A computational methodology for the generation of genomic maps from fluoroscanning images

dc.contributor.advisorHernandez Ortiz, Juan Pablo
dc.contributor.authorCeballos-Arroyo, Alberto Mario
dc.contributor.googlescholar_zL4pEkAAAAJspa
dc.contributor.orcidCeballos Arroyo, Alberto Mario [0000-0002-4883-5440]spa
dc.contributor.researchgroupCrs-Tid Center for Research and Surveillance of Tropical and Infectious Diseasesspa
dc.date.accessioned2023-01-31T15:49:30Z
dc.date.available2023-01-31T15:49:30Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractFluoroscanning is a novel system for quickly generating genomic maps. Unlike preceding systems like optical mapping and nanocoding, Fluoroscanning relies only on the intensity signals produced by dye fluorochromes when bound to DNA nucleotides, which we deem Fluoroscans. As part of this work, we wanted to develop and evaluated a fast digital image processing pipeline for extracting Fluoroscan signals from fluorescence microscopy images, to devise and implement a parallel and highly optimized algorithm for simulating the physical principles behind Fluoroscanning, and to guide laboratory experiments using such a tool in order to enable the generation of genomic maps through alignment algorithms. As a result of our work, we were able to set up a workflow in which real Fluoroscans extracted from digital images were used to adjust the parameters of a Monte Carlo simulation of Fluoroscanning which was then leveraged to guide further laboratory experiments and to generate a synthetic human-genome-scale dataset which will enable the development of signal alignment algorithms for genomic map generation.eng
dc.description.abstractEl Fluoroscanning es un sistema novedoso para la generación rápida de mapas genómicos. A diferencia de sistemas anteriores como el optical mapping y el nanocoding, el Fluoroscanning solo se basa en la intensidad de las señales (que llamamos Fluoroscans) producidas por fluorocromos de tinte cuando se adhieren a nucleótidos de ADN. Como parte de este trabajo, se desarrolla y se evalúa una serie de pasos que incluyen procesamiento de imágenes para extraer señales Fluoroscan de manera rápida a partir de imágenes de microscopía de fluorescencia, un algoritmo paralelo y altamente optimizado para simular los principios físicos detrás del Fluoroscanning y una metodología para guiar experimentos de laboratorio a partir de dicho algoritmo. Como resultado de nuestro trabajo, pudimos establecer un flujo de trabajo en el que Fluoroscans reales extraídos de imágenes digitales se utilizaron para ajustar los parámetros de las simulaciones, que a su vez fueron utilizadas para guiar experimentos de laboratorio y para generar un conjunto de datos sintético a escala genómica que permitirá ayudar al desarrollo de algoritmos de alineamiento de señales para la generación de mapas genómicos. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemasspa
dc.description.researchareaBioinformáticaspa
dc.description.researchareaVisión Artificialspa
dc.description.researchareaBiología computacionalspa
dc.format.extentvii, 72 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83214
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (M. Anderson & S. Granum, Eds.; 5th). Garland Science.spa
dc.relation.referencesAston, C., Hiort, C., & Schwartz, D. C. (1999). Optical Mapping: An Approach for Fine Mapping. Methods Enzymol., 303, 55–73. https://doi.org/10.1016/S0076-6879(99) 03006-2spa
dc.relation.referencesBahadar, K., Khaliq, A. A., & Shahid, M. (2016). A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PLoS One, 11 (7), 1–19. https://doi.org/10.1371/journal.pone.0158996spa
dc.relation.referencesBarber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press. https://doi.org/10.1017/CBO9780511804779spa
dc.relation.referencesBennink, M., Sch ̈arer, O., Kanaar, R., Sakata-Sogawa, K., Schins, J., Kanger, J., de Grooth, B., & Greve, J. (1999). Single-molecule manipulation of double-stranded dna using optical tweezers: Interaction studies of dna with reca and yoyo-1. Cytometry, 36 (3), 200–208.spa
dc.relation.referencesBorst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nat Neurosci, 2 (11), 947–957. https://doi.org/10.1038/14731spa
dc.relation.referencesBrady, E. (1992). Real-time data compression using a FFT digital signal processor. https://doi.org/10.2172/7275570spa
dc.relation.referencesCao, H., Hastie, A. R., Cao, D., Lam, E. T., Sun, Y., Huang, H., Liu, X., Lin, L., Andrews, W., Chan, S., Huang, S., Tong, X., Requa, M., Anantharaman, T., Krogh, A., Yang, H., Cao, H., & Xu, X. (2014). Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience, 3 (1), 1–11. https://doi.org/10.1186/2047-217X-3-34spa
dc.relation.referencesChan, E. K., Cameron, D. L., Petersen, D. C., Lyons, R. J., Baldi, B. F., Papenfuss, A. T., Thomas, D. M., & Hayes, V. M. (2018). Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Research, 28 (5), 726–738. https://doi.org/10.1101/gr.227975.117spa
dc.relation.referencesChandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel programming in OpenMP (D. E. Penrose & E. Wade, Eds.; 1st). Morgan Kaufmann Publishers.spa
dc.relation.referencesChing, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., . . . Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15 (141), 0170387. https://doi.org/10.1098/rsif.2017.0387spa
dc.relation.referencesCormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms (2nd). The MIT Press; McGraw-Hill Book Company.spa
dc.relation.referencesDeGroot, M. H., Schervish, M. J., & Sheet, C. (2011). Probability and Statistics. Addison Wesley. https://doi.org/0321709705spa
dc.relation.referencesDeligeorgiev, T., Kaloyanova, S., & Vaquero, J. (2010). Intercalating cyanine dyes for nucleic acid detection. Recent Patents on Materials Science, 2, 1–26. https://doi.org/10.2174/1874465610902010001spa
dc.relation.referencesDimalanta, E. T., Lim, A., Runnheim, R., Lamers, C., Churas, C., Forrest, D. K., Pablo, J. J. D., Graham, M. D., Coppersmith, S. N., Goldstein, S., & Schwartz, D. C. (2004). A Microfluidic System for Large DNA Molecule Arrays. Anal. Chem., 76 (18), 5293–5301. https://doi.org/10.1021/ac0496401spa
dc.relation.referencesDuarte, M. (2021). Detecta: A python module to detect events in data (Version v0.0.5). Zenodo. https://doi.org/10.5281/zenodo.4598962spa
dc.relation.referencesDvirnas, A., Pichler, C., Stewart, C. L., Quaderi, S., Nyberg, L. K., M ̈uller, V., Bikkarolla, S. K., Kristiansson, E., Sandegren, L., Westerlund, F., & Ambj ̈ornsson, T. (2018).Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach. PLOS ONE, 13 (3), e0193900. https://doi.org/10.1371/journal.pone.0193900spa
dc.relation.referencesGonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd). Prentice Hall. https://www.imageprocessingplace.comspa
dc.relation.referencesGuennebaud, G., & Jacob, B. (2010). Eigen v3 [software library]. http://eigen.tuxfamily.orgspa
dc.relation.referencesGuizar-Sicairos, M., Thurman, S. T., & Fienup, J. R. (2008). Efficient subpixel image registration algorithms. Opt. Lett., 33 (2), 156–158. https://doi.org/10.1364/OL.33.000156spa
dc.relation.referencesG ̈unther, K., Mertig, M., & Seidel, R. (2010). Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Res., 38 (19), 6526–6532. https://doi.org/10.1093/nar/gkq434spa
dc.relation.referencesGupta, A., Kounovsky-Shafer, K. L., Ravindran, P., & Schwartz, D. C. (2016). Optical mapping and nanocoding approaches to whole-genome analysis. Microfluid. Nanofluidics, 20 (3), 1–14. https://doi.org/10.1007/s10404-015-1685-yspa
dc.relation.referencesGupta, A., Place, M., Goldstein, S., Sarkar, D., Zhou, S., Potamousis, K., Kim, J., Flanagan, C., Li, Y., Newton, M. A., Callander, N. S., Hematti, P., Bresnick, E. H., Ma, J., Asimakopoulos, F., & Schwartz, D. C. (2015). Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc. Natl. Acad. Sci., 112 (25), 7689–7694. https://doi.org/10.1073/pnas.1418577112spa
dc.relation.referencesHarris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del R ́ıo, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2spa
dc.relation.referencesInternational Organization for Standardization. (2012). ISO/IEC 14882:2011 Information technology — Programming languages — C++. Geneva, Switzerland, International Organization for Standardization. http://www.iso.org/iso/iso catalogue/catalogue_tc/catalogue detail.htm?csnumber=50372spa
dc.relation.referencesJo, K., Schramm, T. M., & Schwartz, D. C. (2009). A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding. Methods Mol. Biol., 544 (8), 29–42. https://doi.org/10.1007/978-1-59745-483-4_3spa
dc.relation.referencesJohansen, F., & Jacobsen, J. P. (1998). 1H NMR studies of the bis-intercalation of a homodimeric oxazole yellow dye in DNA oligonucleotides. J Biomol Struct Dyn, 16 (2), 205–222.spa
dc.relation.referencesJohnson, I. (2010). Molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies Corporation. https://books.google.com/books?id=djuacQAACAAJspa
dc.relation.referencesKatsonis, P., Koire, A., Wilson, S. J., Hsu, T. K., Lua, R. C., Wilkins, A. D., & Lichtarge, O. (2014). Single nucleotide variations: Biological impact and theoretical interpretation. Protein Sci., 23 (12), 1650–1666. https://doi.org/10.1002/pro.2552spa
dc.relation.referencesKounovsky-Shafer, K. L., Hernandez-Ortiz, J. P., Potamousis, K., Tsvid, G., Place, M., Ravindran, P., Jo, K., Zhou, S., Odijk, T., de Pablo, J. J., & Schwartz, D. C. (2017). Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proc. Natl. Acad. Sci., (January), 13400–13405. https : / / doi . org / 10 . 1073 / pnas . 1711069114spa
dc.relation.referencesLarsson, A., Carlsson, C., Jonsson, M., & Albinsson, B. (1994). Characterization of the Bind- ing of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy. J. Am. Chem. Soc., 116 (19), 8459–8465. https://doi.org/10.1021/ja00098a004spa
dc.relation.referencesLee, S., & Jo, K. (2016). Visualization of Surface-tethered Large DNA Molecules with a Fluorescent Protein DNA Binding Peptide. Journal of Visualized Experiments: JoVE, (112). https://doi.org/10.3791/54141spa
dc.relation.referencesLee, S., Lee, Y., Kim, Y., Wang, C., Park, J., Jung, G. Y., Chen, Y.-L., Chang, R., Ikeda, S., Sugiyama, H., & Jo, K. (2018). Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Con- centrations. Polymers, 11 (1), 15. https://doi.org/10.3390/polym11010015spa
dc.relation.referencesLesho, E., Clifford, R., Onmus-Leone, F., Appalla, L., Snesrud, E., Kwak, Y., Ong, A., May- bank, R., Waterman, P., Rohrbeck, P., Julius, M., Roth, A., Martinez, J., Nielsen, L., Steele, E., McGann, P., & Hinkle, M. (2016). The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense. PLoS One, 11 (5), 1–12. https: //doi.org/10.1371/journal.pone.0155770spa
dc.relation.referencesLeung, A. K. Y., Kwok, T. P., Wan, R., Xiao, M., Kwok, P. Y., Yip, K. Y., & Chan, T. F. (2017). OMBlast: Alignment tool for optical mapping using a seed-and-extend approach. Bioinformatics, 33 (3), 311–319. https://doi.org/10.1093/bioinformatics/ btw620spa
dc.relation.referencesLi, Y., Zhou, S., Schwartz, D. C., & Ma, J. (2016). Allele-Specific Quantification of Structural Variations in Cancer Genomes. Cell Systems, 3 (1), 21–34. https://doi.org/10.1016/j.cels.2016.05.007spa
dc.relation.referencesLouie, E., Ott, J., & Majewski, J. (2003). Nucleotide Frequency Variation Across Human Genes. Genome Res., 2594–2601. https://doi.org/10.1101/gr.1317703.spa
dc.relation.referencesMajewski, J., Majewski, J., Ott, J., & Ott, J. (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res., 12 (212), 1827–1836. https: //doi.org/10.1101/gr.606402.12spa
dc.relation.referencesMarie, R., Pedersen, J. N., Bauer, D. L., Rasmussen, K. H., Yusuf, M., Volpi, E., Flyvbjerg, H., Kristensen, A., & Mir, K. U. (2013). Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proceedings of the National Academy of Sciences of the United States of America, 110 (13), 4893–4898. https://doi.org/10.1073/pnas.1214570110spa
dc.relation.referencesMarie, R., Pedersen, J. N., Bærlocher, L., Koprowska, K., Pødenphant, M., Sabatel, C., Za- lkovskij, M., Mironov, A., Bilenberg, B., Ashley, N., Flyvbjerg, H., Bodmer, W. F., Kristensen, A., & Mir, K. U. (2018). Single-molecule DNA-mapping and whole-genome sequencing of individual cells. Proceedings of the National Academy of Sciences of the United States of America, 115 (44), 11192–11197. https://doi.org/10.1073/pnas.1804194115spa
dc.relation.referencesMatsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. on Modeling and Computer Simulation, 8 (1), 3–30.spa
dc.relation.referencesMin, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Brief. Bioinform., 18 (5), arXiv 1603.06430, 851–869. https://doi.org/10.1093/bib/bbw068spa
dc.relation.referencesM ̈uller, V., Dvirnas, A., Andersson, J., Singh, V., KK, S., Johansson, P., Ebenstein, Y., Ambj ̈ornsson, T., & Westerlund, F. (2019). Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Research, 47 (15), e89. https://doi.org/10.1093/nar/gkz489spa
dc.relation.referencesNagarajan, N., Read, T. D., & Pop, M. (2008). Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics, 24 (10), 1229–1235. https://doi.org/10.1093/bioinformatics/btn102spa
dc.relation.referencesNandi, S. (2017). Statistical Learning Methods for Fluroroscanning (Ph.D. Thesis). University of Wisconsin-Madison.spa
dc.relation.referencesNetzel, T. L., Nafisi, K., Zhao, M., Lenhard, J. R., & Johnson, I. (1995). Base-Content Dependence of Emission Enhancements, Quantum Yields, and Lifetimes for Cyanine Dyes Bound to Double-Strand DNA: Photophysical Properties of Monomeric and Bichromomphoric DNA Stains. J. Phys. Chem., 99 (51), 17936–17947. https://doi.org/10.1021/j100051a019spa
dc.relation.referencesNyberg, L., Persson, F., ̊Akerman, B., & Westerlund, F. (2013). Heterogeneous staining: a tool for studies of how fluorescent dyes affect the physical properties of DNA. Nucleic Acids Research, 41 (19), e184–e184. https://doi.org/10.1093/nar/gkt755spa
dc.relation.referencesOtsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66. https://doi.org/ 10 .1109/TSMC.1979.4310076spa
dc.relation.referencesPark, J., Lee, S., Won, N., Shin, E., Kim, S.-H., Chun, M.-Y., Gu, J., Jung, G.-Y., Lim, K.-I., & Jo, K. (2019). Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins. Analyst, 144 (3), 921–927. https://doi.org/10.1039/C8AN01426Dspa
dc.relation.referencesPereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., & Saraiva, J. (2021). Ranking programming languages by energy efficiency. Science of Computer Programming, 205, 102609. https://doi.org/https://doi.org/10.1016/j.scico.2021. 102609spa
dc.relation.referencesPrecision Medicine Initiative (PMI) Working Group. (2015). The precision medicine initia- tive cohort program – building a research foundation for 21st century medicine (tech.rep.). http://www.nih.gov/precisionmedicinespa
dc.relation.referencesRavindran, P., & Gupta, A. (2015). Image processing for optical mapping. Gigascience, 4 (1), 1–8. https://doi.org/10.1186/s13742-015-0096-zspa
dc.relation.referencesReisner, W., Larsen, N. B., Silahtaroglu, A., Kristensen, A., Tommerup, N., Tegenfeldt, J. O., & Flyvbjerg, H. (2010). Single-molecule denaturation mapping of DNA in nanofluidic channels. Proceedings of the National Academy of Sciences, 107 (30), 13294–13299. https://doi.org/10.1073/pnas.1007081107spa
dc.relation.referencesRoy, A., Diao, Y., Evani, U., Abhyankar, A., Howarth, C., Le Priol, R., & Bloom, T. (2017). Massively Parallel Processing of Whole Genome Sequence Data, In Proc. 2017 acm int. conf. manag. data - sigmod ’17. https://doi.org/10.1145/3035918.3064048spa
dc.relation.referencesRye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A., & Glazer, A. N. (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications. Nucleic Acids Research, 20 (11), 2803–2812.spa
dc.relation.referencesSchwartz, D., Li, X., Hernandez, L., Ramnarain, S., Huff, E., & Wang, Y. (1993). Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262 (5130), 110–114. https://doi.org/10.1126/science. 8211116spa
dc.relation.referencesShapiro, H. (2004). Excitation and emission spectra of common dyes. Current Protocols in Cytometry, Chapter 1, Unit 1.19. https://doi.org/10.1002/0471142956.cy0119s26spa
dc.relation.referencesShiguo, Z., Herscheleb, J., & Schwartz, D. C. (2007). A single molecule system for whole genome analysis., In New high throughput technol. dna seq. genomics.spa
dc.relation.referencesShit, S., Paetzold, J. C., Sekuboyina, A., Zhylka, A., Ezhov, I., Unger, A., Pluim, J. P. W., Tetteh, G., & Menze, B. H. (2020). clDice – a Topology-Preserving Loss Function for Tubular Structure Segmentation, arXiv 2003.07311, 1–23. http://arxiv.org/abs/ 2003.07311spa
dc.relation.referencesSpielmann, H. P., Wemmer, D. E., & Jacobsen, J. P. (1995). Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy. Biochemistry, 34 (27), 8542–8553.spa
dc.relation.referencesTang, H., Lyons, E., & Town, C. D. (2015). Optical mapping in plant comparative genomics. Gigascience, 4 (1), 1–6. https://doi.org/10.1186/s13742-015-0044-yspa
dc.relation.referencesTeague, B., Waterman, M. S., Goldstein, S., Potamousis, K., Zhou, S., Reslewic, S., Sarkar, D., Valouev, A., Churas, C., Kidd, J. M., Kohn, S., Runnheim, R., Lamers, C., Forrest, D., Newton, M. A., Eichler, E. E., Kent-First, M., Surti, U., Livny, M., & Schwartz, D. C. (2010). High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci., 107 (24), 10848–10853. https://doi.org/10.1073/ pnas.0914638107spa
dc.relation.referencesValouev, A., Schwartz, D. C., Zhou, S., & Waterman, M. S. (2006). An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci., 103 (43), 15770–15775. https://doi.org/10.1073/pnas.0604040103spa
dc.relation.referencesValouev, A., Li, L., Liu, Y.-C., Schwartz, D. C., Yang, Y., Zhang, Y., & Waterman, M. S. (2006). Alignment of Optical Maps. J. Comput. Biol., 13 (2), 442–462. https://doi. org/10.1089/cmb.2006.13.442spa
dc.relation.referencesValouev, A., Zhang, Y., Schwartz, D. C., & Waterman, M. S. (2006). Refinement of optical map assemblies. Bioinformatics, 22 (10), 1217–1224. https://doi.org/10.1093/ bioinformatics/btl063spa
dc.relation.referencesVan der Walt, S., Sch ̈onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2, e453.spa
dc.relation.referencesVirtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/ 10.1038/s41592-019-0686-2spa
dc.relation.referencesVoigtl ̈ander, B. (2015). Data Representation and Image Processing (P. Avouris, B. Bhushan, D. Bimberg, H. Sakaki, K. von Klitzing, & R. Wiesendanger, Eds.; 1st ed.). In P. Avouris, B. Bhushan, D. Bimberg, H. Sakaki, K. von Klitzing, & R. Wiesendanger (Eds.), Scanning probe microsc. at. force microsc. scanning tunneling microsc. (1st ed.). Berlin, Heidelberg, Springer-Verlag GmbH Berlin Heidelberg. https://doi.org/10.1016/B978-0-12-814182-3.00005-5spa
dc.relation.referencesZhou, S., & Schwartz, D. C. (2004). The Optical Mapping of Microbial Genomes. ASM News, 70 (7), 323–330.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.lembMapas Genéticosspa
dc.subject.lembGenetic mapseng
dc.subject.lembBiología computacionalspa
dc.subject.lembComputational biologyeng
dc.subject.proposalOptical mappingeng
dc.subject.proposalBioinformaticseng
dc.subject.proposalGenomic mappingeng
dc.subject.proposalSignal processingeng
dc.subject.proposalImage processingeng
dc.subject.proposalProcesamiento de imágenesspa
dc.subject.proposalADNspa
dc.subject.proposalGenómicaspa
dc.subject.proposalSimulacionesspa
dc.subject.proposalProcesamiento de señalesspa
dc.subject.proposalDNAeng
dc.subject.proposalSimulationseng
dc.titleA computational methodology for the generation of genomic maps from fluoroscanning imageseng
dc.title.translatedUna metodología computacional para la generación de mapas genómicos a partir de imágenes de Fluoroscanningspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1221966785.2022.pdf
Tamaño:
5.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: