Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana

dc.contributor.advisorViviescas Ramírez, Carlos Leonardospa
dc.contributor.authorVeloza Diaz, Diegospa
dc.contributor.researchgroupCaos y Complejidadspa
dc.date.accessioned2022-03-08T02:26:20Z
dc.date.available2022-03-08T02:26:20Z
dc.date.issued2021
dc.descriptionilustraciones, gráficasspa
dc.description.abstractEl entrelazamiento corresponde a uno de los recursos cuánticos cruciales del cual dependen muchas de las tecnologáas cuánticas que prometen superar a sus contrapartes clásicas y plantear un nuevo paradigma tecnológico. Proteger este recurso de los efectos de decoherencia y fuentes de ruido varias, sin perder la posibilidad de tener tiempos de ejecución prácticos, se convierte en una tarea de suma importancia. Es en este contexto que se plantea la posibilidad de controlar los efectos de decoherencia mediante un proceso de retroalimentación Markoviana para un sistema de dos qubits en un circuito QED, además de explorar la compatibilidad de este esquema de control con un método de optimización de tiempos de ejecución para un protocolo adiabático de preparación de estados entrelazados. (Texto tomado de la fuente).spa
dc.description.abstractEntanglement corresponds to one of the crucial quantum resources, from which a large number of quantum technologies depend on, that promise to outperform their classical counterparts and impose a new technological paradigm. Protecting this resource from the effects of decoherence and other noise sources, without losing the possibility of having practical execution times becomes an extremely important task. It is in this context that the possibility of controlling decoherence effects through a Markovian feedback action for a two-qubit system in a QED circuit is proposed, in addition has explored the compatibility of this scheme of control with the optimization method for the execution times for an adiabatic protocol of preparation of entangled states explored in the same reference.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaTrajectorias cuanticas y control cuanticospa
dc.format.extent58 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81146
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesG. Agarwal. Control of decoherence and relaxation by frequency modulation of a heat bath. Physical Review A - Atomic, Molecular, and Optical Physics, 61:138091–138095, 2000spa
dc.relation.referencesD. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating the jones polynomial. In Proceedings of the Annual ACM Symposium on Theory of Computing, volume 2006, pages 427–436, 2006.spa
dc.relation.referencesR. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 534(7606):222–226, 2016.spa
dc.relation.referencesM. V. Berry. Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36), 2009.spa
dc.relation.referencesJ. D. Biamonte, V. Bergholm, J. D. Whitfield, J. Fitzsimons, and A. Aspuru-Guzik. Adiabatic quantum simulators. AIP Advances, 1(2), 2011.spa
dc.relation.referencesA. Blais, J. Gambetta, A.Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A, 75:032329, Mar 2007.spa
dc.relation.referencesA. Chia and H. Wiseman. Complete parametrizations of diffusive quantum monitoring. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011.spa
dc.relation.referencesA. Chia and H. M. Wiseman. Quantum theory of multiple-input-multiple-output markovian feedback with diffusive measurements. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011.spa
dc.relation.referencesA. M. Childs, E. Farhi, and J. Preskill. Robustness of adiabatic quantum computation. Physical Review A.Atomic, Molecular, and Optical Physics, 65(1):123221–1232210, 2002.spa
dc.relation.referencesD. I. Cutress. Intel’s manufacturing roadmap from 2019 to 2029: Back porting, 7nm, 5nm, 3nm, 2nm, and 1.4 nm. anandtech.spa
dc.relation.referencesA. J. a. Dariusz Chru´sci´nski. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics 36. Birkh¨auser Basel, 1 edition, 2004.spa
dc.relation.referencesA. Del Campo. Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 2013.spa
dc.relation.referencesM. Demirplak and S. A. Rice. Adiabatic population transfer with control fields. Journal of Physical Chemistry A, 107(46):9937–9945, 2003.spa
dc.relation.referencesA. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012.spa
dc.relation.referencesX. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, 2017.spa
dc.relation.referencesF. Haake, S. Tan, and D. Walls. Photon noise reduction in lasers. Physical Review A, 40:7121–7132, 1989.spa
dc.relation.referencesG. J. M. Howard M. Wiseman. Quantum Measurement and Control. Cambridge University Press, 1 edition, 2009.spa
dc.relation.referencesS. . Huang, H. . Goan, X. . Li, and G. J. Milburn. Generation and stabilization of a three-qubit entangled w state in circuit qed via quantum feedback control. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6), 2013.spa
dc.relation.referencesD. A. Lidar, A. T. Rezakhani, and A. Hamma. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics, 50(10):102106, 2009.spa
dc.relation.referencesG. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119–130, 1976.spa
dc.relation.referencesE. P. Peter E. Kloeden. Numerical solution of stochastic differential equations. Stochastic Modelling and Applied Probability. Springer, corrected edition, 1995.spa
dc.relation.referencesF. Petiziol, B. Dive, S. Carretta, R. Mannella, F. Mintert, and S. Wimberger. Accelerating adiabatic protocols for entangling two qubits in circuit qed. Physical Review A, 99(4), 2019.spa
dc.relation.referencesF. Petiziol, B. Dive, F. Mintert, and S. Wimberger. Fast adiabatic evolution by oscillating initial hamiltonians. Physical Review A, 98(4), 2018.spa
dc.relation.referencesA. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi. Quantum adiabatic brachistochrone. Phys. Rev. Lett., 103:080502, Aug 2009.spa
dc.relation.referencesJ. Roland and N. J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A, 65:042308, Mar 2002.spa
dc.relation.referencesA. C. Santos, B. C¸ akmak, S. Campbell, and N. T. Zinner. Stable adiabatic quantum batteries. Physical Review E, 100(3), 2019.spa
dc.relation.referencesJ. Shapiro, G. Saplakoglu, S.-T. Ho, B. Saleh, and M. Teich. Theory of light detection in the presence of feedback. Journal of the Optical Society of America B: Optical Physics, 4:1604–1620, 1987.spa
dc.relation.referencesP. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52, 1995.spa
dc.relation.referencesP. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.spa
dc.relation.referencesM. Theisen, F. Petiziol, S. Carretta, P. Santini, and S. Wimberger. Superadiabatic driving of a three-level quantum system. Phys. Rev. A, 96:013431, Jul 2017.spa
dc.relation.referencesE. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt, and J. G. Muga. Shortcuts to adiabaticity: Fast-forward approach. Physical Review A - Atomic, Molecular, and Optical Physics, 86(1), 2012.spa
dc.relation.referencesA. Trabesinger. Quantum simulation. Nature Physics, 8, 4 2012.spa
dc.relation.referencesT. Villazon, A. Polkovnikov, and A. Chandran. Swift heat transfer by fast-forward driving in open quantum systems. Physical Review A, 100(1), 2019.spa
dc.relation.referencesH. Wiseman. Quantum theory of continuous feedback. Physical Review A, 49:2133–2150, 1994.spa
dc.relation.referencesH. Wiseman and L. Di´osi. Complete parameterization, and invariance, of diffusive quantum trajectories for markovian open systems. Chemical Physics, 268(1):91–104, 2001.spa
dc.relation.referencesH. Wiseman and G. Milburn. Quantum theory of optical feedback via homodyne detection. Physical Review Letters, 70:548–551, 1993.spa
dc.relation.referencesH. M. Wiseman. Quantum theory of continuous feedback. Phys. Rev. A, 49:2133–2150, Mar 1994.spa
dc.relation.referencesH. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47:642–662, Jan 1993.spa
dc.relation.referencesW. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75:715–775, May 2003.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembThermodynamicseng
dc.subject.lembTermodinámicaspa
dc.subject.lembMarkov processeseng
dc.subject.lembProcesos de Markovspa
dc.subject.lembQuantum field theoryeng
dc.subject.lembTeoría del campo cuánticospa
dc.subject.proposalControl de retroalimentación cuánticospa
dc.subject.proposalTeoría de retroalimentaciónspa
dc.subject.proposalControl de errorspa
dc.subject.proposalEfectos de decoherenciaspa
dc.subject.proposalCanales cuánticosspa
dc.titleProtección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markovianaspa
dc.title.translatedProtection and optimization of adiabatic protocols via Markovian feedbackeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022426916.2021.pdf
Tamaño:
1.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: