relation.referencesNakaiwa, M., Huang, K., Endo, A., Ohmori, T., Akiya, T., & Takamatsu, T. (2003). Internally heat-integrated distillation columns: A review. Chemical Engineering Research and Design, 81(1), 162–177. https://doi.org/10.1205/026387603321158320spa
dc.relation.referencesSun, A. (2010). Internal heat exchange in a concentric tray heat integrated distillation column (HIDiC). DELF UNIVERSITY OF TECHNOLOGY.spa
dc.relation.referencesTu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach (Third). Butterworth-Heinemann.spa
dc.relation.referencesGonzález Plaza, M., Ferreira, A., Santos, J., Ribeiro, A., Müller, U., Trukhan, N., Loureiro, J., & Rodrigues, A. (2011). Propane/propylene separation by adsorption using shaped copper trimesate MOF. Microporous and Mesoporous Materials - MICROPOROUS MESOPOROUS MAT, 157. https://doi.org/10.1016/j.micromeso.2011.06.024spa
dc.relation.referencesKiss, A. A., & Olujić, Ž. (2014). A review on process intensification in internally heat-integrated distillation columns. Chemical Engineering and Processing: Process Intensification, 86, 125–144. https://doi.org/10.1016/j.cep.2014.10.017spa
dc.relation.referencesLiu, X. G., & Qian, J. X. (2000). Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns. Chemical Engineering and Technology, 23(3), 235–241. https://doi.org/10.1201/b11330-2spa
dc.relation.referencesMatsuda, K., Iwakabe, K., Ohmori, T., & Nakaiwa, M. (2010). Dynamic behavior of an internally heat-integrated distillation column (HIDiC). Chemical Engineering Transactions, 21, 127–132. https://doi.org/10.3303/CET1021022spa
dc.relation.referencesMendoza, D. F., Palacio, L. M., Graciano, J. E. A., Riascos, C. A. M., Vianna, A. S., & Roux, G. A. C. Le. (2013). Real-Time Optimization of an Industrial-Scale Vapor Recompression Distillation Process . Model Validation and Analysis. Industrial and Engineering Chemistry Research, 52, 5735–5746.spa
dc.relation.referencesMendoza, D. F., & Riascos, C. A. M. (2011). Entropy minimization in design of extractive distillation system with internal heat exchangers. Chemical Engineering Transactions, 25, 405–410. https://doi.org/10.3303/CET1125068spa
dc.relation.referencesNakaiwa, M., Huang, K., Naito, K., Endo, A., Akiya, T., Nakane, T., & Takamatsu, T. (2001). Parameter analysis and optimization of ideal heat integrated distillation columns. Computers and Chemical Engineering, 25(4–6), 737–744. https://doi.org/10.1016/S0098-1354(01)00649-4spa
dc.relation.referencesNakaiwa, M., Huang, K., Owa, M., Akiya, T., Nakane, T., Sato, M., & Takamatsu, T. (1997). Energy savings in heat-integrated columns. Energy, 22(6), 621–625.spa
dc.relation.referencesOlujić, Ž., Sun, L., de Rijke, A., & Jansens, P. J. (2006). Conceptual design of an internally heat integrated propylene-propane splitter. Energy, 31(15), 3083–3096. https://doi.org/10.1016/j.energy.2006.03.030spa
dc.relation.referencesPulido, J. L. (2008). Study of a New Concept of Distillation Column: Heat-Integrated Distillation Column (HIDiC). In Bachelor Thesis in Chemical Engineering. Industrial University of Santanderspa
dc.relation.referencesSuphanit, B. (2010). Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution. Energy, 35(3), 1505–1514. https://doi.org/10.1016/j.energy.2009.12.008spa
dc.relation.referencesANSYS Release 19. (2018). ANSYS Fluent Theory Guide.spa
dc.relation.referencesBennett, D. L., Agrawal, R., & Cook, P. J. (1983). New pressure drop correlation for sieve tray distillation columns. AIChE Journal, 29(3), 434–442. https://doi.org/10.1002/aic.690290313spa
dc.relation.referencesBhole, M. R., Joshi, J. B., & Ramkrishna, D. (2008). CFD simulation of bubble columns incorporating population balance modeling. Chemical Engineering Science, 63(8), 2267–2282. https://doi.org/10.1016/j.ces.2008.01.013spa
dc.relation.referencesChen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y.-C. (2014). OpenFOAM for Computational Fluid Dynamics. Notices of the American Mathematical Society, 61(4), 354. https://doi.org/10.1090/noti1095spa
dc.relation.referencesGesit, G., Nandakumar, K., & Chuang, K. T. (2003). CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE Journal, 49(4), 910–924. https://doi.org/10.1002/aic.690490410spa
dc.relation.referencesGrace, J. R., Wairegi, T., & Brophy, J. (1978). Break‐up of drops and bubbles in stagnant media. The Canadian Journal of Chemical Engineering, 56(1). https://doi.org/10.1002/cjce.5450560101spa
dc.relation.referencesGupta, A., & Roy, S. (2013). Euler-Euler simulation of bubbly flow in a rectangular bubble column: Experimental validation with Radioactive Particle Tracking. Chemical Engineering Journal, 225. https://doi.org/10.1016/j.cej.2012.11.012spa
dc.relation.referencesHofer, H. (1983). Influence of gas-phase dispersion on plate column efficiency. German Chemical Engineering, 6(2).spa
dc.relation.referencesIshii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843–855. https://doi.org/10.1002/aic.690250513spa
dc.relation.referencesKaltenbacher, E. (1984). On the Effect of the Bubble Size Distribution and the Gas-Phase Diffusion on the Selectivity of Sieve Trays. Chemical Engineering Fundamentals, 1(47).spa
dc.relation.referencesKataoka, I., & Serizawa, A. (1989). Basic equations of turbulence in gas-liquid two-phase flow. International Journal of Multiphase Flow, 15(5). https://doi.org/10.1016/0301-9322(89)90045-1spa
dc.relation.referencesKrishna, R., Urseanu, M. I., Van Baten, J. M., & Ellenberger, J. (1999). Rise velocity of a swarm of large gas bubbles in liquids. Chemical Engineering Science, 54(2), 171–183. https://doi.org/10.1016/S0009-2509(98)00245-0spa
dc.relation.referencesKrishna, R., Van Baten, J. M., Ellenberger, J., Higler, A. P., & Taylor, R. (1999). CFD simulations of sieve tray hydrodynamics. Chemical Engineering Research and Design, 77(7), 639–646. https://doi.org/10.1205/026387699526575spa
dc.relation.referencesLaborde-Boutet, C., Larachi, F., Dromard, N., Delsart, O., & Schweich, D. (2009). CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 64(21). https://doi.org/10.1016/j.ces.2009.07.009spa
dc.relation.referencesLi, X., Yang, N., Sun, Y., Zhang, L., Li, X., & Jiang, B. (2014). Computational fluid dynamics modeling of hydrodynamics of a new type of fixed valve tray. Industrial and Engineering Chemistry Research, 53(1), 379–389. https://doi.org/10.1021/ie400408uspa
dc.relation.referencesLiang, X. F., Pan, H., Su, Y. H., & Luo, Z. H. (2016). CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column. Chemical Engineering Research and Design, 112, 88–102. https://doi.org/10.1016/j.cherd.2016.06.014spa
dc.relation.referencesLockett, M. J. (1986). Distillation tray fundamentals. Cambridge University Press.spa
dc.relation.referencesLockett, M. J., Kirkpatrick, R. D., & Uddin, M. S. (1979). Froth regime point efficiency for gas-film controlled mass transfer on a two-dimensional sieve tray. Trans Inst Chem Eng, 57(1).spa
dc.relation.referencesLopez de Bertodano M, Lahey RT, J. O. (1994). Development of a k-e model for bubbly two-phase flow. Journal of Fluids Engineering, 116. https://doi.org/https://doi.org/10.1115/1.2910220spa
dc.relation.referencesLote, D. A., Vinod, V., & Patwardhan, A. W. (2018). Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow. Multiphase Science and Technology, 30(1), 31–76. https://doi.org/10.1615/MultScienTechn.2018025983spa
dc.relation.referencesMagolan, B., Lubchenko, N., & Baglietto, E. (2019). A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems. Chemical Engineering Science: X, 2, 100009. https://doi.org/10.1016/j.cesx.2019.100009spa
dc.relation.referencesRahimi, R., Mazarei Sotoodeh, M., & Bahramifar, E. (2012). The effect of tray geometry on the sieve tray efficiency. Chemical Engineering Science, 76, 90–98. https://doi.org/10.1016/j.ces.2012.01.006spa
dc.relation.referencesRoshdi, S., Kasiri, N., Hashemabadi, S. H., & Ivakpour, J. (2013). Computational fluid dynamics simulation of multiphase flow in packed sieve tray of distillation column. Korean Journal of Chemical Engineering, 30(3), 563–573. https://doi.org/10.1007/s11814-012-0166-1spa
dc.relation.referencesRzehak, R., & Krepper, E. (2013a). Bubble-induced turbulence: Comparison of CFD models. Nuclear Engineering and Design, 258, 57–65. https://doi.org/10.1016/j.nucengdes.2013.02.008spa
dc.relation.referencesRzehak, R., & Krepper, E. (2013b). CFD modeling of bubble-induced turbulence. International Journal of Multiphase Flow, 55, 138–155. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007spa
dc.relation.referencesSadripour, M., Rahimi, A., & Hatamipour, M. S. (2012). Experimental Study and CFD Modeling of Wall Deposition in a Spray Dryer. Drying Technology, 30(6), 574–582. https://doi.org/10.1080/07373937.2011.653613spa
dc.relation.referencesSato, Y., Sadatomi, M., & Sekoguchi, K. (1981). Momentum and heat transfer in two-phase bubble flow-I. Theory. International Journal of Multiphase Flow, 7(2). https://doi.org/10.1016/0301-9322(81)90003-3spa
dc.relation.referencesSchiller, L., & Naumann, Z. (1935). A drag coefficient correlation. In Z.Ver.Deutsch.Ing (Vol. 77, Issues 13–14). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006spa
dc.relation.referencesSimonin, O., & Viollet, P. L. (1990). Prediction of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 91.spa
dc.relation.referencesSun, Z. M., Liu, B., Yuan, X. G., Liu, C. J., & Yu, K. T. (2005). New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Industrial and Engineering Chemistry Research, 44(12), 4427–4434. https://doi.org/10.1021/ie049382yspa
dc.relation.referencesTomiyama, A. (1998). Struggle with computational bubble dynamics. Multiphase Sci Technol. Multiphase Science Technology, 10.spa
dc.relation.referencesTreybal, R. E. (1981). Mass Transfer Operations 3th edition. In McGraw-Hill.spa
dc.relation.referencesTroshko, A. A., & Hassan, Y. A. (2001). A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow, 27(11). https://doi.org/10.1016/S0301-9322(01)00043-Xspa
dc.relation.referencesVan Baten, J. M., Ellenberger, J., & Krishna, R. (2001). Hydrodynamics of reactive distillation tray column with catalyst containing envelopes: Experiments vs. CFD simulations. Catalysis Today, 66(2–4), 233–240. https://doi.org/10.1016/S0920-5861(00)00625-8spa
dc.relation.referencesWang, T., & Wang, J. (2007). Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science, 62(24), 7107–7118. https://doi.org/10.1016/j.ces.2007.08.033spa
dc.relation.referencesWang, T., Wang, J., & Jin, Y. (2005). Population balance model for gas - Liquid flows: Influence of bubble coalescence and breakup models. Industrial and Engineering Chemistry Research, 44(19), 7540–7549. https://doi.org/10.1021/ie0489002spa
dc.relation.referencesWang, T., Wang, J., & Jin, Y. (2006). A CFD-PBM coupled model for gas-liquid flows. AIChE Journal, 52(1), 125–140. https://doi.org/10.1002/aic.10611spa
dc.relation.referencesXing, C., Wang, T., & Wang, J. (2013). Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chemical Engineering Science, 95, 313–322. https://doi.org/10.1016/j.ces.2013.03.022spa
dc.relation.referencesYang, G., Guo, K., & Wang, T. (2017). Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model. Chemical Engineering Science, 170, 251–262. https://doi.org/10.1016/j.ces.2017.01.013spa
dc.relation.referencesZhao, H., Li, Q., Yu, G., Dai, C., & Lei, Z. (2019). Performance analysis and quantitative design of a flow-guiding sieve tray by computational fluid dynamics. AIChE Journal, 65(5), 1–13. https://doi.org/10.1002/aic.16563spa
dc.relation.referencesAbbasnia, S., Nasri, Z., & Najafi, M. (2019). Comparison of the mass transfer and efficiency of Nye tray and sieve tray by computational fluid dynamics. Separation and Purification Technology, 215. https://doi.org/10.1016/j.seppur.2019.01.010spa
dc.relation.referencesBiddulph, M. W., & Dribika, M. M. (1986). Distillation efficiencies on a large sieve plate with small‐diameter holes. AIChE Journal, 32(8), 1383–1388. https://doi.org/10.1002/aic.690320817spa
dc.relation.referencesBird, R., Stewart, W., & Lightfoot, E. (1958). Transport Phenomena (2nd ed.).spa
dc.relation.referencesMorel, C. (1995). An order of magnitude analysis of the two-phase k–e model. International Fluid Mechanics. https://doi.org/10.1615/InterJFluidMechRes.v22.i3-4.30spa
dc.relation.referencesDejanović, I., Matijašević, L., & Olujić, Ž. (2010). Dividing wall column-A breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification, 49(6), 559–580. https://doi.org/10.1016/j.cep.2010.04.001spa
dc.relation.referencesDribika, M. M., & Biddulph, M. W. (1986). Scaling‐up distillation efficiencies. AIChE Journal, 32(11), 1864–1875. https://doi.org/10.1002/aic.690321112spa
dc.relation.referencesGuevara, M. A., Guevara, F. A., & Belalcazar, L. C. (2018). Experimental Data and New Binary Interaction Parameters for Ethanol- Water VLE at Low Pressures Using NRTL and UNIQUAC. TECCIENCIA, 8(24), 17–26. https://doi.org/http://dx.doi.org/10.18180/tecciencia.2018.24.3spa
dc.relation.referencesGuevara, M., & Belalcazar, L. (2017). NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model. Revista Facultad de Ingeniería, 82, 82–93. https://doi.org/10.17533/udea.redin.n82a11spa
dc.relation.referencesHigbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of the American Institute of Chemical Engineers, 35, 365–389.spa
dc.relation.referencesKockmann, N. (2014). 200 Years in Innovation of Continuous Distillation. ChemBioEng Reviews, 1(1), 40–49. https://doi.org/10.1002/cben.201300003spa
dc.relation.referencesLamont, J. C., & Scott, D. S. (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 16(4). https://doi.org/10.1002/aic.690160403spa
dc.relation.referencesYanagi, T., & Sakata, M. (1982). Performence of a comercial scale 14% hole area sieve tray. Industrial & Engineering Chemistry Process Design and Development, 21(4), 712–717. https://doi.org/https://doi.org/10.1021/i200019a029spa
dc.relation.referencesMalvin, A., Chan, A., & Lau, P. L. (2014). CFD study of distillation sieve tray flow regimes using the droplet size distribution technique. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1354–1368. https://doi.org/10.1016/j.jtice.2014.01.002spa
dc.relation.referencesNoriler, D., Barros, A. A. C., Wolf Maciel, M. R., & Meier, H. F. (2010). Simultaneous momentum, mass, and energy transfer analysis of a distillation sieve tray using CFD techniques: Prediction of efficiencies. Industrial and Engineering Chemistry Research, 49(14), 6599–6611. https://doi.org/10.1021/ie9013925spa
dc.relation.referencesNoriler, D., Meier, H. F., Barros, A. A. C., & Wolf Macel, M. R. (2009). Prediction of efficiencies through simultaneous momentum, mass and energy transfer analyses in a distillation sieve tray by CFD techniques. In Computer Aided Chemical Engineering (Vol. 27, Issue C). Elsevier Inc. https://doi.org/10.1016/S1570-7946(09)70415-8spa
dc.relation.referencesOlujić, Ž., Jödecke, M., Shilkin, A., Schuch, G., & Kaibel, B. (2009). Equipment improvement trends in distillation. Chemical Engineering and Processing: Process Intensification, 48(6), 1089–1104. https://doi.org/10.1016/j.cep.2009.03.004spa
dc.relation.referencesRahimi, M. R., Rahimi, R., Shahraki, F., & Zivdar, M. (2006). Prediction of temperature and concentration distributions of distillation sieve trays by CFD. Tamkang Journal of Science and Engineering, 9(3), 265–278.spa
dc.relation.referencesRanz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Parts I & II. Chem. Eng. Progr, 48(22).spa
dc.relation.referencesSun, Z. M., Yu, K. T., Yuan, X. G., & Liu, C. J. (2007). A modified model of computational mass transfer for distillation column. Chemical Engineering Science, 62(7), 1839–1850. https://doi.org/10.1016/j.ces.2006.12.021spa
dc.relation.referencesVan Baten, J. M., & Krishna, R. (2000). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Journal, 77(3), 143–151. https://doi.org/10.1016/S1385-8947(99)00164-3spa
dc.relation.referencesVersteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics The Finite Volume Method. In Fluid flow handbook. McGraw-Hill …. Longman Scitific & Technical. https://doi.org/10.2514/1.22547spa
dc.relation.referencesWang, T., Wang, J., & Jin, J. (2004). An efficient numerical algorithm for “A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow.” Chemical Engineering Science, 59(12), 2593–2595. https://doi.org/10.1016/j.ces.2004.03.011spa
dc.relation.referencesAshrafizadeh, S. A., Amidpour, M., & Abolmashadi, M. (2013). Exergy analysis of distillation column using concept of driving forces. Journal of Chemical Engineering of Japan, 46(7), 434–443. https://doi.org/10.1252/jcej.11we038spa
dc.relation.referencesBernal, D., Castellanos, O., Bejarano, P., & Rodriguez, G. (2011). Analisis y diseño de platos y columnas de platos. Universidad Nacional de Colombia.spa
dc.relation.referencesClaumann, C. A., Peruzzo, T., Felice, V. De, Marangoni, C., & Machado, R. A. F. (2015). Modeling and process optimization: an approach using aspen plus and matlab in the energy integration study of distillation columns. VIII Congreso Argentino de Ingeniería Química y 3 JASP, 1.spa
dc.relation.referencesGadalla, M., Olujić, Ž., de Rijke, A., & Jansens, P. J. (2006). Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures. Energy, 31(13), 2409–2417. https://doi.org/10.1016/j.energy.2005.10.029spa
dc.relation.referencesGadalla, M. A. (2009). Internal heat integrated distillation columns (iHIDiCs)-New systematic design methodology. Chemical Engineering Research and Design, 87(12), 1658–1666. https://doi.org/10.1016/j.cherd.2009.06.005spa
dc.relation.referencesHarvindran, V., & Foo, D. C. Y. (2021). Design of Internally Heat‐Integrated Distillation Column ( HIDiC ). Process Intensification and Integration for Sustainable Design, 117–129. https://doi.org/10.1002/9783527818730.ch6spa
dc.relation.referencesHeng Yeoh, G., & Tu, J. (2010). Computational Techniques for Multi-Phase Flows. ELSEVIER.spa
dc.relation.referencesKhosravi Nikou, M. R., & Ehsani, M. R. (2008). Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. International Communications in Heat and Mass Transfer, 35(9), 1211–1219. https://doi.org/10.1016/j.icheatmasstransfer.2008.05.017spa
dc.relation.referencesKister, H. Z. (1992). Tray Design and Operation. McGraw-Hill Professional, 1, 9–11.spa
dc.relation.referencesMancera, J. A., Mendoza, D. F., & Riascos, C. A. M. (2018). HIDiC configuration selection based on exergetic analysis. Chemical Engineering Transactions, 69. https://doi.org/10.3303/CET1869151spa
dc.relation.referencesOlujic, Z., Fakhri, F., De Rijke, A., De Graauw, J., & Jansens, P. J. (2003). Internal heat integration - The key to an energy-conserving distillation column. Journal of Chemical Technology and Biotechnology, 78(2–3), 241–248. https://doi.org/10.1002/jctb.761spa
dc.relation.referencesPulido, Jeffrey León, Martínez, E. L., Wolf, M. R., & Filho, R. M. I. (2011). Heat transfer study of heat-integrated distillation column (HIDiC) using simulation techniques. AIP Conference Proceedings, 1373, 242–254. https://doi.org/10.1063/1.3627209spa
dc.relation.referencesRahimi, R., Rahimi, M. R., Shahraki, F., & Zivdar, M. (2006). Efficiencies of sieve tray distillation columns by CFD simulation. Chemical Engineering and Technology, 29(3), 326–335. https://doi.org/10.1002/ceat.200500285spa
dc.relation.referencesRiaño, S., Guevara, M. A., & Belalcázar, L. C. (2017). CFD Modeling and Evaluation of a Bi-Stable Micro-Diverter Valve. Ciencia, Tecnologia y Futuro, 8(1), 77–84. https://doi.org/10.29047/01225383.94spa
dc.relation.referencesShenvi, A. A., Herron, D. M., & Agrawal, R. (2011). Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation. Industrial and Engineering Chemistry Research, 50(1), 119–130. https://doi.org/10.1021/ie101698fspa
dc.relation.referencesWinkle, M. V. (1967). Distillation. McGraw-Hill.spa
dc.relation.referencesBoles, M. A., & Cengel, Yunus A. (2014). Thermodynamics: An Engineering Approach. McGraw-Hill Education. https://books.google.com.co/books?id=Ao95ngEACAAJspa
dc.relation.referencesde Koeijer, G., & Rivero, R. (2003). Entropy production and exergy loss in experimental distillation columns. Chemical Engineering Science, 58(8), 1587–1597. https://doi.org/10.1016/S0009-2509(02)00627-9spa
dc.relation.referencesDelmar, T. (2019). An introduction to exergy and its evaluation using Aspen Plus. University of Utah.spa
dc.relation.referencesGorak, A., & Sorensen, E. (2014). Distillation: Fundamentals and Principles. Academic Press.spa
dc.relation.referencesGrassmann, P. (1959). The exergy and the flow diagram of the technically available power. Allg Warmetech, 9, 79–86.spa
dc.relation.referencesJogwar, Sujit S. & Daoutidis, Prodromos (2009). Vapor Recompression Distillation: Multi-Scale Dynamics and Control. Proceedings of Amer. Control Conference, 647-652spa
dc.relation.referencesOliveira, S. (2013). Exergy: Production, Cost and Renewability. In Green Energy and Technology. Springer. https://doi.org/10.2174/97816080528511060101spa
dc.relation.referencesGadalla, M., Jiménez, L., Olujic, Z., & Jansens, P. J. (2007). A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC). Computers and Chemical Engineering, 31(10), 1346–1354. https://doi.org/10.1016/j.compchemeng.2006.11.006spa
dc.relation.referencesGadalla, M., Olujic, Z., Sun, L., de Rijke, A., & Jansens, P. J. (2005). Pinch analysis-based approach to conceptual design of internally heat-integrated distillation columns. Chemical Engineering Research and Design, 83(8 A), 987–993. https://doi.org/10.1205/cherd.04301spa
dc.relation.referencesHoriuchi, K., Nakaiwa, M., Iwakabe, K., Matsuda, K., & Toda, M. (2008). Intensification of the process flow in the pilot plant of an internally heat-integrated distillation column (HIDiC). Kagaku Kogaku Ronbunshu, 34(1), 70–75. https://doi.org/10.1252/kakoronbunshu.34.70spa
dc.relation.referencesMah, R. S. H., Nicholas, J. J., & Wodnik, R. B. (1977). Distillation with secondary reflux and vaporization: A comparative evaluation. AIChE Journal, 23(5), 651–658. https://doi.org/10.1002/aic.690230505spa
dc.relation.referencesMarin, M. D., Meyer, M., Mizzi, B., & Rouzineau, D. (2018). New conceptual design methodology for a concentric heat integrated distillation column (HIDiC). Chemical Engineering Transactions, 69, 883–888. https://doi.org/10.3303/CET1869148spa
dc.relation.referencesNaito, K., Nakaiwa, M., Huang, K., Endo, A., Aso, K., Nakanishi, T., Nakamura, T., Noda, H., & Takamatsu, T. (2000). Operation of a bench-scale ideal heat integrated distillation column (HIDiC): An experimental study. Computers and Chemical Engineering, 24(2–7), 495–499. https://doi.org/10.1016/S0098-1354(00)00513-5spa
dc.relation.referencesPonce, G. H. S. F., Alves, M., Miranda, J. C. C., Maciel Filho, R., & Wolf Maciel, M. R. (2015). Using an internally heat-integrated distillation column for ethanol-water separation for fuel applications. Chemical Engineering Research and Design, 95, 55–63. https://doi.org/10.1016/j.cherd.2015.01.002spa
dc.relation.referencesTaylor, R., & Krishna, R. (1993). Multicomponent Mass Transfer. Wiley, New York.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcDistillationspa
dc.subject.lembDestilacióneng
dc.subject.lembControl hidraúlicospa
dc.subject.lembHydraulic controleng
dc.subject.proposalHIDiCeng
dc.subject.proposalExergyeng
dc.subject.proposalCFDeng
dc.subject.proposalDistillation sieve trayeng
dc.subject.proposalClear liquid heighteng
dc.subject.proposalTray efficiencyeng
dc.subject.proposalHIDiCspa
dc.subject.proposalExergíaspa
dc.subject.proposalDFCspa
dc.subject.proposalDestilación platos perforadosspa
dc.subject.proposalAltura de líquido clarospa
dc.subject.proposalEficiencia de platospa
dc.titleAnalysis of a depropanizer column with internal energy integration of concentric configurationeng
dc.title.translatedAnálisis de una columna depropanizadora con integración energética interna de configuración concéntricaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79954487.2022.pdf
Tamaño:
4.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: