Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua

dc.contributor.advisorZea Ramírez, Hugo Ricardo
dc.contributor.advisorQuintero Cortés, Francisco Javier
dc.contributor.authorRomero Benavides, Luis Eduardo
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambientespa
dc.date.accessioned2021-07-19T21:42:38Z
dc.date.available2021-07-19T21:42:38Z
dc.date.issued2021-03-22
dc.descriptionilustraciones, tablasspa
dc.description.abstractSe fabricó fotoelectrodos por anodización de zinc metálico en electrolitos de Na2CO3 y KHCO3 preparados en solventes mixtos de agua y etilenglicol, posteriormente recocidos a 300°C durante 1 hora. Este proceso produjo recubrimientos de ZnO nanoestructurados de diferente morfología y grosor de acuerdo con la conductividad del medio de anodización. Se estudió características de los recubrimientos por diferentes técnicas que incluyen microscopía electrónica SEM y TEM, difracción de rayos X, espectrofotometría para calcular el band gap óptico, sortometría para área BET y medidas electroquímicas en una celda PEC. La evaluación de los fotoelectrodos PEC arrojó eficiencias IPCE entre 5,4 y 20,4%. (Texto tomado de la fuente)spa
dc.description.abstractPhotoelectrodes were made by anodizing metallic zinc in electrolytes of Na2CO3 and KHCO3 prepared in mixed solvents of water and ethylene glycol, subsequently annealed at 300 °C for 1 hour. This process produced nanostructured ZnO coatings of different morphology and thickness according to the conductivity of the anodizing medium. Features of the coatings were studied by different techniques including SEM and TEM electron microscopy, X-ray diffraction, spectrophotometry to calculate optical band gap, sorptometry for BET surface area and electrochemical measurements in a PEC cell. The evaluation of the PEC photoelectrodes yielded IPCE efficiencies between 5.4 and 20.4%. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaCiencia de materialesspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79820
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] IEA, World Energy Balances 2019. OECD, 2019.spa
dc.relation.references[2] P. Emílio and V. De Miranda, “Hydrogen Energy: Sustainable and Perennial,” 2019.spa
dc.relation.references[3] International Energy Agency, Key World Energy Statistics 2018. OECD, 2018.spa
dc.relation.references[4] BP, “Full report – BP Statistical Review of World Energy 2019.”spa
dc.relation.references[5] P. Jackson, “De Estocolmo a Kyoto : Breve historia del cambio climático,” Crónica ONU, vol. XLIV, no. 2, pp. 1–6, 2007, [Online]. Available: https://www.un.org/es/chronicle/article/de-estocolmo-kyotobreve-historia-del-cambio-climatico.spa
dc.relation.references[6] Organización de las Naciones Unidas, “Objetivo 7. ENERGÍA ASEQUIBLE Y NO CONTAMINANTE,” United Nations, p. 1, 2016, [Online]. Available: https://www.un.org/sustainabledevelopment/es/wp-content/uploads/sites/3/2016/10/7_Spanish_Why_it_Matters.pdf.spa
dc.relation.references[7] M. Momirlan and T. N. Veziroglu, “The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet,” Int. J. Hydrogen Energy, vol. 30, pp. 795–802, 2005, doi: 10.1016/j.ijhydene.2004.10.011.spa
dc.relation.references[8] World Nuclear Association, “Heat values of various fuels - World Nuclear Association,” p. 2018, 2018, Accessed: Mar. 25, 2020. [Online]. Available: https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx.spa
dc.relation.references[9] J. Kegel, I. M. Povey, and M. E. Pemble, “Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities,” Nano Energy, vol. 54, pp. 409–428, Dec. 2018, doi: 10.1016/j.nanoen.2018.10.043.spa
dc.relation.references[10] J. Jia et al., “Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%,” Nat. Commun., vol. 7, no. 1, pp. 1–6, Oct. 2016, doi: 10.1038/ncomms13237.spa
dc.relation.references[11] P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy,” RSC Adv., vol. 2, no. 21, pp. 7933–7947, 2012, doi: 10.1039/c2ra20839c.spa
dc.relation.references[12] A. Rokade, S. Rondiya, V. Sharma, M. Prasad, H. Pathan, and S. Jadkar, “Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water,” J. Solid State Electrochem., vol. 21, no. 9, pp. 2639–2648, 2017, doi: 10.1007/s10008-016-3427-9.spa
dc.relation.references[13] S. He et al., “Preparation and properties of ZnO nanostructures by electrochemical anodization method,” Appl. Surf. Sci., vol. 256, no. 8, pp. 2557–2562, 2010, doi: 10.1016/j.apsusc.2009.10.104.spa
dc.relation.references[14] A. Y. Faid and N. K. Allam, “Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes,” RSC Adv., vol. 6, no. 83, pp. 80221–80225, 2016, doi: 10.1039/C6RA18747A.spa
dc.relation.references[15] F. Quintero, P. Arias, and H. Zea, “Novel anodizing procedure to grow TiO2 nanotubes successfully employed in ethanol photolysis,” Int. J. ChemTech Res., vol. 5, no. 4, pp. 1641–1645, 2013, [Online]. Available: http://www.sphinxsai.com/2013/VOL5_NO.4_APRIL/PDFS_VOL5_NO.4/CT=33(1641-1645)AJ13.pdf.spa
dc.relation.references[16] P. Arias Monje, “Photoelectrocatalytic Hydrogen Production with TiO2 Nanostructures Formed by Alternating Voltage Anodization,” Universidad Nacional de Colombia, 2016.spa
dc.relation.references[17] H. Yan et al., “Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation,” Mater. Res. Bull., vol. 44, no. 10, pp. 1954–1958, Oct. 2009, doi: 10.1016/j.materresbull.2009.06.014.spa
dc.relation.references[18] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes. Elsevier, 1998.spa
dc.relation.references[19] R. A. Serway and J. W. Jewwett, “Teoría de banda en sólidos,” in Física para ciencias e ingenierías Vol. 2., 9a., Cengage, 2015, pp. 1359–1364.spa
dc.relation.references[20] O. Coddington, J. L. Lean, D. Lindholm, P. Pilewskie, M. Snow, and N. C. Program, “NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2,” Jan. 01, 2015. https://www.ncdc.noaa.gov/cdr/atmospheric/solar-spectral-irradiance (accessed Mar. 31, 2020).spa
dc.relation.references[21] S. B. A. Hamid, S. J. Teh, and C. W. Lai, “Photocatalytic Water Oxidation on ZnO: A Review,” Catalysts, vol. 7, no. 3, p. 93, 2017, doi: 10.3390/catal7030093.spa
dc.relation.references[22] R. Van De Krol and M. Grätzel, Photoelectro - chemical Hydrogen Production. 2012.spa
dc.relation.references[23] H. Pan, “Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier Ltd, pp. 584–601, May 01, 2016, doi: 10.1016/j.rser.2015.12.117.spa
dc.relation.references[24] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting, 1st ed. New York, NY: Springer New York, 2013.spa
dc.relation.references[25] R. M. Navarro, F. del Valle, J. A. Villoria de la Mano, M. C. Álvarez-Galván, and J. L. G. Fierro, “Photocatalytic Water Splitting Under Visible Light. Concept and Catalysts Development,” Advances in Chemical Engineering, vol. 36. pp. 111–143, 2009, doi: 10.1016/S0065-2377(09)00404-9.spa
dc.relation.references[26] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, Jul. 1972, doi: 10.1038/238037a0.spa
dc.relation.references[27] S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa, “Photocatalytic activity for hydrogen evolution of electrospun TiO 2 nanofibers,” ACS Appl. Mater. Interfaces, vol. 1, no. 5, pp. 1140–1143, 2009, doi: 10.1021/am9001474.spa
dc.relation.references[28] A. Kudo, “Photocatalyst Materials for Water Splitting,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 31–38, 2003, doi: 10.1023/A:1023480507710 ID.spa
dc.relation.references[29] A. B. Murphy et al., “Efficiency of solar water splitting using semiconductor electrodes,” Int. J. Hydrogen Energy, 2006, doi: 10.1016/j.ijhydene.2006.01.014.spa
dc.relation.references[30] L. Andrade, T. Lopes, H. A. Ribeiro, and A. Mendes, “Transient phenomenological modeling of photoelectrochemical cells for water splitting - Application to undoped hematite electrodes,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 175–188, 2011, doi: 10.1016/j.ijhydene.2010.09.098.spa
dc.relation.references[31] P. Dias, A. Vilanova, T. Lopes, L. Andrade, and A. Mendes, “Extremely stable bare hematite photoanode for solar water splitting,” Nano Energy, vol. 23, pp. 70–79, May 2016, doi: 10.1016/j.nanoen.2016.03.008.spa
dc.relation.references[32] T. Lopes, L. Andrade, H. A. Ribeiro, and A. Mendes, “Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11601–11608, 2010, doi: 10.1016/j.ijhydene.2010.04.001.spa
dc.relation.references[33] R. Sánchez-Tovar, R. M. Fernández-Domene, M. T. Montañés, A. Sanz-Marco, and J. Garcia-Antón, “ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting,” RSC Adv., vol. 6, no. 36, pp. 30425–30435, 2016, doi: 10.1039/C6RA03501A.spa
dc.relation.references[34] F. D. Ruiz-Ocampo, J. M. Zapien-Rodríguez, O. Burgara-Montero, E. A. Escoto-Sotelo, F. A. Núñez-Pérez, and L. de S. E. Ballesteros-Pachecho, J.C. (Universidad Politécnica de Lázaro Cárdenas, “Electrodeposition of Nanostructured ZnO Photoanodes for Their Application in the Oxygen Evolution Reaction,” Int. J. Electrochem. Sci., no. 12, pp. 4898–4914, Jun. 2017, doi: 10.20964/2017.06.74.spa
dc.relation.references[35] L. Zaraska, K. Mika, K. Syrek, and G. D. Sulka, “Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes,” J. Electroanal. Chem., vol. 801, no. August, pp. 511–520, Sep. 2017, doi: 10.1016/j.jelechem.2017.08.035.spa
dc.relation.references[36] J. Wang, L. Pan, H. Meng, R. Han, Z. Huang, and C. Zhang, “One-Step Seedless and Catalyst — Free Growth of Hierarchical ZnO Film Promising for Photoelectrochemical Application,” no. March, pp. 61–76, 2016.spa
dc.relation.references[37] M.-C. Huang, T. Wang, B.-J. Wu, J.-C. Lin, and C.-C. Wu, “Anodized ZnO nanostructures for photoelectrochemical water splitting,” Appl. Surf. Sci., vol. 360, pp. 442–450, Jan. 2016, doi: 10.1016/j.apsusc.2015.09.174.spa
dc.relation.references[38] G. S. Huang, X. L. Wu, Y. C. Cheng, J. C. Shen, A. P. Huang, and P. K. Chu, “Fabrication and characterization of anodic ZnO nanoparticles,” Appl. Phys. A Mater. Sci. Process., vol. 86, no. 4, pp. 463–467, 2007, doi: 10.1007/s00339-006-3778-7.spa
dc.relation.references[39] L. Zaraska, K. Mika, M. Zych, and G. D. Sulka, “Anodic formation of zinc oxide nanostructures with various morphologies,” in Nanostructured Anodic Metal Oxides, Elsevier, 2020, pp. 385–414.spa
dc.relation.references[40] L. Zaraska et al., “High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2017, doi: 10.1016/j.mseb.2017.09.003.spa
dc.relation.references[41] W. Siripala, “Hydrogen Energy and Photoelectrolysis of Water,” Proc. Tech. Sess., no. 20, pp. 67–73, 2004, [Online]. Available: https://www.researchgate.net/publication/237549114.spa
dc.relation.references[42] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034.spa
dc.relation.references[43] J.-M. Herrmann, “Fundamentals and misconceptions in photocatalysis,” J. Photochem. Photobiol. A Chem., vol. 216, no. 2–3, pp. 85–93, Dec. 2010, doi: 10.1016/j.jphotochem.2010.05.015.spa
dc.relation.references[44] S. K. Saraswat, D. D. Rodene, and R. B. Gupta, “Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light,” Renew. Sustain. Energy Rev., vol. 89, no. June 2017, pp. 228–248, 2018, doi: 10.1016/j.rser.2018.03.063.spa
dc.relation.references[45] M. S. Ramachandra Rao and T. Okada, ZnO Nanocrystals and Allied Materials, vol. 180. 2014.spa
dc.relation.references[46] T. Bak, J. Nowotny, M. Rekas, and C. . Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, Oct. 2002, doi: 10.1016/S0360-3199(02)00022-8.spa
dc.relation.references[47] Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, “2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions,” Adv. Mater., vol. 28, no. 10, pp. 1917–1933, Mar. 2016, doi: 10.1002/adma.201503270.spa
dc.relation.references[48] U.S.Geological_Survey, “Mineral Commodity Summaries,” Reston, Virginia, 2020. doi: 10.3133/mcs2020.spa
dc.relation.references[49] Metalary, “Metalary - Latest and Historical Metal Prices,” 2020. http://www.metalary.com/ (accessed Mar. 31, 2020).spa
dc.relation.references[50] B. O. Seraphin, Ed., Solar Energy Conversion, vol. 31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979.spa
dc.relation.references[51] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, and A. Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review,” Research on Chemical Intermediates, vol. 45, no. 4. Springer Netherlands, pp. 2197–2254, Apr. 15, 2019, doi: 10.1007/s11164-018-03729-5.spa
dc.relation.references[52] O. A. Fouad, A. A. Ismail, Z. I. Zaki, and R. M. Mohamed, “Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity,” Appl. Catal. B Environ., vol. 62, no. 1–2, pp. 144–149, Jan. 2006, doi: 10.1016/j.apcatb.2005.07.006.spa
dc.relation.references[53] M. V. Rao, K. Rajeshwar, V. R. Pal Verneker, and J. DuBow, “Photosynthetic production of H2 and H2O2 on semiconducting oxide grains in aqueous solutions,” J. Phys. Chem., vol. 84, no. 15, pp. 1987–1991, 1980, doi: 10.1021/j100452a023.spa
dc.relation.references[54] J. Han, W. Qiu, and W. Gao, “Potential dissolution and photo-dissolution of ZnO thin films,” J. Hazard. Mater., vol. 178, no. 1–3, pp. 115–122, Jun. 2010, doi: 10.1016/j.jhazmat.2010.01.050.spa
dc.relation.references[55] H. Li, W. Dong, J. Xi, Z. Li, X. Wu, and Z. Ji, “Hydropowered photoelectrochemical water splitting solar cell for hydrogen production,” J. Alloys Compd., vol. 691, pp. 750–754, Jan. 2017, doi: 10.1016/j.jallcom.2016.08.290.spa
dc.relation.references[56] M. A. Johar, R. A. Afzal, A. A. Alazba, and U. Manzoor, “Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites,” Adv. Mater. Sci. Eng., vol. 2015, 2015, doi: 10.1155/2015/934587.spa
dc.relation.references[57] R. Dom, L. R. Baby, H. G. Kim, and P. H. Borse, “Fe controlled charge-dynamics in ZnO for solar hydrogen generation,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5758–5767, Mar. 2017, doi: 10.1016/j.ijhydene.2016.12.089.spa
dc.relation.references[58] H. Abdullah, D. H. Kuo, and X. Chen, “High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5638–5648, 2017, doi: 10.1016/j.ijhydene.2016.11.137.spa
dc.relation.references[59] M. Y. Guo et al., “ZnO and TiO2 1D nanostructures for photocatalytic applications,” J. Alloys Compd., vol. 509, no. 4, pp. 1328–1332, Jan. 2011, doi: 10.1016/j.jallcom.2010.10.028.spa
dc.relation.references[60] J. Lu, H. Wang, D. Peng, T. Chen, S. Dong, and Y. Chang, “Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 78, pp. 41–48, Apr. 2016, doi: 10.1016/j.physe.2015.11.035.spa
dc.relation.references[61] T. H. Yang et al., “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal., vol. 329, no. 1, pp. 167–176, Sep. 2015, doi: 10.1016/j.jcat.2015.05.009.spa
dc.relation.references[62] N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, and M. Batzill, “Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO,” Langmuir, vol. 25, no. 5, pp. 3310–3315, Mar. 2009, doi: 10.1021/la803845f.spa
dc.relation.references[63] B. Beverskog and I. Puigdomenech, “Revised pourbaix diagrams for zinc at 25-300°C,” Corros. Sci., vol. 39, no. 1, pp. 107–114, Jan. 1997, doi: 10.1016/S0010-938X(97)89246-3.spa
dc.relation.references[64] University of Cambridge, “DoITPoMS - TLP Library The Nernst Equation and Pourbaix Diagrams.” https://www.doitpoms.ac.uk/tlplib/pourbaix/printall.php (accessed Jan. 19, 2021).spa
dc.relation.references[65] J. R. Davis, Corrosion : Understanding the Basics. Materials Park, Ohio: ASM International, 2000.spa
dc.relation.references[66] E. McCafferty, Introduction to corrosion science. Springer New York, 2010.spa
dc.relation.references[67] J. Ramsden, Nanotechnology. Elsevier Inc., 2011.spa
dc.relation.references[68] D. Filipponi, Luisa Sutherland, NANOTECHNOLOGIES Principles, Applications, Implications and Hands-on Activities. A compendium for educators. Brussels, 2013.spa
dc.relation.references[69] European Comission, “Questions on nanomaterials.” https://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials2012/en/index.htm (accessed Jun. 22, 2020).spa
dc.relation.references[70] J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B, vol. 81, no. 11, p. 115318, Mar. 2010, doi: 10.1103/PhysRevB.81.115318.spa
dc.relation.references[71] T. P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler, and A. N. Tiwari, “Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements,” Sci. Rep., vol. 9, no. 1, p. 5385, Dec. 2019, doi: 10.1038/s41598-019-41716-x.spa
dc.relation.references[72] F. Zuo, L. Wang, and P. Feng, “Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity,” Int. J. Hydrogen Energy, vol. 39, no. 2, pp. 711–717, Jan. 2014, doi: 10.1016/j.ijhydene.2013.10.120.spa
dc.relation.references[73] X. Gu, T. Edvinsson, and J. Zhu, “ZnO nanomaterials: strategies for improvement of photocatalytic and photoelectrochemical activities,” in Current Developments in Photocatalysis and Photocatalytic Materials, Elsevier, 2020, pp. 231–244.spa
dc.relation.references[74] M. Kong et al., “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc., vol. 133, no. 41, pp. 16414–16417, Oct. 2011, doi: 10.1021/ja207826q.spa
dc.relation.references[75] R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int., vol. 39, no. 3, pp. 2283–2292, Apr. 2013, doi: 10.1016/j.ceramint.2012.08.075.spa
dc.relation.references[76] A. Samavati et al., “Influence of ZnO nanostructure configuration on tailoring the optical bandgap: Theory and experiment,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 263, p. 114811, Jan. 2021, doi: 10.1016/j.mseb.2020.114811.spa
dc.relation.references[77] Y.-J. Kim et al., “ZnO nanostructures with controlled morphologies on a glass substrate.,” Nanotechnology, vol. 21, no. 26, p. 265603, 2010, doi: 10.1088/0957-4484/21/26/265603.spa
dc.relation.references[78] A. Ramirez-Canon, D. O. Miles, P. J. Cameron, and D. Mattia, “Zinc oxide nanostructured films produced via anodization: a rational design approach,” RSC Adv., vol. 3, no. 47, p. 25323, 2013, doi: 10.1039/c3ra43886d.spa
dc.relation.references[79] N. Clament Sagaya Selvam, J. J. Vijaya, and L. J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res., vol. 51, no. 50, pp. 16333–16345, Dec. 2012, doi: 10.1021/ie3016945.spa
dc.relation.references[80] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, May 2007, doi: 10.1016/S1369-7021(07)70078-0.spa
dc.relation.references[81] M. Kumar and C. Sasikumar, “Electrodeposition of Nanostructured ZnO Thin Film: A Review,” Am. J. Mater. Sci. Eng., vol. 2, no. 2, pp. 18–23, May 2014, doi: 10.12691/ajmse-2-2-2.spa
dc.relation.references[82] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, no. July 2012, 2012, doi: 10.1155/2012/624520.spa
dc.relation.references[83] B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale, vol. 2, no. 9. The Royal Society of Chemistry, pp. 1573–1587, Sep. 01, 2010, doi: 10.1039/c0nr00047g.spa
dc.relation.references[84] X. Wu, G. Lu, C. Li, and G. Shi, “Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil,” Nanotechnology, vol. 17, no. 19, pp. 4936–4940, Oct. 2006, doi: 10.1088/0957-4484/17/19/026.spa
dc.relation.references[85] G. Huey-Shya, A. Rohana, and F. Akhyar, “ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange,” Turkish J. od Chem., no. 35, pp. 375–391, 2011, doi: 10.3906/kim-1010-742.spa
dc.relation.references[86] Y. Yamaguchi, M. Yamazaki, S. Yoshihara, and T. Shirakashi, “Photocatalytic ZnO films prepared by anodizing,” J. Electroanal. Chem., vol. 442, no. 1–2, pp. 1–3, Jan. 1998, doi: 10.1016/S0022-0728(97)00354-9.spa
dc.relation.references[87] N. K. Shrestha, K. Lee, R. Hahn, and P. Schmuki, “Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte,” Electrochem. commun., vol. 34, pp. 9–13, 2013, doi: 10.1016/j.elecom.2013.04.020.spa
dc.relation.references[88] H. M. Chen et al., “A new approach to solar hydrogen production: A ZnO-ZnS solid solution nanowire array photoanode,” Adv. Energy Mater., vol. 1, no. 5, pp. 742–747, 2011, doi: 10.1002/aenm.201100246.spa
dc.relation.references[89] S. J. Kim, J. Lee, and J. Choi, “Understanding of anodization of zinc in an electrolyte containing fluoride ions,” Electrochim. Acta, vol. 53, no. 27, pp. 7941–7945, 2008, doi: 10.1016/j.electacta.2008.06.006.spa
dc.relation.references[90] S. Sreekantan, L. R. Gee, and Z. Lockman, “Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide,” J. Alloys Compd., vol. 476, no. 1–2, pp. 513–518, 2009, doi: 10.1016/j.jallcom.2008.09.044.spa
dc.relation.references[91] J. Zhao, X. Wang, J. Liu, Y. Meng, X. Xu, and C. Tang, “Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method,” Mater. Chem. Phys., vol. 126, no. 3, pp. 555–559, 2011, doi: 10.1016/j.matchemphys.2011.01.028.spa
dc.relation.references[92] J. Park, K. Kim, and J. Choi, “Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization,” Curr. Appl. Phys., vol. 13, no. 7, pp. 1370–1375, 2013, doi: 10.1016/j.cap.2013.04.015.spa
dc.relation.references[93] C. F. Mah, K. P. Beh, F. K. Yam, and Z. Hassan, “Rapid Formation and Evolution of Anodized-Zn Nanostructures in NaHCO 3 Solution,” ECS J. Solid State Sci. Technol., vol. 5, no. 10, pp. M105–M112, Aug. 2016, doi: 10.1149/2.0061610jss.spa
dc.relation.references[94] S. Ono, Y. Kobayashi, R. Kobayashi, and H. Asoh, “Fabrication of Self-Organized Nanoporous Oxide Semiconductors by Anodization,” ECS Trans., vol. 16, no. 3, pp. 353–358, Dec. 2019, doi: 10.1149/1.2982575.spa
dc.relation.references[95] P. Wang, J. J. Kosinski, A. Anderko, R. D. Springer, M. M. Lencka, and J. Liu, “Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties,” 2013, doi: 10.1021/ie4019353.spa
dc.relation.references[96] M. Zhang et al., “Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition,” J. Alloys Compd., vol. 615, pp. 327–332, 2014, doi: 10.1016/j.jallcom.2014.06.178.spa
dc.relation.references[97] N. A. Abd Samad, C. W. Lai, and S. B. Abd Hamid, “Influence Applied Potential on the Formation of Self-Organized ZnO Nanorod Film and Its Photoelectrochemical Response,” Int. J. Photoenergy, vol. 2016, 2016, doi: 10.1155/2016/1413072.spa
dc.relation.references[98] ASTM International, “ASTM B6-13, Standard Specification for Zinc.” ASTM international, West Conshohocken, PA, pp. 1–3, 2013, doi: 10.1520/B0006-13.spa
dc.relation.references[99] ASTM International, “ASTM E536-16, Standard Test Methods for Chemical Analysis of Zinc and Zinc Alloys.” ASTM international, West Conshohocken, PA, pp. 1–6, 2016, doi: 10.1520/E0536-16.spa
dc.relation.references[100] A. Ul-Hamid, “Sample Preparation,” in A Beginners’ Guide to Scanning Electron Microscopy, Cham: Springer International Publishing, 2018, pp. 309–359.spa
dc.relation.references[101] Sylvania-Lighting, “UV-C Purification and Disinfection For Air, Water and Surfaces Special Lighting,” Newhaven, UK, 2019.spa
dc.relation.references[102] Merck-KGaA, “Specification, 1.0870.1000 Zinc granular for analysis, particle size 3-8mm EMSURE(R) ISO.” 2017.spa
dc.relation.references[103] Wayne-Rasband, “ImageJ 1.52a.” National Institute of Health, USA, 2018.spa
dc.relation.references[104] P. Batista-Grau, R. Sánchez-Tovar, R. M. Fernández-Domene, and J. García-Antón, “Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting,” 2019, doi: 10.1016/j.surfcoat.2019.125197.spa
dc.relation.references[105] P. Scherrer, “Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen,” in Kolloidchemie Ein Lehrbuch, Berlin, Heidelberg: Springer Berlin Heidelberg, 1912, pp. 387–409.spa
dc.relation.references[106] Grillo-Zinkoxid_GmbH, “Pharmaceutical Zinc Oxide (API),” 2019. Accessed: Jan. 03, 2021. [Online]. Available: www.grillo-zno.de.spa
dc.relation.references[107] S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 2, pp. 309–319, Feb. 1938, doi: 10.1021/ja01269a023.spa
dc.relation.references[108] Y. Zheng, “Evaluation of a New Method to Estimate the Micropore Volume Evaluation of a New Method to Estimate the Micropore Volume and External Surface Area of Single-walled Carbon Nanotubes and External Surface Area of Single-walled Carbon Nanotubes,” University of Tennessee, Knoxville, Tennessee, 2008.spa
dc.relation.references[109] R. Holguin Ruiz, “Espectroscopia de Reflectancia Difusa — Steemit,” Jul. 11, 2018. https://steemit.com/stem-espanol/@rossyholg/espectroscopia-de-reflectancia-difusa (accessed Jan. 03, 2021).spa
dc.relation.references[110] L. Mohd Fudzi, Z. Zainal, H. Lim, S.-K. Chang, A. Holi, and M. Sarif@Mohd Ali, “Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells,” Materials (Basel)., vol. 11, no. 5, p. 704, Apr. 2018, doi: 10.3390/ma11050704.spa
dc.relation.references[111] R. Gill et al., “Vertically aligned ZnO nanorods for photoelectrochemical water splitting application,” doi: 10.1016/j.matlet.2020.128295.spa
dc.relation.references[112] C. M. Taylor, A. Ramirez-Canon, J. Wenk, and D. Mattia, “Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts,” J. Hazard. Mater., vol. 378, p. 120799, Oct. 2019, doi: 10.1016/j.jhazmat.2019.120799.spa
dc.relation.references[113] K. Govatsi, A. Seferlis, S. G. Neophytides, and S. N. Yannopoulos, “Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency,” Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4866–4879, Mar. 2018, doi: 10.1016/j.ijhydene.2018.01.087.spa
dc.relation.references[114] X. Sun, Q. Li, J. Jiang, and Y. Mao, “Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance,” Nanoscale, vol. 6, no. 15, pp. 8769–8780, Aug. 2014, doi: 10.1039/c4nr01146e.spa
dc.relation.references[115] Y. Qiu, K. Yan, H. Deng, and S. Yang, “Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting,” Nano Lett., vol. 12, no. 1, pp. 407–413, Jan. 2012, doi: 10.1021/nl2037326.spa
dc.relation.references[116] J. Kegel, F. Laffir, I. M. Povey, and M. E. Pemble, “Defect-promoted photo-electrochemical performance enhancement of orange-luminescent ZnO nanorod-arrays,” Phys. Chem. Chem. Phys., vol. 19, no. 19, pp. 12255–12268, May 2017, doi: 10.1039/c7cp01606a.spa
dc.relation.references[117] M. Nehra et al., “1D semiconductor nanowires for energy conversion, harvesting and storage applications,” Nano Energy, vol. 76. Elsevier Ltd, p. 104991, Oct. 01, 2020, doi: 10.1016/j.nanoen.2020.104991.spa
dc.relation.references[118] X. Sheng, T. Xu, and X. Feng, “Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications,” Adv. Mater., vol. 31, no. 11, p. 1805132, Mar. 2019, doi: 10.1002/adma.201805132.spa
dc.relation.references[119] L. Y. Chen and Y. T. Yin, “The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells,” J. Mater. Chem., vol. 22, no. 47, pp. 24591–24596, Dec. 2012, doi: 10.1039/c2jm35413f.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembFotoquímica
dc.subject.lembPhotochemistry
dc.subject.lembConductividad eléctrica
dc.subject.lembElectric conductivity
dc.subject.proposalNanomaterialesspa
dc.subject.proposalÓxido de zincspa
dc.subject.proposalZnOspa
dc.subject.proposalFotocatálisisspa
dc.subject.proposalZinc Oxideeng
dc.subject.proposalNanostructureseng
dc.subject.proposalPhotocatalysteng
dc.subject.proposalPEC efficiencyeng
dc.subject.spinesFotolisis
dc.titleObtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de aguaspa
dc.title.translatedSynthesis of zinc oxide nanostructured electrodes for water splittingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Obtención de electrodos nanoestructrados de ZnO.pdf
Tamaño:
2.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: