Fast security constraint optimal power flow using parallel and heterogenous computing

dc.contributor.advisorRivera, Sergio
dc.contributor.authorRodríguez Medina, Diego Fernando
dc.contributor.refereePinzón, Jaime
dc.contributor.refereeElizondo, Marcelo
dc.contributor.refereeWu, Di
dc.date.accessioned2022-02-01T22:31:59Z
dc.date.available2022-02-01T22:31:59Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractOptimal and secure grid operation is paramount for modern power systems. However, the ever increasing system size, number of conventional and renewable sources, not to mention system loads and power system controllers, make the satisfaction of those requirements in on-line applications not an easy task. Different approaches have been applied to meet power system security criteria and reach optimal cost during real-time operation. Nevertheless, the strategies are mostly employed in small power systems, using strong assumptions or lack of advanced and efficient software-hardware interaction. That makes some of the applications infeasible in real operation or very costly in terms of hardware implementation. As a solution for those limitations, this research will address the problem of Security Constrained Optimal Power Flow (SCOPF) using the potential of Parallel and Heterogeneous Computing (PHC). By this approach, this research is looking to expand the application of advanced computing techniques for the solution of real-time power system problems that simultaneously involves security and optimal cost. The intention is to understand the strategies and principles for computer memory management, data structures and SCOPF re-formulation to optimally satisfy security and time response for proper power system operation.eng
dc.description.abstractEl funcionamiento óptimo y seguro de la red eléctrica es primordial para los sistemas de energía modernos. Sin embargo, el tamaño cada vez mayor de dichos sistemas, así como la cantidad de fuentes convencionales y renovables, sin mencionar las cargas del sistema y los controladores del sistema de energía, hacen que la satisfacción de esos requisitos en las aplicaciones en tiempo real no sean una tarea fácil. Se han aplicado diferentes enfoques para cumplir con los criterios de seguridad del sistema de energía y alcanzar un costo ´optimo durante la operación en tiempo real. Sin embargo, las estrategias se emplean principalmente en sistemas académicos de pequeñas dimensiones, utilizando fuertes suposiciones o falta de software-hardware avanzado y eficiente interacción. Eso hace que algunas de las aplicaciones sean inviables en operación real o muy costosas en términos de implementación de hardware. Como una solución para esas limitaciones, esta investigación abordará el problema del flujo de energía óptimo con restricciones de seguridad (SCOPF) utilizando el potencial de la computación paralela y heterogénea (PHC). Mediante este enfoque, esta investigación busca expandir la aplicación de técnicas informáticas avanzadas para la solución de problemas de sistemas de potencia en tiempo real que involucran simultáneamente seguridad y costo óptimo. La intención es comprender las estrategias y los principios para la gestión de la memoria de la computadora, las estructuras de datos y la reformulación de SCOPF para satisfacer de manera óptima la seguridad y el tiempo de respuesta para correcto funcionamiento del sistema de potencia.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ingeniería Eléctricaspa
dc.description.researchareaOptimización de sistemas de potenciaspa
dc.format.extent114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80849
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesQ. Wang, Risk-based Security-Constrained Optimal Power Flow: Mathematical Fundamentals, Computational Strategies, Validation, and use within Electricity Markets. PhD thesis, Iowa State University, 2013.spa
dc.relation.referencesD. Page, A Practical Introduction to Computer Architecture. Springer, 2009.spa
dc.relation.referencesNVIDIA, “NVIDIA Turing GPU,” White Paper, 2018.spa
dc.relation.referencesS. Rennich, “Cuda c/c++ streams and concurrency,” tech. rep., 2012.spa
dc.relation.referencesG. Wood, A; Wollenberg, B; Shebl´e, Power Generation, Operation and Control. Wiley, 2014.spa
dc.relation.referencesF. Garcia, N. D. Sarma, V. Kanduri, G. Nissankala, K. Gopinath, J. Polusani, T. Mortensen, and I. Flores, “ERCOT control center experience in using real-time contingency analysis in the new nodal market,” IEEE Power and Energy Society General Meeting, pp. 1–8, 2012.spa
dc.relation.referencesZ. Li and F. Yang, Advanced metering infrastructure and graphics processing unit technologies in electric distribution networks. No. 9789811070006, Springer Singapore, 2018.spa
dc.relation.referencesNERC, “Standard TPL-001-4 — Transmission System Planning Performance Requirements,” vol. 2, 2014.spa
dc.relation.referencesJ. K. Debnath, W. K. Fung, A. M. Gole, and S. Filizadeh, “Simulation of large-scale electrical power networks on graphics processing units,” 2011 IEEE Electrical Power and Energy Conference, EPEC 2011, pp. 199–204, 2011.spa
dc.relation.referencesJ. Baranowski and D. J. French, “Operational use of contingency analysis at PJM,”IEEE Power and Energy Society General Meeting, pp. 13–16, 2012.spa
dc.relation.referencesTOP500, “Home — TOP500 Supercomputer Sites,” 2020.spa
dc.relation.referencesR. Gnanavignesh and U. J. Shenoy, “Parallel Sparse LU Factorization of Power Flow Jacobian using GPU,” IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 2019-Octob, no. C, pp. 1857–1862, 2019.spa
dc.relation.referencesI. Araújo, V. Tadaiesky, D. Cardoso, Y. Fukuyama, and A. Santana, “Simultaneous ´parallel power flow calculations using hybrid CPU-GPU approach,” International Journal of Electrical Power and Energy Systems, vol. 105, no. February 2018, pp. 229–236, 2019.spa
dc.relation.referencesQ. Shi, C. Yuan, W. Feng, G. Liu, R. Dai, Z. Wang, and F. Li, “Enabling Model-Based LTI for Large-Scale Power System Security Monitoring and Enhancement with Graph Computing-Based Power Flow Calculation,” IEEE Access, vol. 7, pp. 167010–167018, 2019.spa
dc.relation.referencesP. Duan, S. Xu, H. Chen, X. Yang, S. Wang, and E. Hu, “High Performance Computing (HPC)for Advanced Power System Studies,” 2nd IEEE Conference on Energy Internet and Energy System Integration, EI2 2018 - Proceedings, pp. 1–9, 2018.spa
dc.relation.referencesK. Tang, S. Dong, B. Zhu, Q. Ni, and Y. Song, “GPU-Based Real-time N-1 AC Power Flow Algorithm with Preconditioned Iterative Method,” IEEE Power and Energy Society General Meeting, vol. 2018-Augus, pp. 1–5, 2018.spa
dc.relation.referencesG. Ruetsch and B. Oster, “Getting Started with CUDA What is CUDA ?,” Materials, vol. 17, no. 4, pp. 223–224, 2008.spa
dc.relation.referencesT. Soyata, GPU Parallel Program Development Using CUDA. 2018.spa
dc.relation.referencesL. Platbrood, H. Crisciu, F. Capitanescu, and L. Wehenkel, “Solving very large-scale security-constrained optimal power flow problems by combining iterative contingency selection and network compression,” 17th Power Systems Computation Conference, PSCC 2011, 2011.spa
dc.relation.referencesF. Capitanescu, M. Glavic, D. Ernst, and L. Wehenkel, “Applications of security constrained optimal power flows,” Modern Electric Power Systems Symposium, MEPS06, p. 7, 2006.spa
dc.relation.referencesF. Capitanescu, “Critical review of recent advances and further developments needed in AC optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57–68, 2016.spa
dc.relation.referencesO. Alsa¸c, J. Bright, M. Prais, and B. Stott, “Further developments in lp-based optimal power flow,” IEEE Transactions on Power Systems, vol. 5, no. 3, pp. 697–711, 1990.spa
dc.relation.referencesD. Rodriguez-Medina, D. Gomez, S. Rivera, and J. Gers, “A fast decomposition method to solve a security-constrained optimal power flow (scopf) empowered by heterogeneous and parallel computing (hpc) (under review),” PES General Meeting, pp. 52812–52824, 2022.spa
dc.relation.referencesD. Rodriguez, D. Alvarez, D. Gomez, J. Gers, and S. Rivera, “Low-cost analysis of load flow computing using embedded computer empowered by gpu,” Proceedings - IEEE PES ISGT NA 2021: “Technology Solutions for an Evolving Grid”, 02 2021.spa
dc.relation.referencesD. Rodriguez, D. Gomez, D. Alvarez, and S. Rivera, “A review of parallel heterogeneous computing algorithms in power systems,” Algorithms, vol. 14, no. 10, 2021.spa
dc.relation.referencesD. Rodriguez, A. Angulo, D. F. Gomez, A. David, J. Gil, and S. Rivera, “Smart Microgrids Operation Considering Expert Knowledge and Ensembled Based Metaheuristic Optimization Algorithms (Under Review),” International Journal of Electrical and Computer Science, vol. 12, 2021.spa
dc.relation.referencesT. Valencia-Zuluaga, D. Agudelo-Martinez, D. Arango-Angarita, C. Acosta-Urrego, S. Rivera, D. Rodriguez-Medina, and J. Gers, “A Fast Decomposition Method to Solve a Security-Constrained Optimal Power Flow (SCOPF) Problem through Constraint Handling,” IEEE Access, vol. 9, pp. 52812–52824, 2021.spa
dc.relation.referencesA. Angulo, D. Rodr´ıguez, W. Garz´on, D. F. G´omez, A. Al Sumaiti, and S. Rivera, “Algorithms for bidding strategies in local energy markets: Exhaustive search through parallel computing and metaheuristic optimization,” Algorithms, vol. 14, no. 9, 2021.spa
dc.relation.referencesJ. Ramírez-Romero, D. Medina, and S. Rivera, “Teaching using a synchronous machine virtual laboratory,” Global Journal of Engineering Education, vol. 22, pp. 123–130, 06 2020.spa
dc.relation.referencesJ. Garcia-Guarin, D. Rodriguez, D. Alvarez, S. Rivera, C. Cortes, A. Guzman, A. Bretas, J. R. Aguero, and N. Bretas, “Smart microgrids operation considering a variable neighborhood search: The differential evolutionary particle swarm optimization algorithm,” Energies, vol. 12, no. 16, pp. 1–13, 2019.spa
dc.relation.referencesS. Vargas, D. Rodriguez, and S. Rivera, “Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 12, 2019.spa
dc.relation.referencesS. Rivera, D. Rodriguez, and I. Erlich, “2018 Grid Optimization Competition Evaluating the Performance of Modern Heuristic Optimizers on Stochastic Optimization Problems applied to Smart Grids Test bed A : Stochastic OPF in Presence of Renewable Energy and Controllable Loads,” Intelligent Systems Subcommittee Power System Analysis, Computing, and Economic Committee, no. January, 2018.spa
dc.relation.referencesJ. Arevalo, D. Medina, J. Rueda, and S. Rivera, “2018 competition on operational planning of sustainable power systems: Testsbeds and results,” WSEAS Transactions on Power Systems, vol. 14, pp. 98–106, 08 2019.spa
dc.relation.referencesD. Rodriguez, D. Gomez, W. Garzon, D. Alvarez, S. Rivera, and J. Gers, “Posicionamiento Optimo de cuadrillas basado en estadísticas de Tránsito de Google Maps e Indicadores de Confiabilidad,” 2018.spa
dc.relation.referencesD. Rodriguez, J. M. Gers, T. Valencia, C. Acosta, D. Agudelo, and D. Arango, “Ensembled Method: Constraints Relaxation With Analytical Optimization With Combined Heuristic Method,” tech. rep., 2020.spa
dc.relation.referencesD. Rodriguez and T. Valencia, “Posicionamiento Optimo de cuadrillas basado en estadísticas de Tránsito de Google Maps e Indicadores de Confiabilidad,” 2018.spa
dc.relation.referencesJ. García, D. Rodríguez, and S. Rivera, “Herramienta para la Programación de Redes Inteligentes con Recursos Energéticos de Alta Incertidumbre,” 2019.spa
dc.relation.referencesNERC, Reliability Assessment Guidebook. 1 ed., 2010.spa
dc.relation.referencesN. Garcia, “Parallel power flow solutions using a biconjugate gradient algorithm and a Newton method: A GPU-based approach,” IEEE PES General Meeting, PES 2010, no. 5, pp. 1–4, 2010.spa
dc.relation.referencesARPA, “About the Competition — Grid Optimization Competition,” 2019.spa
dc.relation.referencesS. Huang and V. Dinavahi, “Fast Batched Solution for Real-Time Optimal Power Flow with Penetration of Renewable Energy,” IEEE Access, vol. 6, pp. 13898–13910, 2018.spa
dc.relation.referencesV. H. Hinojosa and F. Gonzalez-Longatt, “Preventive security-constrained DCOPF formulation using power transmission distribution factors and line outage distribution factors,” Energies, vol. 11, no. 6, pp. 1–13, 2018.spa
dc.relation.referencesY. Yu and P. Luh, “Scalable corrective security-constrained economic dispatch considering conflicting contingencies,” International Journal of Electrical Power and Energy Systems, vol. 98, no. December 2017, pp. 269–278, 2018.spa
dc.relation.referencesY. Yang and Y. Feng, “Large-scale preventive security constrained optimal power flow based on compensation method,” IEEE Power and Energy Society General Meeting, vol. 2015-Septe, 2015.spa
dc.relation.referencesF. Capitanescu, J. L. Martinez Ramos, P. Panciatici, D. Kirschen, A. Marano Marcolini, L. Platbrood, and L. Wehenkel, “State-of-the-art, challenges, and future trends in security constrained optimal power flow,” Electric Power Systems Research, vol. 81, no. 8, pp. 1731–1741, 2011.spa
dc.relation.referencesH. Harsan, N. Hadjsaid, and P. Pruvot, “Cyclic Security Analysis for Security Constrained Optimal Power Flow,” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 948–953, 1997.spa
dc.relation.referencesQ. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “Solving corrective risk based security-constrained optimal power flow with Lagrangian relaxation and Benders decomposition,” International Journal of Electrical Power and Energy Systems, vol. 75, pp. 255–264, 2016.spa
dc.relation.referencesY. Li and J. D. McCalley, “Decomposed SCOPF for improving efficiency,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 494–495, 2009.spa
dc.relation.referencesQ. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “A computational strategy to solve preventive risk-based security-constrained OPF,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1666–1675, 2013.spa
dc.relation.referencesV. H. Hinojosa, “Comparative Corrective and Preventive Security-Constrained DCOPF Problems Using Linear Shift-Factors,” Energies, pp. 1–16, 2020.spa
dc.relation.referencesJ. Mohammadi, G. Hug, and S. Kar, “A benders decomposition approach to corrective security constrained OPF with power flow control devices,” IEEE Power and Energy Society General Meeting, 2013.spa
dc.relation.referencesS. Huang and V. Dinavahi, “Performance analysis of GPU-accelerated fast decoupled power flow using direct linear solver,” 2017 IEEE Electrical Power and Energy Conference, EPEC 2017, vol. 2017-Octob, no. 1, pp. 1–6, 2017.spa
dc.relation.referencesM. Wang, Y. Chen, and S. Huang, “GPU-based Power Flow Analysis with Continuous Newton ’ s Method,” IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–5, 2017.spa
dc.relation.referencesL. Y. Kyaw and S. Phyu, “Scheduling Methods in HPC System: Review,” 2020 IEEE Conference on Computer Applications, ICCA 2020, pp. 1–6, 2020.spa
dc.relation.referencesL. R, P. M, and B. C, Computational Physics. 2007.spa
dc.relation.referencesP. Marksteiner, “High-performance computing - An overview,” Computer Physics Communications, vol. 97, no. 1-2, pp. 16–35, 1996.spa
dc.relation.referencesH. Andrade and I. Crnkovic, “A Review on Software Architectures for Heterogeneous Platforms,” Proceedings - Asia-Pacific Software Engineering Conference, APSEC, vol. 2018-December, pp. 209–218, 2018.spa
dc.relation.referencesP. N. Glaskowsky, “NVIDIA ’ s Fermi : The First Complete GPU Computing Architecture,” no. September, 2009.spa
dc.relation.referencesM. Marin, G.-e. P. Flow, and A. Distributed, GPU-Enhanced power flow analysis. PhD thesis, UNIVERSITE DE PERPIGNAN VIA DOMITIA-UNIVERSITY COLLEGE DUBLIN, 2016.spa
dc.relation.referencesZ. Feng, X. Zhao, and Z. Zeng, “Robust parallel preconditioned power grid simulation on gpu with adaptive runtime performance modeling and optimization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 562–573, 2011.spa
dc.relation.referencesZ. Li, J. Zhu, and F. Yang, “How far is the GPU technology from practical power system applications?,” IEEE Power and Energy Society General Meeting, vol. 2014-Octob, no. October, 2014.spa
dc.relation.referencesX. Li, F. Li, and S. Member, “GPU-based Fast Decoupled Power Flow with Preconditioned Iterative Solver and Inexact Newton Method,” IEEE Power & Energy Society General Meeting, vol. 8950, no. c, pp. 1–1, 2017.spa
dc.relation.referencesV. Roberge, M. Tarbouchi, and F. Okou, “Parallel power flow on graphics processing units for concurrent evaluation of many networks,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1639–1648, 2017.spa
dc.relation.referencesV. Jalili-Marandi and V. Dinavahi, “Simd-based large-scale transient stability simulation on the graphics processing unit,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp. 1589–1599, 2010.spa
dc.relation.referencesV. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-scale transient stability simulation of electrical power systems on parallel gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 7, pp. 1255–1266, 2012.spa
dc.relation.referencesZ. Zhou and V. Dinavahi, “Parallel massive-thread electromagnetic transient simulation on gpu,” IEEE Transactions on Power Delivery, vol. 29, no. 3, pp. 1045–1053, 2014.spa
dc.relation.referencesY. Song, Y. Chen, S. Huang, Y. Xu, Z. Yu, and J. R. Marti, “Fully gpu-based electromagnetic transient simulation considering large-scale control systems for system-level studies,” IET Generation, Transmission Distribution, vol. 11, no. 11, pp. 2840–2851, 2017.spa
dc.relation.referencesN. Lukac and B. Zalik, “Gpu-based roofs’ solar potential estimation using lidar data,” Computers Geosciences, vol. 52, pp. 34 – 41, 2013.spa
dc.relation.referencesR. C. Green, L. Wang, and M. Alam, “Applications and trends of high performance computing for electric power systems: Focusing on smart grid,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 922–931, 2013.spa
dc.relation.referencesG. Capizzi, G. Lo Sciuto, C. Napoli, and E. Tramontana, “Advanced and adaptive dispatch for smart grids by means of predictive models,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6684–6691, 2018.spa
dc.relation.referencesG. Zhou, X. Zhang, Y. Lang, R. Bo, Y. Jia, J. Lin, and Y. Feng, “A novel GPU accelerated strategy for contingency screening of static security analysis,” International Journal of Electrical Power and Energy Systems, vol. 83, pp. 33–39, 2016.spa
dc.relation.referencesH. Karimipour and V. Dinavahi, “Extended kalman filter-based parallel dynamic state estimation,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1539–1549, 2015.spa
dc.relation.referencesW. Qiu, Q. Tang, J. Liu, Z. Teng, and W. Yao, “Power quality disturbances recognition using modified s transform and parallel stack sparse auto-encoder,” Electric Power Systems Research, vol. 174, p. 105876, 2019.spa
dc.relation.referencesZ. Liu, X. Li, L. Wu, S. Zhou, and K. Liu, “Gpu-accelerated parallel coevolutionary algorithm for parameters identification and temperature monitoring in permanent magnet synchronous machines,” IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1220–1230, 2015.spa
dc.relation.referencesV. Schwarzer and R. Ghorbani, “New opportunities for large-scale design optimization of electric vehicles using gpu technology,” in 2011 IEEE Vehicle Power and Propulsion Conference, pp. 1–6, 2011.spa
dc.relation.referencesG. Zhou, R. Bo, L. Chien, X. Zhang, S. Yang, and D. Su, “Gpu-accelerated algorithm for online probabilistic power flow,” IEEE Transactions on Power Systems, vol. 33, pp. 1132–1135, Jan 2018spa
dc.relation.referencesZ. Chen, L. Shen, Y. Zhao, and C. Yang, “Parallel algorithm for real-time contouring from grid dem on modern gpus,” Science China Technological Sciences, vol. 53, pp. 33–37, May 2010.spa
dc.relation.referencesT. He, K. Meng, Z.-Y. Dong, Y.-T. Oh, and Y. Xu, “Use of high-performance graphics processing units for power system demand forecasting,” Journal of Electrical Engineering and Technology, vol. 5, p. 363–370, Jan 2010.spa
dc.relation.referencesF. Milano, “Small-signal stability analysis of large power systems with inclusion of multiple delays,” IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3257–3266, 2016.spa
dc.relation.referencesB. Shang, Y. Xu, C. Zhang, Y. Chen, Z. Liu, L. Lin, C. Xu, and J. Yu, “Gpu-accelerated batch solution for short-circuit current calculation of large-scale power systems,” in 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), pp. 1743–1748, 2019.spa
dc.relation.referencesJ. S. Chai, N. Zhu, A. Bose, and D. J. Tylavsky, “Parallel newton type methods for power system stability analysis using local and shared memory multiprocessors,” IEEE Transactions on Power Systems, vol. 6, no. 4, pp. 1539–1545, 1991.spa
dc.relation.referencesJ. Shu, Wei Xue, and Weimin Zheng, “A parallel transient stability simulation for power systems,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1709–1717, 2005.spa
dc.relation.referencesP. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, 2014.spa
dc.relation.referencesS. K. Khaitan, J. D. McCalley, and A. Somani, “Proactive task scheduling and stealing in master-slave based load balancing for parallel contingency analysis,” Electric Power Systems Research, vol. 103, pp. 9 – 15, 2013.spa
dc.relation.referencesS. K. Khaitan and J. D. McCalley, “Scale: A hybrid mpi and multithreading based work stealing approach for massive contingency analysis in power systems,” Electric Power Systems Research, vol. 114, pp. 118 – 125, 2014.spa
dc.relation.referencesJun Qiang Wu and A. Bose, “Parallel solution of large sparse matrix equations and parallel power flow,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1343– 1349, 1995.spa
dc.relation.referencesX. Wang, S. G. Ziavras, C. Nwankpa, J. Johnson, and P. Nagvajara, “Parallel solution of newton’s power flow equations on configurable chips,” International Journal of Electrical Power Energy Systems, vol. 29, no. 5, pp. 422 – 431, 2007.spa
dc.relation.referencesJ. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang, “A secure cloud computing based framework for big data information management of smart grid,” IEEE Transactions on Cloud Computing, vol. 3, no. 2, pp. 233–244, 2015.spa
dc.relation.referencesJ. Soares, M. A. F. Ghazvini], Z. Vale, and P. [de Moura Oliveira], “A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads,” Applied Energy, vol. 162, pp. 1074 – 1088, 2016.spa
dc.relation.referencesG. N. Korres, A. Tzavellas, and E. Galinas, “A distributed implementation of multi-area power system state estimation on a cluster of computers,” Electric Power Systems Research, vol. 102, pp. 20 – 32, 2013.spa
dc.relation.referencesY. Fukuyama and Hsaio-Dong Chiang, “A parallel genetic algorithm for generation expansion planning,” IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 955– 961, 1996.spa
dc.relation.referencesA. Rami, A. Zeblah, H. Hamdaoui, Y. Massim, and F. Harrou, “An efficient artificial immune algorithm for power system reliability optimisation,” International Journal of Power and Energy Conversion, vol. 1, no. 2-3, pp. 178–197, 2009. cited By 7.spa
dc.relation.referencesC. Dufour, V. Jalili-Marandi, and J. Bélanger, “Real-time simulation using transient stability, electromagnetic transient and fpga-based high-resolution solvers,” in 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp. 283– 288, 2012.spa
dc.relation.referencesJ. Ma, K. L. Man, S.-U. Guan, T. O. Ting, and P. W. H. Wong, “Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm,” International Journal of Energy Research, vol. 40, no. 3, pp. 343–352, 2016.spa
dc.relation.referencesF. Sato, A. Garcia, A. Monticelli, and A. B. Alves], “Distributed short-circuit analysis in heterogeneous computer networks,” International Journal of Electrical Power Energy Systems, vol. 22, no. 2, pp. 129 – 136, 2000.spa
dc.relation.referencesA. K. Zadeh, K. M. Nor, and H. Zeynal, “Multi-thread security constraint economic dispatch with exact loss formulation,” in 2010 IEEE International Conference on Power and Energy, pp. 864–869, 2010.spa
dc.relation.referencesT. Cui and F. Franchetti, “A multi-core high performance computing framework for probabilistic solutions of distribution systems,” in 2012 IEEE Power and Energy Society General Meeting, pp. 1–6, 2012.spa
dc.relation.referencesJ. Zhang, S. Lin, H. Liu, Y. Chen, M. Zhu, and Y. Xu, “A small-population based parallel differential evolution algorithm for short-term hydrothermal scheduling problem considering power flow constraints,” Energy, vol. 123, pp. 538 – 554, 2017.spa
dc.relation.referencesV. Roberge, M. Tarbouchi, and F. Okou, “Optimal power flow based on parallel metaheuristics for graphics processing units,” Electric Power Systems Research, vol. 140, pp. 344–353, 2016.spa
dc.relation.referencesG. Geng, Q. Jiang, and Y. Sun, “Parallel transient stability-constrained optimal power flow using gpu as coprocessor,” IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1436–1445, 2017.spa
dc.relation.referencesB. Kim, “A fast distributed implementation of optimal power flow,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 858–864, 1999. cited By 169.spa
dc.relation.referencesH. R. Cai, C. Y. Chung, and K. P. Wong, “Application of differential evolution algorithm for transient stability constrained optimal power flow,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 719–728, 2008.spa
dc.relation.referencesM. Abedini, “A novel algorithm for load flow analysis in island microgrids using an improved evolutionary algorithm,” International Transactions on Electrical Energy Systems, vol. 26, pp. 2727–2743, dec 2016.spa
dc.relation.referencesTaufik, M. A. Guevara, A. Shaban, and A. Nafisi, “Modeling and Load Flow Analysis of a Microgrid Laboratory.,” International Journal of Smart Grid and Sustainable Energy Technologies, vol. 3, pp. 103–111, dec 2019.spa
dc.relation.referencesJ. I. Giraldez Miner, F. Flores-Espino, S. MacAlpine, and P. Asmus, “Phase i microgrid cost study: Data collection and analysis of microgrid costs in the united states,” National Renewable Energy Laboratory, 10 2018.spa
dc.relation.referencesV. Kloh, D. Yokoyama, A. Yokoyama, G. Silva, M. Ferro, and B. Schulze, “Performance and Energy Efficiency Evaluation for HPC Applications in Heterogeneous Architectures,” in 2018 Symposium on High Performance Computing Systems (WSCAD), pp. 162–169, IEEE, oct 2018.spa
dc.relation.referencesS. K. Khaitan, “A survey of high-performance computing approaches in power systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1– 5, IEEE, jul 2016.spa
dc.relation.referencesL. Rakai and W. Rosehart, “GPU-accelerated solutions to optimal power flow problems,” Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 2511–2516, 2014.spa
dc.relation.referencesD. Greenwood, K. Lim, C. Patsios, P. Lyons, Y. Lim, and P. Taylor, “Frequency response services designed for energy storage,” Applied Energy, vol. 203, pp. 115 – 127, 2017.spa
dc.relation.referencesD. Carreira, G. D. Marques, and D. M. Sousa, “Hybrid energy storage system with a low cost digital control,” in 2015 9th International Conference on Compatibility and Power Electronics (CPE), pp. 185–190, 2015.spa
dc.relation.referencesD. Wu, T. Dragicevic, J. C. Vasquez, J. M. Guerrero, and Y. Guan, “Secondary coordinated control of islanded microgrids based on consensus algorithms,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4290–4297, 2014.spa
dc.relation.referencesA. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, “Graphics processing unit (GPU) programming strategies and trends in GPU computing,” Journal of Parallel and Distributed Computing, vol. 73, pp. 4–13, jan 2013.spa
dc.relation.referencesH. H. Holm, A. R. Brodtkorb, and M. L. Sætra, “GPU Computing with Python: Performance, Energy Efficiency and Usability,” Computation, vol. 8, p. 4, jan 2020.spa
dc.relation.referencesS. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-Based Python JIT Compiler,” in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, (New York, NY, USA), Association for Computing Machinery, 2015.spa
dc.relation.referencesP. Virtanen, R. Gommers, and et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nature Methods, vol. 17, pp. 261–272, mar 2020.spa
dc.relation.referencesR. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education,” IEEE Transactions on Power Systems, vol. 26, pp. 12–19, feb 2011.spa
dc.relation.referencesQ. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “A computational strategy to solve preventive risk-based security-constrained OPF,” IEEE Transactions on Power Systems, vol. 28, pp. 1666–1675, may 2013.spa
dc.relation.referencesS. A. Sadat, D. Haralson, and M. Sahraei-Ardakani, “Security versus computation time in IV-ACOPF with SOCP initialization,” in 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), IEEE, jun 2018.spa
dc.relation.referencesF. Capitanescu, J. M. Ramos, P. Panciatici, D. Kirschen, A. M. Marcolini, L. Platbrood, and L. Wehenkel, “State-of-the-art, challenges, and future trends in security constrained optimal power flow,” Electric Power Systems Research, vol. 81, pp. 1731–1741, Aug 2011.spa
dc.relation.referencesF. Capitanescu, “Critical review of recent advances and further developments needed in AC optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57–68, jul 2016.spa
dc.relation.referencesD. Phan and J. Kalagnanam, “Some efficient optimization methods for solving the security-constrained optimal power flow problem,” IEEE Transactions on Power Systems, vol. 29, pp. 863–872, March 2014.spa
dc.relation.referencesJ. Mohammadi, G. Hug, and S. Kar, “A benders decomposition approach to corrective security constrained OPF with power flow control devices,” in 2013 IEEE Power & Energy Society General Meeting, IEEE, 2013.spa
dc.relation.referencesD. T. Phan and X. A. Sun, “Minimal impact corrective actions in security-constrained optimal power flow via sparsity regularization,” IEEE Transactions on Power Systems, vol. 30, pp. 1947–1956, jul 2015.spa
dc.relation.referencesM. Al-Saffar and P. Musilek, “Distributed optimal power flow for electric power systems with high penetration of distributed energy resources,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), IEEE, may 2019.spa
dc.relation.referencesR. Louca and E. Bitar, “Robust AC optimal power flow,” IEEE Transactions on Power Systems, vol. 34, pp. 1669–1681, may 2019.spa
dc.relation.referencesY. Li and J. McCalley, “Decomposed SCOPF for improving efficiency,” IEEE Transactions on Power Systems, vol. 24, pp. 494–495, feb 2009.spa
dc.relation.referencesF. Capitanescu, M. Glavic, D. Ernst, and L. Wehenkel, “Applications of security constrained optimal power flows,” in In Proceedings of Modern Electric Power Systems Symposium, MEPS06, 2006.spa
dc.relation.referencesS. Sojoudi and J. Lavaei, “Physics of power networks makes hard optimization problems easy to solve,” in 2012 IEEE Power and Energy Society General Meeting, IEEE, jul 2012.spa
dc.relation.referencesV. Hinojosa and F. Gonzalez-Longatt, “Preventive security-constrained DCOPF formulation using power transmission distribution factors and line outage distribution factors,” Energies, vol. 11, p. 1497, jun 2018.spa
dc.relation.referencesY. Xu, H. Yang, R. Zhang, Z. Dong, M. Lai, and K. Wong, “A contingency partitioning approach for preventive-corrective security-constrained optimal power flow computation,” Electric Power Systems Research, vol. 132, pp. 132–140, 2016.spa
dc.relation.referencesY. Xu, Z. Y. Dong, R. Zhang, K. P. Wong, and M. Lai, “Closure to discussion on “solving preventive-corrective scopf by a hybrid computational strategy”,” IEEE Transactions on Power Systems, vol. 29, p. 3124–3125, Nov 2014.spa
dc.relation.referencesM. Javadi, A. E. Nezhad, M. Gough, M. Lotfi, and J. P. Catalao, “Implementation of consensus-ADMM approach for fast DC-OPF studies,” in 2019 International Conference on Smart Energy Systems and Technologies (SEST), IEEE, sep 2019.spa
dc.relation.referencesA. Attarha and N. Amjady, “Solution of security constrained optimal power flow for large-scale power systems by convex transformation techniques and taylor series,” IET Generation, Transmission & Distribution, vol. 10, p. 889–896, Mar 2016.spa
dc.relation.referencesA. Werner, K. Duwadi, N. Stegmeier, T. M. Hansen, and J.-H. Kimn, “Parallel implementation of ac optimal power flow and time constrained optimal power flow using high performance computing,” in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Jan 2019.spa
dc.relation.referencesE. Karangelos and L. Wehenkel, “An iterative AC-SCOPF approach managing the contingency and corrective control failure uncertainties with a probabilistic guarantee,” IEEE Transactions on Power Systems, vol. 34, pp. 3780–3790, sep 2019.spa
dc.relation.referencesS. Lee, W. Kim, and B. H. Kim, “Performance comparison of optimal power flow algorithms for lmp calculations of the full scale korean power system,” Journal of Electrical Engineering and Technology, vol. 10, p. 109–117, Jan 2015.spa
dc.relation.referencesY. Chen, Z. Zhang, Y. Lang, J. Ma, and S. Zheng, “Generalised-fast decoupled state estimator,” IET Generation, Transmission Distribution, vol. 12, pp. 5928–5938, may 2018.spa
dc.relation.referencesJ. Guo, G. Hug, and O. K. Tonguz, “A case for nonconvex distributed optimization in large-scale power systems,” IEEE Transactions on Power Systems, vol. 32, pp. 3842– 3851, sep 2017.spa
dc.relation.referencesM. Granada Echeverri, M. J. Rider Flores, and J. R. S. Mantovani, “Dos técnicas de descomposición aplicadas al problema de flujo de potencia óptimo multi-areas,” DYNA, vol. 77, pp. 303 – 312, 06 2010.spa
dc.relation.referencesJ. Guo, G. Hug, and O. Tonguz, “Asynchronous admm for distributed non-convex optimization in power systems,” arXiv preprint arXiv:1710.08938, 2017.spa
dc.relation.referencesM. Bazrafshan, K. Baker, and J. Mohammadi, “Computationally efficient solutions for large-scale security-constrained optimal power flow,” 2020.spa
dc.relation.referencesS. Stankovic and L. Soder, “Optimal power flow based on genetic algorithms and clustering techniques,” in 2018 Power Systems Computation Conference (PSCC), IEEE, Jun 2018.spa
dc.relation.referencesA. Zamzam and K. Baker, “Learning optimal solutions for extremely fast ac optimal power flow,” arXiv preprint arXiv:1910.01213, 2019.spa
dc.relation.referencesI. Ghosh and P. K. Roy, “Application of earthworm optimization algorithm for solution of optimal power flow,” in 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), IEEE, Mar 2019.spa
dc.relation.references“Optimal power flow using fuzzy-firefly algorithm,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, Oct 2018.spa
dc.relation.referencesF. Bouffard, F. D. Galiana, and J. M. Arroyo, “Umbrella contingencies in security-constrained optimal power flow,” in 15th Power systems computation conference, PSCC, vol. 5, 2005.spa
dc.relation.referencesS. Eftekharnejad, “Selection of multiple credible contingencies for real time contingency analysis,” in 2015 IEEE Power Energy Society General Meeting, pp. 1–5, July 2015.spa
dc.relation.referencesH. Bevrani, Robust Power System Frequency Control. Power Electronics and Power Systems, Springer US, 2008.spa
dc.relation.referencesJ. Zhao, H.-D. Chiang, H. Li, and P. Ju, “On pv-pq bus type switching logic in power flow computation,” in Proceedings of the 16th power systems computation conference, vol. 16, p. 7, jul 2008.spa
dc.relation.referencesHSL, A collection of Fortran codes for large scale scientific computation, 2019 (accessed December 5th, 2019). Availabel in: http://www.hsl.rl.ac.uk/.spa
dc.relation.referencesY. Yuan, X. Wen, and K. Qian, “Preventive/corrective control for voltage stability based on primal-dual interior point method,” in 2006 International Conference on Power System Technology, pp. 1–5, 2006.spa
dc.relation.referencesXuelian Liu, Jiwen Li, Hongmei Li, and Hongxia Peng, “Fuzzy modeling and interior point algorithm of multi-objective opf with voltage security margin,” in 2005 IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, pp. 1– 6, 2005.spa
dc.relation.referencesY. Chen, J. Ma, P. Zhang, F. Liu, and S. Mei, “Robust state estimator based on maximum exponential absolute value,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1537–1544, 2017.spa
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower,” 2019.spa
dc.relation.referencesA. W¨achter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, pp. 25–57, apr 2005.spa
dc.relation.referencesARPA-E, “SCOPF Problem Formulation: Challenge 1,” tech. rep., Advanced Research Projects Agency–Energy), 04 2018.spa
dc.relation.referencesARPA-E, Grid Optimization (GO) Competition, 2019 (accessed December 5th, 2019). Available in: https://gocompetition.energy.gov.spa
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower user’s manual,” 2019.spa
dc.relation.referencesM. Bazrafshan, K. Baker, and J. Mohammadi, “Computationally efficient solutions for large-scale security-constrained optimal power flow,” 2020.spa
dc.relation.referencesZhang, Solving Large Security-Constrained Optimal Power Flow for Power Grid Planning and Operations. PhD thesis, Case Western Reserve University, 2020.spa
dc.relation.referencesS. Huang and V. Dinavahi, “Real-time contingency analysis on massively parallel architectures with compensation method,” IEEE Access, vol. 6, pp. 44519–44530, 2018.spa
dc.relation.referencesX. Su, C. He, T. Liu, and L. Wu, “Full Parallel Power Flow Solution: A GPU-CPU Based Vectorization Parallelization and Sparse Techniques for Newton-Raphson Implementation,” IEEE Transactions on Smart Grid, vol. PP, no. ii, pp. 1–1, 2019.spa
dc.relation.referencesM. Bazrafshan, K. Baker, and J. Mohammadi, “Computationally efficient solutions for large-scale security-constrained optimal power flow,” arXiv, pp. 1–8, 2020.spa
dc.relation.referencesZ. Huang et al., High-Performance Computing for Real-Time Grid Analysis and Operation, pp. 151–188. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.spa
dc.relation.referencesL. Balduino et al., “Parallel processing in a cluster of microcomputers with application in contingency analysis,” in 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), pp. 285–290, 2004.spa
dc.relation.referencesG. Angeline Ezhilarasi et al., “Parallel contingency analysis in a high performance computing environment,” in 2009 International Conference on Power Systems, pp. 1– 6, 2009.spa
dc.relation.referencesW. Gao et al., “Distributed generation placement design and contingency analysis with parallel computing technology,” J. Comput., vol. 4, pp. 347–354, 2009.spa
dc.relation.referencesZ. Huang et al., “Massive contingency analysis with high performance computing,” in 2009 IEEE Power Energy Society General Meeting, pp. 1–8, 2009.spa
dc.relation.referencesYousu Chen et al., “Performance evaluation of counter-based dynamic load balancing schemes for massive contingency analysis with different computing environments,” in IEEE PES General Meeting, pp. 1–6, 2010.spa
dc.relation.referencesS. Jin et al., “A novel application of parallel betweenness centrality to power grid contingency analysis,” in 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp. 1–7, 2010.spa
dc.relation.referencesA. Mittal et al., “Real time contingency analysis for power grids,” in Euro-Par 2011 Parallel Processing (E. Jeannot, R. Namyst, and J. Roman, eds.), (Berlin, Heidelberg), pp. 303–315, Springer Berlin Heidelberg, 2011.spa
dc.relation.referencesS. K. Khaitan et al., Dynamic Load Balancing and Scheduling for Parallel Power System Dynamic Contingency Analysis, pp. 189–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.spa
dc.relation.referencesS. K. Khaitan et al., “Parallelizing power system contingency analysis using d programming language,” in 2013 IEEE Power Energy Society General Meeting, pp. 1– 5, 2013.spa
dc.relation.referencesS. K. Khaitan et al., “Proactive task scheduling and stealing in master-slave based load balancing for parallel contingency analysis,” Electric Power Systems Research, vol. 103, pp. 9 – 15, 2013.spa
dc.relation.referencesG. Zhou et al., “The static security analysis in power system based on spark cloud computing platform,” in 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), pp. 1–6, 2015.spa
dc.relation.referencesA. Haas, “Pypardisoproject,” 2013.spa
dc.relation.referencesX. Chen, Y. Wang, and H. Yang, “Nicslu: An adaptive sparse matrix solver for parallel circuit simulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 2, pp. 261–274, 2013.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembAnálisis de redes eléctricas
dc.subject.otherPower system security
dc.subject.otherPower distribution networks
dc.subject.proposalSecurity Constrained Optimal Power Flow (SCOPF)eng
dc.subject.proposalOptimal Power Flow (OPF)eng
dc.subject.proposalParallel Computing (PC)eng
dc.subject.proposalComplex Power Networkseng
dc.subject.proposalReal-Time SCOPFeng
dc.subject.proposalGraphical Processing Unit (GPU)eng
dc.subject.proposalFlujo de Potencia Óptimospa
dc.subject.proposalSeguridad en Sistemas de Potenciaspa
dc.subject.proposalComputación Paralelaspa
dc.subject.proposalRedes de Potencia Complejasspa
dc.subject.proposalOperación en Tiempo Realspa
dc.subject.proposalUnidad de Procesamiento Gráficospa
dc.titleFast security constraint optimal power flow using parallel and heterogenous computingeng
dc.title.translatedCálculo rápido de flujo de potencia óptimo con restricciones de seguridad utilizando computación paralela y heterogéneaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015409514.2021.pdf
Tamaño:
3.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia y autorización para publicación de obras en el repositorio institucional UN - Diego Fernando Rodriguez Medina.pdf
Tamaño:
425.73 KB
Formato:
Adobe Portable Document Format
Descripción: