Coordinación de protecciones : Una solución desde la calidad de la potencia

dc.contributor.advisorUstariz Farfan, Armando Jaime
dc.contributor.advisorCano Plata, Eduardo Antonio
dc.contributor.authorArias Guzmán, Santiago
dc.contributor.cvlacArias Guzmán, Santiago [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001455252]spa
dc.contributor.googlescholarArias Guzmán, Santiago [https://scholar.google.com/citations?user=b4hchf8AAAAJ&hl=es]spa
dc.contributor.orcidArias Guzmán, Santiago [0000000172046401]spa
dc.contributor.researchgateArias Guzmán, Santiago [https://www.researchgate.net/profile/S-Arias-Guzman]spa
dc.contributor.researchgroupGrupo de Investigación en Calidad de la Energía y Electrónica de Potenciaspa
dc.contributor.researchgroupRedes de Distribución y Potencia Gredypspa
dc.date.accessioned2024-05-24T14:51:36Z
dc.date.available2024-05-24T14:51:36Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractLA TESIS presenta, inicialmente, una revisión crítica del estado del arte de la protección de los sistemas eléctricos, incluyendo las funciones, esquemas y sistemas de protección. A partir de esta revisión se presentan las limitaciones actuales en los sistemas de protección, así como las tendencias para su corrección. Para superar estas limitaciones, en esta tesis se propone un nuevo sistema de protección basado en el análisis de la calidad de la potencia eléctrica; utilizando el formalismo matemático del tensor instantáneo de potencia se define un nuevo indicador de desviación global de las condiciones ideales de un sistema sinusoidal y balanceado. Mediante el nuevo indicador definido en esta tesis, se detectan y clasifican condiciones de falla a ser despejadas. El sistema de protección propuesto logra evitar el proceso de coordinación de protecciones, mejora la selectividad de fallas de alta impedancia de característica lineal y no lineal, y logra la mitigación del riesgo de arco eléctrico (Texto tomado de la fuente)spa
dc.description.abstractTHE THESIS presents, initially, a critical review of the state of the art of electrical system protection, including functions, schemes, and protection systems. Based on this review, the current limitations in protection systems are presented, as well as the trends for their correction. To overcome these limitations, this thesis proposes a new protection system based on the analysis of power quality; using the mathematical formalism of the instantaneous power tensor, a new indicator of global deviation from the ideal conditions of a sinusoidal and balanced system is defined. By means of the new indicator defined in this thesis, fault conditions to be cleared are detected and classified. The proposed protection system avoids the protection coordination process, improves the selectivity of high impedance faults of linear and nonlinear characteristic, and has as special application in the mitigation of arc flash hazard.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaProtección de sistemas eléctricosspa
dc.description.sponsorshipAgradecimiento a COLCIENCIAS por el patrocinio de mis estudios de doctorado a través de la "Convocatoria Doctorados Nacionales 2015" número 727.spa
dc.format.extent145 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86155
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.references[1]. Blackburn, J. L., & Domin, T. J. (2015). “Protective relaying: principles and applications”. CRC press.spa
dc.relation.references[2]. "IEEE Standard Electrical Power System Device Function Numbers, Acronyms, and Contact Designations - Redline," in IEEE Std C37.2-2008 (Revision of IEEE Std C37.2-1996) - Redline , vol., no., pp.1-62, 3 Oct. 2008.spa
dc.relation.references[3]. C. Russell Mason, (1956) “The art and science of protective relays”, General Electric Series.spa
dc.relation.references[4]. IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book)," in IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], vol., no., pp.1-710, Dec. 17 2001.spa
dc.relation.references[5]. W. E. Harrington. Magnetic circuit breaker. No. 585,030. Patented June 22,1897. 176%. Inventor. Attorney. (no model.) 2 8heets-sheet 2. W. E. Harrington. Magnetic circuit breaker. No. 585,030. Patented june 22, 1897.spa
dc.relation.references[6]. Protection System Misoperation Task Force, “Misoperations report,” NERC Planning Committee, Atlanta, GA, USA, 2014.spa
dc.relation.references[7]. J. De La Ree, Yilu Liu, L. Mili, A. G. Phadke and L. DaSilva, "Catastrophic Failures in Power Systems: Causes, Analyses, and Countermeasures," in Proceedings of the IEEE, vol. 93, no. 5, pp. 956-964, May 2005, doi: 10.1109/JPROC.2005.847246.spa
dc.relation.references[8]. NFPA70E, “Standard for electrical safety in the workplace”, Edition 2015.spa
dc.relation.references[9]. OSHA Occupational Safety and Health Administration, “Fatality Inspection Data Work-related fatalities for cases inspected by federal or state OSHA,” Disponible en linea en: https://www.osha.gov/fatalitiesspa
dc.relation.references[10]. BLS U.S. Bureau of Labor Satistics, “News Release National Census of Fatal Occupational Injuries in 2018,” pp. 1-9, 2018, disponible en linea en: https://www.bls.gov/news.release/pdf/cfoi.pdfspa
dc.relation.references[11]. H. R. Woodrow, D. W. Roper, O. C. Traver and P. MacGahan, "Transmission Line Relay Protection," AIEE Trans. American Institute of Electrical Engineers, vol. XXXVIII, no. 1, pp. 795-826, Jan. 1919.spa
dc.relation.references[12]. E. A. Hester, O. C. Traver, R. N. Conwell and L. N. Crichton, "Transmission Line Relay Protection-II," in Transactions of the American Institute of Electrical Engineers, vol. XLI, pp. 670-702, Jan. 1922.spa
dc.relation.references[13]. W. W. Edson, "Transmission System Relay Protection-III," AIEE Trans. of the American Institute of Electrical Engineers, vol. 49, no. 4, pp. 1213-1224, Oct. 1930.spa
dc.relation.references[14]. AIEE Automatic Stations," in AIEE No 26-1930 (Now C37.1, ASA C37.2) , vol., no., pp.1-10, 20 May 1930.spa
dc.relation.references[15]. A. H. Knable, "A standardized approach to relay coordination", IEEE Winter Power Meeting, 1969.spa
dc.relation.references[16]. M. H. Dwaraknath and L. Nowitz, “An application of linear graph theory for coordination of directional overcurrent relays” presented at the Electric Power Problems – The mathematical challengue, proceedings of SIAM Conference, Seattle, WA, March 1980, pp. 104-114.spa
dc.relation.references[17]. R. Ramaswami, M. J. Damborg and S. S. Venkata, "Coordination of directional overcurrent relays in transmission systems-a subsystem approach," IEEE Trans. Power Delivery, vol. 5, no. 1, pp. 64-71, Jan. 1990.spa
dc.relation.references[18]. V. C. Prasad, K. S. Prakaso Rao and A. Subba Rao, "Coordination of directional relays without generating all circuits," IEEE Trans. Power Delivery, vol. 6, no. 2, pp. 584-590, April 1991.spa
dc.relation.references[19]. E. Orduna, F. Garces and E. Handschin, "Algorithmic-knowledge-based adaptive coordination in transmission protection," IEEE Trans. Power Delivery, vol. 18, no. 1, pp. 61-65, Jan. 2003.spa
dc.relation.references[20]. Reza Mohammadi, Hossein Askarian Abyaneh, Hossein Mahdinia Rudsari, Saied Hamid Fathi, Hasan Rastegar, "Overcurrent Relays Coordination Considering the Priority of Constraints", IEEE Trans. Power Delivery, vol. 26, no. 3, pp. 1927-1938, 2011spa
dc.relation.references[21]. L. Liu and L. Fu, "Minimum Breakpoint Set Determination for Directional Overcurrent Relay Coordination in Large-Scale Power Networks via Matrix Computations," IEEE Trans. Power Delivery, vol. 32, no. 4, pp. 1784-1789, Aug. 2017.spa
dc.relation.references[22]. A. J. Urdaneta, R. Nadira and L. G. Perez Jimenez, "Optimal coordination of directional overcurrent relays in interconnected power systems," IEEE Trans. Power Delivery, vol. 3, no. 3, pp. 903-911, July 1988.spa
dc.relation.references[23]. P. P. Bedekar, S. R. Bhide and V. S. Kale, "Optimum Coordination of Overcurrent Relays in Distribution System Using Dual Simplex Method," presented at the Second International Conference on Emerging Trends in Engineering & Technology, Nagpur, 2009, pp. 555-559.spa
dc.relation.references[24]. R. Madhumitha, P. Sharma, D. Mewara, O. V. G. Swathika and S. Hemamalini, "Optimum Coordination of Overcurrent Relays Using Dual Simplex and Genetic Algorithms," presented at the International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, 2015, pp. 1544-1547.spa
dc.relation.references[25]. M. R. Asadi and S. M. Kouhsari, "Optimal Overcurrent relays coordination using particle-swarm-optimization algorithm," presented at the IEEE/PES Power Systems Conference and Exposition, Seattle, WA, 2009, pp. 1-7.spa
dc.relation.references[26]. D. Solati Alkaran, M. R. Vatani, M. J. Sanjari, G. B. Gharehpetian and M. S. Naderi, "Optimal Overcurrent Relay Coordination in Interconnected Networks by Using Fuzzy-Based GA Method," IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3091-3101, July 2018.spa
dc.relation.references[27]. NERC Inverter-Based Resource Performance Task Force (IRPTF), "PRC-024-2 Gaps Whitepaper," 2018.spa
dc.relation.references[28]. 1200 MW Fault Induced Solar Photovoltaic Resource Interruption Disturbance Report NERC Report.spa
dc.relation.references[29]. Xue, Y., Campbell, Z., Chidurala, S., & Jones, C. (2015). Mis-operation Cases on Transformer Differential Protection. In Western P Western Protective Relay Conference, Washington State University.spa
dc.relation.references[30]. "IEEE Guide for Performing Arc-Flash Hazard Calculations - Redline," in IEEE Std 1584-2018 (Revision of IEEE Std 1584-2002) - Redline , vol., no., pp.1-341, 30 Nov. 2018.spa
dc.relation.references[31]. Meliopoulos, A. S., Cokkinides, G. J., Tan, Z., Choi, S., Lee, Y., & Myrda, P. (2013, January). Setting-less protection: Feasibility study. In 2013 46th Hawaii International Conference on System Sciences (pp. 2345-2353). IEEE.spa
dc.relation.references[32]. Fan, R., Meliopoulos, A. S., Cokkinides, G. J., Sun, L., & Liu, Y. (2015, July). Dynamic state estimation-based protection of power transformers. In 2015 IEEE Power & Energy Society General Meeting (pp. 1-5). IEEE.spa
dc.relation.references[33]. Albinali, H. F., Meliopoulos, A. P., & Vournas, C. (2017, June). Dynamic state estimation-based centralized protection scheme. In 2017 IEEE Manchester PowerTech (pp. 1-6). IEEE.spa
dc.relation.references[34]. Xie, B., Meliopoulos, A. S., Cokkinides, G., Xie, J., Zhong, C., Liu, Y., & Prevost, T. (2019, August). Dynamic state estimation based unit protection. In 2019 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE.spa
dc.relation.references[35]. Liu, Y., Meliopoulos, A. S., Tan, Z., Sun, L., & Fan, R. (2017). Dynamic state estimation-based fault locating on transmission lines. IET Generation, Transmission & Distribution, 11(17), 4184-4192.spa
dc.relation.references[36]. Meliopoulos, A. S., Cokkinides, G. J., Myrda, P., Liu, Y., Fan, R., Sun, L., ... & Tan, Z. (2016). Dynamic state estimation-based protection: Status and promise. IEEE Transactions on Power Delivery, 32(1), 320-330.spa
dc.relation.references[37]. Zhao, J., Gómez-Expósito, A., Netto, M., Mili, L., Abur, A., Terzija, V., & Meliopoulos, A. S. (2019). Power system dynamic state estimation: Motivations, definitions, methodologies, and future work. IEEE Transactions on Power Systems, 34(4), 3188-3198.spa
dc.relation.references[38]. S. A. P. Meliopoulos, "Legacy SE to distributed dynamic state estimators: Evolution and experience," 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 1-5.spa
dc.relation.references[39]. Meliopoulos, A. P., Cokkinides, G. J., & Stefopoulos, G. K. (2005, June). Quadratic integration method. In Proceedings of the 2005 International Power System Transients Conference (IPST 2005) (pp. 19-23).spa
dc.relation.references[40]. Ustariz-Farfan, A. J., Diaz-Cadavid, L. F., & Cano-Plata, E. A. (2021, October). Modeling and simulation of the electric arc furnace: The issues. In 2021 IEEE Industry Applications Society Annual Meeting (IAS) (pp. 1-8). IEEE.spa
dc.relation.references[41]. Ustariz Farfán, A. J. (2011). Formulación de una teoría tensorial de la potencia eléctrica: aplicaciones al estudio de la calidad de la energía (Doctoral dissertation, Universidad Nacional de Colombia-Sede Manizales)spa
dc.relation.references[42]. Mishra, M., & Panigrahi, R. R. (2019). Taxonomy of high impedance fault detection algorithm. Measurement, 148, 106955.spa
dc.relation.references[43]. Tan, Z. (2016). Dynamic state estimation-based transmission line protection (Doctoral dissertation, Georgia Institute of Technology).spa
dc.relation.references[44]. Xie, J., Meliopoulos, A. S., & Xie, B. (2018, September). Transmission line fault classification based on dynamic state estimation and support vector machine. In 2018 North American Power Symposium (NAPS) (pp. 1-5). IEEE.spa
dc.relation.references[45]. Ustariz-Farfan, A. J., Cano-Plata, E. A., & Tacca, H. E. (2011). Three-dimensional maps of power quality loss based in the power tensor theory. Ingeniería e Investigación, 31, 11-17.spa
dc.relation.references[46]. Ustariz-Farfan, A. J., Cano-Plata, E. A., & Tacca, H. E. (2012). Teoría generalizada de la potencia instantánea aplicada a la compensación de cargas polifásicas. Ingeniare. Revista chilena de ingeniería, 20(2), 148-159.spa
dc.relation.references[47]. Cano-Plata, E. A., Ustariz-Farfán, A. J., & Díaz-Cadavid, L. F. (2012). Power Tensor Theory and Continuous Wavelet Transform. American Journal of Computational Mathematics, 2(02), 130-135.spa
dc.relation.references[48]. Ustariz-Farfan, A. J., Cano-Plata, E. A., Tacca, H. E., & Garces-Gomez, Y. A. (2012, June). Hybrid simulation to test control strategies in active power filters using generalized power tensor theory. In 2012 IEEE 15th International Conference on Harmonics and Quality of Power (pp. 598-604). IEEE.spa
dc.relation.references[49]. Ustariz-Farfan, A. J., Cano-Plata, E. A., Tacca, H. E., & Arango-Lemoine, C. (2012, June). Visualizing two-and three-dimensional maps for power quality loss assessment. In 2012 IEEE 15th International Conference on Harmonics and Quality of Power (pp. 909-914). IEEE.spa
dc.relation.references[50]. Arias-Guzman, S., Ustariz-Farfán, A. J., & Cano-Plata, E. A. (2019). Overcurrent protection in electric arc furnaces. IEEE Transactions on Industry Applications, 55(6), 6652-6659.spa
dc.relation.references[51]. Ustariz-Farfan, A. J., Cano-Plata, E. A., & Arias-Guzman, S. (2019). Identification of protection coordination break points: A power quality approach. IEEE Industry Applications Magazine, 25(5), 68-82.spa
dc.relation.references[52]. Arias-Guzman, S., Ustariz-Farfan, A. J., & Cano-Plata, E. A. (2022). Integral Protection Methodology to Mitigate Incident Energy. IEEE Transactions on Industry Applications, 59(1), 684-693.spa
dc.relation.references[53]. S. Arias-Guzman, A. J. Ustariz-Farfan and E. A. Cano-Plata, "Integral Protection of Electrical Systems a Power Quality Approach," in IEEE Transactions on Industry Applications, vol. 59, no. 5, pp. 5842-5852, Sept.-Oct. 2023, doi: 10.1109/TIA.2023.3283496.spa
dc.relation.references[54]. S. Arias-Guzman, A. J. Ustariz-Farfan, E. A. Cano-Plata and R. McCann, "Frequency and Voltage Computation on Protection Settings in Renewable Resources," 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Manizales, Colombia, 2019, pp. 1-5, doi: 10.1109/PEPQA.2019.8851545.spa
dc.relation.references[55]. J. Schwartzenberg, C. Nwankpa, R. Fischl y A. Sundaram, “Prediction of distribution system disturbances,” de Power Electronics Specialists Conference, PESC'94 Record., 25th Annual IEEE, 1994.spa
dc.relation.references[56]. A. A. Girgis, W. B. Chang y E. B. Makram, “A digital recursive measurement scheme for online tracking of power system harmonics,” Power Delivery, IEEE Transactions on, vol. 6, nº 3, pp. 1153-1160, 1991.spa
dc.relation.references[57]. Namdari, F., Jamali, S., & Crossley, P. A. (2007). Power differential based wide area protection. Electric Power Systems Research, 77(12), 1541-1551.spa
dc.relation.references[58]. Huang, J., Gao, H., Zhao, L., & Feng, Y. (2020). Instantaneous active power integral differential protection for hybrid AC/DC transmission systems based on fault variation component. IEEE Transactions on Power Delivery, 35(6), 2791-2799.spa
dc.relation.references[59]. He, Y., Zheng, X., Tai, N., Gao, H., Huang, W., & Nadeem, M. H. (2018, August). An improved scheme of active power differential protection for transmission line. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE.spa
dc.relation.references[60]. Peng, F., Gao, H., Huang, J., Guo, Y., Liu, Y., & Zhang, Y. (2023). Power Differential Protection for Transformer Based on Fault Component Network. IEEE Transactions on Power Delivery.spa
dc.relation.references[61]. Taalab, A. M. I., Darwish, H. A., & Ahmed, E. S. (2006). Performance of power differential relay with adaptive setting for line protection. IEEE transactions on power delivery, 22(1), 50-58.spa
dc.relation.references[62]. Darwish, H. A., Taalab, A. M., & Ahmed, E. S. (2005). Investigation of power differential concept for line protection. IEEE transactions on power delivery, 20(2), 617-624.spa
dc.relation.references[63]. Khan, A. U., Hong, Q., Dyśko, A., & Booth, C. (2019, September). Review and evaluation of protection issues and solutions for future distribution networks. In 2019 54th International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE.spa
dc.relation.references[64]. Anderson, P. M., & Anderson, P. M. (1995). Analysis of faulted power systems (Vol. 445). New York: IEEE pressspa
dc.relation.references[65]. S. Arias-Guzmán et al., "Analysis of Voltage Sag Severity Case Study in an Industrial Circuit," in IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 15-21, Jan.-Feb. 2017, doi: 10.1109/TIA.2016.2603470.spa
dc.relation.references[66]. Nelson, R. (2012, July). Fault ride-through trip curves. In 2012 IEEE Power and Energy Society General Meeting (pp. 1-4). IEEE.spa
dc.relation.references[67]. Saadat, H. (1999). Power system analysis (Vol. 2). McGraw-hillspa
dc.relation.references[68]. Arias Guzmán, Santiago. Hundimientos de tensión: un enfoque de análisis a partir del álgebra tensorial. Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación. 2015spa
dc.relation.references[69]. Styvaktakis, E., Bollen, M. H., & Gu, I. Y. H., "Expert system for voltage dip classification and analysis,". in Proc. 2001 IEEE Power Engineering Society Summer Meeting, (Vol. 1, pp. 671-676), 2001.spa
dc.relation.references[70]. Duarte, C. (2004). Técnicas de Procesamiento de Señales para la Monitorización de la Calidad de la Energía Eléctrica. Trabajo de Título de Magíster en Potencia Eléctrica, Departamento de Ingenierías Eléctrica Electrónica y Telecomunicaciones, Universidad Industrial de Santander, 28-34.spa
dc.relation.references[71]. Ministerio de Minas y Energía Gobierno de Colombia, “Anexo General del Reglamento Técnico de Instalaciones Eléctricas (RETIE) 2013,” pp. 1-211, 2017, Colombia.spa
dc.relation.references[72]. Plata, E. A. C., Ustariz, A. J., & Tacca, H. E. (2011). Hornos de Arco Elétrico-Una visión desde la calidad de la potencia eléctrica. In En: Colombia (Vol. 8, p. 160). Blanecolor Ltda.spa
dc.relation.references[73]. https://www.dspace.com/en/pub/home.cfm, tal como se vio en noviembre de 2023.spa
dc.relation.references[74]. https://selinc.com/es/products/351A/, tal como se vio en noviembre de 2023.spa
dc.relation.references[75]. A. J. Ustariz-Farfan, J. A. Ocampo-Wilches, A. I. Narvaez-Villota, D. M. Van Strahlen-Gutierrez and E. A. Cano-Plata, "Evaluation of Protection Systems in Electric Arc Furnaces: A Methodology for Assessment," in IEEE Industry Applications Magazine, vol. 27, no. 2, pp. 18-35, March-April 2021, doi: 10.1109/MIAS.2020.3024481.spa
dc.relation.references[76]. Cano Plata Eduardo, Ustariz Farfán Armando, Arias Guzmán Santiago (2020), “Protección de sobrecorriente del sistema de distribución con aplicación al cálculo de la energía incidente”, Facultad de ingeniería y arquitectura departamento de ingeniería electrónica sede Manizales, primera edición, Editorial UNAL.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalFalla no detectablespa
dc.subject.proposalCoordinación de proteccionesspa
dc.subject.proposalCalidad de la potenciaspa
dc.subject.proposalArco eléctricospa
dc.subject.proposalEnergía incidentespa
dc.subject.proposalHidden failureseng
dc.subject.proposalProtection functionseng
dc.subject.proposalProtection coordinationeng
dc.subject.proposalPower qualityeng
dc.subject.proposalArc-Flasheng
dc.subject.proposalIncident energyeng
dc.subject.unescoEnergía eléctricaspa
dc.subject.unescoElectric powereng
dc.titleCoordinación de protecciones : Una solución desde la calidad de la potenciaspa
dc.title.translatedProtection coordination : A power quality solutioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060650012.2024.pdf
Tamaño:
4.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: