Analysis of a depropanizer column with internal energy integration of concentric configuration
dc.contributor.advisor | Martínez Riascos, Carlos Arturo | |
dc.contributor.advisor | Mendoza Muñoz, Diego Fernando | |
dc.contributor.author | Mancera Apolinar, Javier Alexander | |
dc.contributor.cvlac | Javier Alexander Mancera (https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349782) | spa |
dc.contributor.orcid | 0000-0003-4793-7442 | spa |
dc.date.accessioned | 2023-08-24T16:35:29Z | |
dc.date.available | 2023-08-24T16:35:29Z | |
dc.date.issued | 2022-11 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | In this study, the performance of a concentric distillation column with internal energy integration (HIDiC) was analyzed, considering the system propylene-propane and based on the second thermodynamic law. Additionally, the hydraulic behavior was studied and the efficiency of some trays in different points of column was estimated by CFD. To achieve that, five specific objectives were established: 1) Select the most suitable type of concentric HIDiC configuration for the separation of the propylene-propane mixture, considering second thermodynamic law, as well as the effect of the configuration on the entropy generation, the energy and exergy required for the separation. 2) Fit a CFD model for predicting the hydraulic behavior and mass transfer efficiency in a tray of the selected HIDiC. 3) Identify effects of column design and operating variables on thermal, hydraulic and mass transfer performance in a HIDiC tray. 4) Analyze the second law efficiency in the selected HIDiC, distinguishing the exergetic losses by phenomena, and 5) Propose a preliminary methodology for the conceptual design of concentric HIDiCs, considering the operational viability and its thermodynamic efficiency. In the development of the first objective, it was possible to determine that the HIDiC column that presents the best exergetic behavior, for the separation of the studied system, is the Top-HIDiC (Chapter 1). In the second objective, due to the absence of experimental data for the chosen system, we first proceeded to validate the use of CFD for a known binary system with experimental data of its hydrodynamic behavior (Chapter 2), and mass transfer, through tray efficiency (Chapter 3). Once the hydrodynamic and mass transfer components were validated, the CFD was applied to a tray of the HIDiC for the propylene-propane system (Chapter 4), predicting the clear liquid height and the tray efficiency in rectification and stripping sections, obtained results were coherent with the studied phenomenon. For the third objective (Chapter4), three integrated trays ‒located in different places of the HIDiC: above, in the middle and in the lower‒ were analyzed to check the influence of initial and boundary conditions on the studied properties (clear liquid height and tray efficiency). For the fourth objective, it was possible to discriminate the exergetic losses for each component of the HIDiC column and they were compared with the losses generated in a Conventional Column and a Vapor Recompression Column, confirming a higher thermodynamic performance for the HIDiC (Chapter 5). Finally, in the development of the last objective, it was possible to establish a preliminary conceptual design through 5 general steps, with the exergetic loss as the main design criteria (Chapter 6). (Texto tomado de la fuente) | eng |
dc.description.abstract | En este estudio se analizó el desempeño termodinámico de una columna de destilación concéntrica, con integración energética interna, para separar la mezcla propileno-propano, mediante el análisis de segunda ley de la columna. Adicional, se estudió el comportamiento hidráulico y se determinó la eficiencia de un plato en diferentes secciones de este tipo de columnas mediante CFD. Para lograr esto, se establecieron cinco objetivos específicos: 1) Seleccionar del tipo de configuración HIDiC concéntrica más adecuado para la separación de la mezcla propileno-propano mediante el análisis de segunda ley de la termodinámica aplicado en la columna completa considerando el efecto de la configuración sobre la entropía generada, la energía y exergía requerida para la separación. 2) Predecir el comportamiento hidráulico y la eficiencia de transferencia de masa en un plato de la HIDiC seleccionada usando CFD. 3) Identificar efectos de las variables de diseño y de operación de la columna sobre el desempeño térmico, hidráulico y de transferencia de masa en un plato de la columna HIDiC. 4) Analizar la eficiencia de segunda ley en la HIDiC seleccionada considerando las pérdidas exergéticas generadas por cada uno de los fenómenos, y 5) Proponer una metodología preliminar para el diseño conceptual de columnas HIDiC concéntricas, considerando la viabilidad operacional y su eficiencia termodinámica. En el desarrollo del primer objetivo, se logró determinar que la columna HIDiC que presenta mejores resultados exergéticos (segunda ley), para la separación del sistema de estudio, fue la HIDiC de tope (Capítulo 1). En el segundo objetivo, debido a la ausencia de datos experimentales del sistema en este tipo de columnas, se procedió primeramente a validar el uso de CFD para el caso de un sistema binario conocido que contara con datos experimentales tanto en la parte hidrodinámica mediante la propiedad altura del líquido claro (Capítulo 2), como de transferencia de masa mediante la eficiencia de plato (Capítulo 3) obteniéndose resultados muy cercanos a los experimentales; éstas simulaciones se realizaron sobre un plato perforado rectangular. Una vez validado la parte hidrodinámica y de transferencia de masa, se procedió a aplicar el CFD a una sección de plato de la columna HIDiC (Capítulo 4), prediciendo la altura del líquido claro y la eficiencia de plato, en ambas secciones, rectificación y agotamiento, obteniéndose resultados coherentes con los fenómenos estudiados. Para dar cumplimento al objetivo tres, se tomaron tres platos integrados ubicados en diferentes lugares de la columna HIDiC, uno arriba, otro en el medio y otro en la parte de debajo de la columna las cuales contaban con tres condiciones diferentes (Capítulo 4) comprobando la influencia de estas condiciones iniciales y de frontera sobre las propiedades estudiadas (altura del líquido claro y eficiencia de plato). En el cuarto objetivo se logró discriminar las perdidas exergéticas por cada componente de la columna HIDiC y se compararon con las pérdidas generadas con la columna convencional y la de recompresión de vapor obteniéndose mejores resultados en la columna HIDiC (Capítulo 5). Para finalizar, en el desarrollo del último objetivo, se logró establecer un diseño conceptual preliminar mediante 5 pasos generales teniendo como base principal del diseño el principio de pérdida exergética (Capítulo 6). | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería Química | spa |
dc.description.sponsorship | Colciencias - Beca 617 | spa |
dc.format.extent | xxvi, 164 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84597 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Bejan, A. (2013). Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press. | spa |
dc.relation.references | Hanley, N., McGregor, P., Swales, J., & Tuner, K. (2009). Do increases in resource productivity improve environmental quality and sustainability? Ecological Economics, 68(3), 692–709. https://dspace.stir.ac.uk/bitstream/1893/7707/1/Hanley et al Ecological Economics 2009_turner last.pdf | spa |
dc.relation.references | Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12(3), 593–661. https://doi.org/10.1016/j.rser.2006.10.001 | spa |
dc.relation.references | Kemp, I. C. (2007). Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy (I. C. B. T.-P. A. and P. I. (Second E. Kemp (ed.); Second). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-075068260-2.50006-7 | spa |
dc.relation.references | Kotas, T. J. (1995). The exergy method of thermal plant analysis. Krieger Pub. | spa |
dc.relation.references | Krishna, R., & Van Baten, J. M. (2003). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Research and Design, 81(1), 27–38. https://doi.org/10.1205/026387603321158168 | spa |
dc.relation.references | Morar, M., & Agachi, P. S. (2010). Review: Important contributions in development and improvement of the heat integration techniques. Computers and Chemical Engineering, 34(8), 1171–1179. https://doi.org/10.1016/j.compchemeng.2010.02.038 | spa |
dc.relation.references | Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Akiya, T., & Takamatsu, T. (2003). Internally heat-integrated distillation columns: A review. Chemical Engineering Research and Design, 81(1), 162–177. https://doi.org/10.1205/026387603321158320 | spa |
dc.relation.references | Sun, A. (2010). Internal heat exchange in a concentric tray heat integrated distillation column (HIDiC). DELF UNIVERSITY OF TECHNOLOGY. | spa |
dc.relation.references | Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach (Third). Butterworth-Heinemann. | spa |
dc.relation.references | González Plaza, M., Ferreira, A., Santos, J., Ribeiro, A., Müller, U., Trukhan, N., Loureiro, J., & Rodrigues, A. (2011). Propane/propylene separation by adsorption using shaped copper trimesate MOF. Microporous and Mesoporous Materials - MICROPOROUS MESOPOROUS MAT, 157. https://doi.org/10.1016/j.micromeso.2011.06.024 | spa |
dc.relation.references | Kiss, A. A., & Olujić, Ž. (2014). A review on process intensification in internally heat-integrated distillation columns. Chemical Engineering and Processing: Process Intensification, 86, 125–144. https://doi.org/10.1016/j.cep.2014.10.017 | spa |
dc.relation.references | Liu, X. G., & Qian, J. X. (2000). Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns. Chemical Engineering and Technology, 23(3), 235–241. https://doi.org/10.1201/b11330-2 | spa |
dc.relation.references | Matsuda, K., Iwakabe, K., Ohmori, T., & Nakaiwa, M. (2010). Dynamic behavior of an internally heat-integrated distillation column (HIDiC). Chemical Engineering Transactions, 21, 127–132. https://doi.org/10.3303/CET1021022 | spa |
dc.relation.references | Mendoza, D. F., Palacio, L. M., Graciano, J. E. A., Riascos, C. A. M., Vianna, A. S., & Roux, G. A. C. Le. (2013). Real-Time Optimization of an Industrial-Scale Vapor Recompression Distillation Process . Model Validation and Analysis. Industrial and Engineering Chemistry Research, 52, 5735–5746. | spa |
dc.relation.references | Mendoza, D. F., & Riascos, C. A. M. (2011). Entropy minimization in design of extractive distillation system with internal heat exchangers. Chemical Engineering Transactions, 25, 405–410. https://doi.org/10.3303/CET1125068 | spa |
dc.relation.references | Nakaiwa, M., Huang, K., Naito, K., Endo, A., Akiya, T., Nakane, T., & Takamatsu, T. (2001). Parameter analysis and optimization of ideal heat integrated distillation columns. Computers and Chemical Engineering, 25(4–6), 737–744. https://doi.org/10.1016/S0098-1354(01)00649-4 | spa |
dc.relation.references | Nakaiwa, M., Huang, K., Owa, M., Akiya, T., Nakane, T., Sato, M., & Takamatsu, T. (1997). Energy savings in heat-integrated columns. Energy, 22(6), 621–625. | spa |
dc.relation.references | Olujić, Ž., Sun, L., de Rijke, A., & Jansens, P. J. (2006). Conceptual design of an internally heat integrated propylene-propane splitter. Energy, 31(15), 3083–3096. https://doi.org/10.1016/j.energy.2006.03.030 | spa |
dc.relation.references | Pulido, J. L. (2008). Study of a New Concept of Distillation Column: Heat-Integrated Distillation Column (HIDiC). In Bachelor Thesis in Chemical Engineering. Industrial University of Santander | spa |
dc.relation.references | Suphanit, B. (2010). Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution. Energy, 35(3), 1505–1514. https://doi.org/10.1016/j.energy.2009.12.008 | spa |
dc.relation.references | ANSYS Release 19. (2018). ANSYS Fluent Theory Guide. | spa |
dc.relation.references | Bennett, D. L., Agrawal, R., & Cook, P. J. (1983). New pressure drop correlation for sieve tray distillation columns. AIChE Journal, 29(3), 434–442. https://doi.org/10.1002/aic.690290313 | spa |
dc.relation.references | Bhole, M. R., Joshi, J. B., & Ramkrishna, D. (2008). CFD simulation of bubble columns incorporating population balance modeling. Chemical Engineering Science, 63(8), 2267–2282. https://doi.org/10.1016/j.ces.2008.01.013 | spa |
dc.relation.references | Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y.-C. (2014). OpenFOAM for Computational Fluid Dynamics. Notices of the American Mathematical Society, 61(4), 354. https://doi.org/10.1090/noti1095 | spa |
dc.relation.references | Gesit, G., Nandakumar, K., & Chuang, K. T. (2003). CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE Journal, 49(4), 910–924. https://doi.org/10.1002/aic.690490410 | spa |
dc.relation.references | Grace, J. R., Wairegi, T., & Brophy, J. (1978). Break‐up of drops and bubbles in stagnant media. The Canadian Journal of Chemical Engineering, 56(1). https://doi.org/10.1002/cjce.5450560101 | spa |
dc.relation.references | Gupta, A., & Roy, S. (2013). Euler-Euler simulation of bubbly flow in a rectangular bubble column: Experimental validation with Radioactive Particle Tracking. Chemical Engineering Journal, 225. https://doi.org/10.1016/j.cej.2012.11.012 | spa |
dc.relation.references | Hofer, H. (1983). Influence of gas-phase dispersion on plate column efficiency. German Chemical Engineering, 6(2). | spa |
dc.relation.references | Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843–855. https://doi.org/10.1002/aic.690250513 | spa |
dc.relation.references | Kaltenbacher, E. (1984). On the Effect of the Bubble Size Distribution and the Gas-Phase Diffusion on the Selectivity of Sieve Trays. Chemical Engineering Fundamentals, 1(47). | spa |
dc.relation.references | Kataoka, I., & Serizawa, A. (1989). Basic equations of turbulence in gas-liquid two-phase flow. International Journal of Multiphase Flow, 15(5). https://doi.org/10.1016/0301-9322(89)90045-1 | spa |
dc.relation.references | Krishna, R., Urseanu, M. I., Van Baten, J. M., & Ellenberger, J. (1999). Rise velocity of a swarm of large gas bubbles in liquids. Chemical Engineering Science, 54(2), 171–183. https://doi.org/10.1016/S0009-2509(98)00245-0 | spa |
dc.relation.references | Krishna, R., Van Baten, J. M., Ellenberger, J., Higler, A. P., & Taylor, R. (1999). CFD simulations of sieve tray hydrodynamics. Chemical Engineering Research and Design, 77(7), 639–646. https://doi.org/10.1205/026387699526575 | spa |
dc.relation.references | Laborde-Boutet, C., Larachi, F., Dromard, N., Delsart, O., & Schweich, D. (2009). CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 64(21). https://doi.org/10.1016/j.ces.2009.07.009 | spa |
dc.relation.references | Li, X., Yang, N., Sun, Y., Zhang, L., Li, X., & Jiang, B. (2014). Computational fluid dynamics modeling of hydrodynamics of a new type of fixed valve tray. Industrial and Engineering Chemistry Research, 53(1), 379–389. https://doi.org/10.1021/ie400408u | spa |
dc.relation.references | Liang, X. F., Pan, H., Su, Y. H., & Luo, Z. H. (2016). CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column. Chemical Engineering Research and Design, 112, 88–102. https://doi.org/10.1016/j.cherd.2016.06.014 | spa |
dc.relation.references | Lockett, M. J. (1986). Distillation tray fundamentals. Cambridge University Press. | spa |
dc.relation.references | Lockett, M. J., Kirkpatrick, R. D., & Uddin, M. S. (1979). Froth regime point efficiency for gas-film controlled mass transfer on a two-dimensional sieve tray. Trans Inst Chem Eng, 57(1). | spa |
dc.relation.references | Lopez de Bertodano M, Lahey RT, J. O. (1994). Development of a k-e model for bubbly two-phase flow. Journal of Fluids Engineering, 116. https://doi.org/https://doi.org/10.1115/1.2910220 | spa |
dc.relation.references | Lote, D. A., Vinod, V., & Patwardhan, A. W. (2018). Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow. Multiphase Science and Technology, 30(1), 31–76. https://doi.org/10.1615/MultScienTechn.2018025983 | spa |
dc.relation.references | Magolan, B., Lubchenko, N., & Baglietto, E. (2019). A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems. Chemical Engineering Science: X, 2, 100009. https://doi.org/10.1016/j.cesx.2019.100009 | spa |
dc.relation.references | Rahimi, R., Mazarei Sotoodeh, M., & Bahramifar, E. (2012). The effect of tray geometry on the sieve tray efficiency. Chemical Engineering Science, 76, 90–98. https://doi.org/10.1016/j.ces.2012.01.006 | spa |
dc.relation.references | Roshdi, S., Kasiri, N., Hashemabadi, S. H., & Ivakpour, J. (2013). Computational fluid dynamics simulation of multiphase flow in packed sieve tray of distillation column. Korean Journal of Chemical Engineering, 30(3), 563–573. https://doi.org/10.1007/s11814-012-0166-1 | spa |
dc.relation.references | Rzehak, R., & Krepper, E. (2013a). Bubble-induced turbulence: Comparison of CFD models. Nuclear Engineering and Design, 258, 57–65. https://doi.org/10.1016/j.nucengdes.2013.02.008 | spa |
dc.relation.references | Rzehak, R., & Krepper, E. (2013b). CFD modeling of bubble-induced turbulence. International Journal of Multiphase Flow, 55, 138–155. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007 | spa |
dc.relation.references | Sadripour, M., Rahimi, A., & Hatamipour, M. S. (2012). Experimental Study and CFD Modeling of Wall Deposition in a Spray Dryer. Drying Technology, 30(6), 574–582. https://doi.org/10.1080/07373937.2011.653613 | spa |
dc.relation.references | Sato, Y., Sadatomi, M., & Sekoguchi, K. (1981). Momentum and heat transfer in two-phase bubble flow-I. Theory. International Journal of Multiphase Flow, 7(2). https://doi.org/10.1016/0301-9322(81)90003-3 | spa |
dc.relation.references | Schiller, L., & Naumann, Z. (1935). A drag coefficient correlation. In Z.Ver.Deutsch.Ing (Vol. 77, Issues 13–14). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006 | spa |
dc.relation.references | Simonin, O., & Viollet, P. L. (1990). Prediction of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 91. | spa |
dc.relation.references | Sun, Z. M., Liu, B., Yuan, X. G., Liu, C. J., & Yu, K. T. (2005). New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Industrial and Engineering Chemistry Research, 44(12), 4427–4434. https://doi.org/10.1021/ie049382y | spa |
dc.relation.references | Tomiyama, A. (1998). Struggle with computational bubble dynamics. Multiphase Sci Technol. Multiphase Science Technology, 10. | spa |
dc.relation.references | Treybal, R. E. (1981). Mass Transfer Operations 3th edition. In McGraw-Hill. | spa |
dc.relation.references | Troshko, A. A., & Hassan, Y. A. (2001). A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow, 27(11). https://doi.org/10.1016/S0301-9322(01)00043-X | spa |
dc.relation.references | Van Baten, J. M., Ellenberger, J., & Krishna, R. (2001). Hydrodynamics of reactive distillation tray column with catalyst containing envelopes: Experiments vs. CFD simulations. Catalysis Today, 66(2–4), 233–240. https://doi.org/10.1016/S0920-5861(00)00625-8 | spa |
dc.relation.references | Wang, T., & Wang, J. (2007). Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science, 62(24), 7107–7118. https://doi.org/10.1016/j.ces.2007.08.033 | spa |
dc.relation.references | Wang, T., Wang, J., & Jin, Y. (2005). Population balance model for gas - Liquid flows: Influence of bubble coalescence and breakup models. Industrial and Engineering Chemistry Research, 44(19), 7540–7549. https://doi.org/10.1021/ie0489002 | spa |
dc.relation.references | Wang, T., Wang, J., & Jin, Y. (2006). A CFD-PBM coupled model for gas-liquid flows. AIChE Journal, 52(1), 125–140. https://doi.org/10.1002/aic.10611 | spa |
dc.relation.references | Xing, C., Wang, T., & Wang, J. (2013). Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chemical Engineering Science, 95, 313–322. https://doi.org/10.1016/j.ces.2013.03.022 | spa |
dc.relation.references | Yang, G., Guo, K., & Wang, T. (2017). Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model. Chemical Engineering Science, 170, 251–262. https://doi.org/10.1016/j.ces.2017.01.013 | spa |
dc.relation.references | Zhao, H., Li, Q., Yu, G., Dai, C., & Lei, Z. (2019). Performance analysis and quantitative design of a flow-guiding sieve tray by computational fluid dynamics. AIChE Journal, 65(5), 1–13. https://doi.org/10.1002/aic.16563 | spa |
dc.relation.references | Abbasnia, S., Nasri, Z., & Najafi, M. (2019). Comparison of the mass transfer and efficiency of Nye tray and sieve tray by computational fluid dynamics. Separation and Purification Technology, 215. https://doi.org/10.1016/j.seppur.2019.01.010 | spa |
dc.relation.references | Biddulph, M. W., & Dribika, M. M. (1986). Distillation efficiencies on a large sieve plate with small‐diameter holes. AIChE Journal, 32(8), 1383–1388. https://doi.org/10.1002/aic.690320817 | spa |
dc.relation.references | Bird, R., Stewart, W., & Lightfoot, E. (1958). Transport Phenomena (2nd ed.). | spa |
dc.relation.references | Morel, C. (1995). An order of magnitude analysis of the two-phase k–e model. International Fluid Mechanics. https://doi.org/10.1615/InterJFluidMechRes.v22.i3-4.30 | spa |
dc.relation.references | Dejanović, I., Matijašević, L., & Olujić, Ž. (2010). Dividing wall column-A breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification, 49(6), 559–580. https://doi.org/10.1016/j.cep.2010.04.001 | spa |
dc.relation.references | Dribika, M. M., & Biddulph, M. W. (1986). Scaling‐up distillation efficiencies. AIChE Journal, 32(11), 1864–1875. https://doi.org/10.1002/aic.690321112 | spa |
dc.relation.references | Guevara, M. A., Guevara, F. A., & Belalcazar, L. C. (2018). Experimental Data and New Binary Interaction Parameters for Ethanol- Water VLE at Low Pressures Using NRTL and UNIQUAC. TECCIENCIA, 8(24), 17–26. https://doi.org/http://dx.doi.org/10.18180/tecciencia.2018.24.3 | spa |
dc.relation.references | Guevara, M., & Belalcazar, L. (2017). NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model. Revista Facultad de Ingeniería, 82, 82–93. https://doi.org/10.17533/udea.redin.n82a11 | spa |
dc.relation.references | Higbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of the American Institute of Chemical Engineers, 35, 365–389. | spa |
dc.relation.references | Kockmann, N. (2014). 200 Years in Innovation of Continuous Distillation. ChemBioEng Reviews, 1(1), 40–49. https://doi.org/10.1002/cben.201300003 | spa |
dc.relation.references | Lamont, J. C., & Scott, D. S. (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 16(4). https://doi.org/10.1002/aic.690160403 | spa |
dc.relation.references | Yanagi, T., & Sakata, M. (1982). Performence of a comercial scale 14% hole area sieve tray. Industrial & Engineering Chemistry Process Design and Development, 21(4), 712–717. https://doi.org/https://doi.org/10.1021/i200019a029 | spa |
dc.relation.references | Malvin, A., Chan, A., & Lau, P. L. (2014). CFD study of distillation sieve tray flow regimes using the droplet size distribution technique. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1354–1368. https://doi.org/10.1016/j.jtice.2014.01.002 | spa |
dc.relation.references | Noriler, D., Barros, A. A. C., Wolf Maciel, M. R., & Meier, H. F. (2010). Simultaneous momentum, mass, and energy transfer analysis of a distillation sieve tray using CFD techniques: Prediction of efficiencies. Industrial and Engineering Chemistry Research, 49(14), 6599–6611. https://doi.org/10.1021/ie9013925 | spa |
dc.relation.references | Noriler, D., Meier, H. F., Barros, A. A. C., & Wolf Macel, M. R. (2009). Prediction of efficiencies through simultaneous momentum, mass and energy transfer analyses in a distillation sieve tray by CFD techniques. In Computer Aided Chemical Engineering (Vol. 27, Issue C). Elsevier Inc. https://doi.org/10.1016/S1570-7946(09)70415-8 | spa |
dc.relation.references | Olujić, Ž., Jödecke, M., Shilkin, A., Schuch, G., & Kaibel, B. (2009). Equipment improvement trends in distillation. Chemical Engineering and Processing: Process Intensification, 48(6), 1089–1104. https://doi.org/10.1016/j.cep.2009.03.004 | spa |
dc.relation.references | Rahimi, M. R., Rahimi, R., Shahraki, F., & Zivdar, M. (2006). Prediction of temperature and concentration distributions of distillation sieve trays by CFD. Tamkang Journal of Science and Engineering, 9(3), 265–278. | spa |
dc.relation.references | Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Parts I & II. Chem. Eng. Progr, 48(22). | spa |
dc.relation.references | Sun, Z. M., Yu, K. T., Yuan, X. G., & Liu, C. J. (2007). A modified model of computational mass transfer for distillation column. Chemical Engineering Science, 62(7), 1839–1850. https://doi.org/10.1016/j.ces.2006.12.021 | spa |
dc.relation.references | Van Baten, J. M., & Krishna, R. (2000). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Journal, 77(3), 143–151. https://doi.org/10.1016/S1385-8947(99)00164-3 | spa |
dc.relation.references | Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics The Finite Volume Method. In Fluid flow handbook. McGraw-Hill …. Longman Scitific & Technical. https://doi.org/10.2514/1.22547 | spa |
dc.relation.references | Wang, T., Wang, J., & Jin, J. (2004). An efficient numerical algorithm for “A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow.” Chemical Engineering Science, 59(12), 2593–2595. https://doi.org/10.1016/j.ces.2004.03.011 | spa |
dc.relation.references | Ashrafizadeh, S. A., Amidpour, M., & Abolmashadi, M. (2013). Exergy analysis of distillation column using concept of driving forces. Journal of Chemical Engineering of Japan, 46(7), 434–443. https://doi.org/10.1252/jcej.11we038 | spa |
dc.relation.references | Bernal, D., Castellanos, O., Bejarano, P., & Rodriguez, G. (2011). Analisis y diseño de platos y columnas de platos. Universidad Nacional de Colombia. | spa |
dc.relation.references | Claumann, C. A., Peruzzo, T., Felice, V. De, Marangoni, C., & Machado, R. A. F. (2015). Modeling and process optimization: an approach using aspen plus and matlab in the energy integration study of distillation columns. VIII Congreso Argentino de Ingeniería Química y 3 JASP, 1. | spa |
dc.relation.references | Gadalla, M., Olujić, Ž., de Rijke, A., & Jansens, P. J. (2006). Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures. Energy, 31(13), 2409–2417. https://doi.org/10.1016/j.energy.2005.10.029 | spa |
dc.relation.references | Gadalla, M. A. (2009). Internal heat integrated distillation columns (iHIDiCs)-New systematic design methodology. Chemical Engineering Research and Design, 87(12), 1658–1666. https://doi.org/10.1016/j.cherd.2009.06.005 | spa |
dc.relation.references | Harvindran, V., & Foo, D. C. Y. (2021). Design of Internally Heat‐Integrated Distillation Column ( HIDiC ). Process Intensification and Integration for Sustainable Design, 117–129. https://doi.org/10.1002/9783527818730.ch6 | spa |
dc.relation.references | Heng Yeoh, G., & Tu, J. (2010). Computational Techniques for Multi-Phase Flows. ELSEVIER. | spa |
dc.relation.references | Khosravi Nikou, M. R., & Ehsani, M. R. (2008). Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. International Communications in Heat and Mass Transfer, 35(9), 1211–1219. https://doi.org/10.1016/j.icheatmasstransfer.2008.05.017 | spa |
dc.relation.references | Kister, H. Z. (1992). Tray Design and Operation. McGraw-Hill Professional, 1, 9–11. | spa |
dc.relation.references | Mancera, J. A., Mendoza, D. F., & Riascos, C. A. M. (2018). HIDiC configuration selection based on exergetic analysis. Chemical Engineering Transactions, 69. https://doi.org/10.3303/CET1869151 | spa |
dc.relation.references | Olujic, Z., Fakhri, F., De Rijke, A., De Graauw, J., & Jansens, P. J. (2003). Internal heat integration - The key to an energy-conserving distillation column. Journal of Chemical Technology and Biotechnology, 78(2–3), 241–248. https://doi.org/10.1002/jctb.761 | spa |
dc.relation.references | Pulido, Jeffrey León, Martínez, E. L., Wolf, M. R., & Filho, R. M. I. (2011). Heat transfer study of heat-integrated distillation column (HIDiC) using simulation techniques. AIP Conference Proceedings, 1373, 242–254. https://doi.org/10.1063/1.3627209 | spa |
dc.relation.references | Rahimi, R., Rahimi, M. R., Shahraki, F., & Zivdar, M. (2006). Efficiencies of sieve tray distillation columns by CFD simulation. Chemical Engineering and Technology, 29(3), 326–335. https://doi.org/10.1002/ceat.200500285 | spa |
dc.relation.references | Riaño, S., Guevara, M. A., & Belalcázar, L. C. (2017). CFD Modeling and Evaluation of a Bi-Stable Micro-Diverter Valve. Ciencia, Tecnologia y Futuro, 8(1), 77–84. https://doi.org/10.29047/01225383.94 | spa |
dc.relation.references | Shenvi, A. A., Herron, D. M., & Agrawal, R. (2011). Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation. Industrial and Engineering Chemistry Research, 50(1), 119–130. https://doi.org/10.1021/ie101698f | spa |
dc.relation.references | Winkle, M. V. (1967). Distillation. McGraw-Hill. | spa |
dc.relation.references | Boles, M. A., & Cengel, Yunus A. (2014). Thermodynamics: An Engineering Approach. McGraw-Hill Education. https://books.google.com.co/books?id=Ao95ngEACAAJ | spa |
dc.relation.references | de Koeijer, G., & Rivero, R. (2003). Entropy production and exergy loss in experimental distillation columns. Chemical Engineering Science, 58(8), 1587–1597. https://doi.org/10.1016/S0009-2509(02)00627-9 | spa |
dc.relation.references | Delmar, T. (2019). An introduction to exergy and its evaluation using Aspen Plus. University of Utah. | spa |
dc.relation.references | Gorak, A., & Sorensen, E. (2014). Distillation: Fundamentals and Principles. Academic Press. | spa |
dc.relation.references | Grassmann, P. (1959). The exergy and the flow diagram of the technically available power. Allg Warmetech, 9, 79–86. | spa |
dc.relation.references | Jogwar, Sujit S. & Daoutidis, Prodromos (2009). Vapor Recompression Distillation: Multi-Scale Dynamics and Control. Proceedings of Amer. Control Conference, 647-652 | spa |
dc.relation.references | Oliveira, S. (2013). Exergy: Production, Cost and Renewability. In Green Energy and Technology. Springer. https://doi.org/10.2174/97816080528511060101 | spa |
dc.relation.references | Gadalla, M., Jiménez, L., Olujic, Z., & Jansens, P. J. (2007). A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC). Computers and Chemical Engineering, 31(10), 1346–1354. https://doi.org/10.1016/j.compchemeng.2006.11.006 | spa |
dc.relation.references | Gadalla, M., Olujic, Z., Sun, L., de Rijke, A., & Jansens, P. J. (2005). Pinch analysis-based approach to conceptual design of internally heat-integrated distillation columns. Chemical Engineering Research and Design, 83(8 A), 987–993. https://doi.org/10.1205/cherd.04301 | spa |
dc.relation.references | Horiuchi, K., Nakaiwa, M., Iwakabe, K., Matsuda, K., & Toda, M. (2008). Intensification of the process flow in the pilot plant of an internally heat-integrated distillation column (HIDiC). Kagaku Kogaku Ronbunshu, 34(1), 70–75. https://doi.org/10.1252/kakoronbunshu.34.70 | spa |
dc.relation.references | Mah, R. S. H., Nicholas, J. J., & Wodnik, R. B. (1977). Distillation with secondary reflux and vaporization: A comparative evaluation. AIChE Journal, 23(5), 651–658. https://doi.org/10.1002/aic.690230505 | spa |
dc.relation.references | Marin, M. D., Meyer, M., Mizzi, B., & Rouzineau, D. (2018). New conceptual design methodology for a concentric heat integrated distillation column (HIDiC). Chemical Engineering Transactions, 69, 883–888. https://doi.org/10.3303/CET1869148 | spa |
dc.relation.references | Naito, K., Nakaiwa, M., Huang, K., Endo, A., Aso, K., Nakanishi, T., Nakamura, T., Noda, H., & Takamatsu, T. (2000). Operation of a bench-scale ideal heat integrated distillation column (HIDiC): An experimental study. Computers and Chemical Engineering, 24(2–7), 495–499. https://doi.org/10.1016/S0098-1354(00)00513-5 | spa |
dc.relation.references | Ponce, G. H. S. F., Alves, M., Miranda, J. C. C., Maciel Filho, R., & Wolf Maciel, M. R. (2015). Using an internally heat-integrated distillation column for ethanol-water separation for fuel applications. Chemical Engineering Research and Design, 95, 55–63. https://doi.org/10.1016/j.cherd.2015.01.002 | spa |
dc.relation.references | Taylor, R., & Krishna, R. (1993). Multicomponent Mass Transfer. Wiley, New York. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.armarc | Distillation | spa |
dc.subject.lemb | Destilación | eng |
dc.subject.lemb | Control hidraúlico | spa |
dc.subject.lemb | Hydraulic control | eng |
dc.subject.proposal | HIDiC | eng |
dc.subject.proposal | Exergy | eng |
dc.subject.proposal | CFD | eng |
dc.subject.proposal | Distillation sieve tray | eng |
dc.subject.proposal | Clear liquid height | eng |
dc.subject.proposal | Tray efficiency | eng |
dc.subject.proposal | HIDiC | spa |
dc.subject.proposal | Exergía | spa |
dc.subject.proposal | DFC | spa |
dc.subject.proposal | Destilación platos perforados | spa |
dc.subject.proposal | Altura de líquido claro | spa |
dc.subject.proposal | Eficiencia de plato | spa |
dc.title | Analysis of a depropanizer column with internal energy integration of concentric configuration | eng |
dc.title.translated | Análisis de una columna depropanizadora con integración energética interna de configuración concéntrica | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79954487.2022.pdf
- Tamaño:
- 4.44 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: