Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
dc.contributor.advisor | Viviescas Ramírez, Carlos Leonardo | spa |
dc.contributor.author | Veloza Diaz, Diego | spa |
dc.contributor.researchgroup | Caos y Complejidad | spa |
dc.date.accessioned | 2022-03-08T02:26:20Z | |
dc.date.available | 2022-03-08T02:26:20Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, gráficas | spa |
dc.description.abstract | El entrelazamiento corresponde a uno de los recursos cuánticos cruciales del cual dependen muchas de las tecnologáas cuánticas que prometen superar a sus contrapartes clásicas y plantear un nuevo paradigma tecnológico. Proteger este recurso de los efectos de decoherencia y fuentes de ruido varias, sin perder la posibilidad de tener tiempos de ejecución prácticos, se convierte en una tarea de suma importancia. Es en este contexto que se plantea la posibilidad de controlar los efectos de decoherencia mediante un proceso de retroalimentación Markoviana para un sistema de dos qubits en un circuito QED, además de explorar la compatibilidad de este esquema de control con un método de optimización de tiempos de ejecución para un protocolo adiabático de preparación de estados entrelazados. (Texto tomado de la fuente). | spa |
dc.description.abstract | Entanglement corresponds to one of the crucial quantum resources, from which a large number of quantum technologies depend on, that promise to outperform their classical counterparts and impose a new technological paradigm. Protecting this resource from the effects of decoherence and other noise sources, without losing the possibility of having practical execution times becomes an extremely important task. It is in this context that the possibility of controlling decoherence effects through a Markovian feedback action for a two-qubit system in a QED circuit is proposed, in addition has explored the compatibility of this scheme of control with the optimization method for the execution times for an adiabatic protocol of preparation of entangled states explored in the same reference. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.notes | Incluye anexos | spa |
dc.description.researcharea | Trajectorias cuanticas y control cuantico | spa |
dc.format.extent | 58 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81146 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Física | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | G. Agarwal. Control of decoherence and relaxation by frequency modulation of a heat bath. Physical Review A - Atomic, Molecular, and Optical Physics, 61:138091–138095, 2000 | spa |
dc.relation.references | D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating the jones polynomial. In Proceedings of the Annual ACM Symposium on Theory of Computing, volume 2006, pages 427–436, 2006. | spa |
dc.relation.references | R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 534(7606):222–226, 2016. | spa |
dc.relation.references | M. V. Berry. Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36), 2009. | spa |
dc.relation.references | J. D. Biamonte, V. Bergholm, J. D. Whitfield, J. Fitzsimons, and A. Aspuru-Guzik. Adiabatic quantum simulators. AIP Advances, 1(2), 2011. | spa |
dc.relation.references | A. Blais, J. Gambetta, A.Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A, 75:032329, Mar 2007. | spa |
dc.relation.references | A. Chia and H. Wiseman. Complete parametrizations of diffusive quantum monitoring. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011. | spa |
dc.relation.references | A. Chia and H. M. Wiseman. Quantum theory of multiple-input-multiple-output markovian feedback with diffusive measurements. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011. | spa |
dc.relation.references | A. M. Childs, E. Farhi, and J. Preskill. Robustness of adiabatic quantum computation. Physical Review A.Atomic, Molecular, and Optical Physics, 65(1):123221–1232210, 2002. | spa |
dc.relation.references | D. I. Cutress. Intel’s manufacturing roadmap from 2019 to 2029: Back porting, 7nm, 5nm, 3nm, 2nm, and 1.4 nm. anandtech. | spa |
dc.relation.references | A. J. a. Dariusz Chru´sci´nski. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics 36. Birkh¨auser Basel, 1 edition, 2004. | spa |
dc.relation.references | A. Del Campo. Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 2013. | spa |
dc.relation.references | M. Demirplak and S. A. Rice. Adiabatic population transfer with control fields. Journal of Physical Chemistry A, 107(46):9937–9945, 2003. | spa |
dc.relation.references | A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012. | spa |
dc.relation.references | X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, 2017. | spa |
dc.relation.references | F. Haake, S. Tan, and D. Walls. Photon noise reduction in lasers. Physical Review A, 40:7121–7132, 1989. | spa |
dc.relation.references | G. J. M. Howard M. Wiseman. Quantum Measurement and Control. Cambridge University Press, 1 edition, 2009. | spa |
dc.relation.references | S. . Huang, H. . Goan, X. . Li, and G. J. Milburn. Generation and stabilization of a three-qubit entangled w state in circuit qed via quantum feedback control. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6), 2013. | spa |
dc.relation.references | D. A. Lidar, A. T. Rezakhani, and A. Hamma. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics, 50(10):102106, 2009. | spa |
dc.relation.references | G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119–130, 1976. | spa |
dc.relation.references | E. P. Peter E. Kloeden. Numerical solution of stochastic differential equations. Stochastic Modelling and Applied Probability. Springer, corrected edition, 1995. | spa |
dc.relation.references | F. Petiziol, B. Dive, S. Carretta, R. Mannella, F. Mintert, and S. Wimberger. Accelerating adiabatic protocols for entangling two qubits in circuit qed. Physical Review A, 99(4), 2019. | spa |
dc.relation.references | F. Petiziol, B. Dive, F. Mintert, and S. Wimberger. Fast adiabatic evolution by oscillating initial hamiltonians. Physical Review A, 98(4), 2018. | spa |
dc.relation.references | A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi. Quantum adiabatic brachistochrone. Phys. Rev. Lett., 103:080502, Aug 2009. | spa |
dc.relation.references | J. Roland and N. J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A, 65:042308, Mar 2002. | spa |
dc.relation.references | A. C. Santos, B. C¸ akmak, S. Campbell, and N. T. Zinner. Stable adiabatic quantum batteries. Physical Review E, 100(3), 2019. | spa |
dc.relation.references | J. Shapiro, G. Saplakoglu, S.-T. Ho, B. Saleh, and M. Teich. Theory of light detection in the presence of feedback. Journal of the Optical Society of America B: Optical Physics, 4:1604–1620, 1987. | spa |
dc.relation.references | P. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52, 1995. | spa |
dc.relation.references | P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. | spa |
dc.relation.references | M. Theisen, F. Petiziol, S. Carretta, P. Santini, and S. Wimberger. Superadiabatic driving of a three-level quantum system. Phys. Rev. A, 96:013431, Jul 2017. | spa |
dc.relation.references | E. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt, and J. G. Muga. Shortcuts to adiabaticity: Fast-forward approach. Physical Review A - Atomic, Molecular, and Optical Physics, 86(1), 2012. | spa |
dc.relation.references | A. Trabesinger. Quantum simulation. Nature Physics, 8, 4 2012. | spa |
dc.relation.references | T. Villazon, A. Polkovnikov, and A. Chandran. Swift heat transfer by fast-forward driving in open quantum systems. Physical Review A, 100(1), 2019. | spa |
dc.relation.references | H. Wiseman. Quantum theory of continuous feedback. Physical Review A, 49:2133–2150, 1994. | spa |
dc.relation.references | H. Wiseman and L. Di´osi. Complete parameterization, and invariance, of diffusive quantum trajectories for markovian open systems. Chemical Physics, 268(1):91–104, 2001. | spa |
dc.relation.references | H. Wiseman and G. Milburn. Quantum theory of optical feedback via homodyne detection. Physical Review Letters, 70:548–551, 1993. | spa |
dc.relation.references | H. M. Wiseman. Quantum theory of continuous feedback. Phys. Rev. A, 49:2133–2150, Mar 1994. | spa |
dc.relation.references | H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47:642–662, Jan 1993. | spa |
dc.relation.references | W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75:715–775, May 2003. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.lemb | Thermodynamics | eng |
dc.subject.lemb | Termodinámica | spa |
dc.subject.lemb | Markov processes | eng |
dc.subject.lemb | Procesos de Markov | spa |
dc.subject.lemb | Quantum field theory | eng |
dc.subject.lemb | Teoría del campo cuántico | spa |
dc.subject.proposal | Control de retroalimentación cuántico | spa |
dc.subject.proposal | Teoría de retroalimentación | spa |
dc.subject.proposal | Control de error | spa |
dc.subject.proposal | Efectos de decoherencia | spa |
dc.subject.proposal | Canales cuánticos | spa |
dc.title | Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana | spa |
dc.title.translated | Protection and optimization of adiabatic protocols via Markovian feedback | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022426916.2021.pdf
- Tamaño:
- 1.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: