Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad

dc.contributor.advisorSarmiento Monroy, Carlos Eduardo
dc.contributor.advisorHerrera Moreno, Henri William
dc.contributor.authorPicón Rentería, Rubén Patricio
dc.contributor.orcidPicón Rentería, Rubén Patricio [0009000853414094]spa
dc.contributor.researchgroupInsectos de Colombia. Laboratorio de Sistemática y Biología Comparada de Insectosspa
dc.coverage.regionArchipiélago de Galápagos, Ecuador
dc.date.accessioned2024-01-18T20:10:48Z
dc.date.available2024-01-18T20:10:48Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figuras fotografías, mapasspa
dc.description.abstractLa comprensión de los factores que impulsan la diversidad de un grupo en una región es fundamental para entender sus características. Los archipiélagos ofrecen oportunidades excepcionales para investigar estos fenómenos ya que cada isla puede considerarse una repetición de estos procesos. A pesar de la importancia del archipiélago de las Galápagos en la biología, aún existe poco conocimiento sobre un orden tan importante como Hymenoptera. Se analizó la relación entre la diversidad de los himenópteros parasitoides de las islas Galápagos con los factores: edad y área de las islas, aislamiento, la complejidad topográfica, perturbación, diversidad de hábitats y la riqueza de sus potenciales hospederos. Se recolectaron himenópteros en diez de trece islas principales de Galápagos mediante el primer muestreo estructurado para este grupo, usando jameo, bandejas amarillas y Malaise. Se calcularon riqueza de especies, el índice de Margalef y la diversidad filogenética de los himenópteros parasitoides de Galápagos. Se analizaron estas variables de respuesta con los distintos factores, mediante el índice de correlación de Pearson y se elaboraron modelos explicativos mediante GLM. Se capturaron 4994 especímenes. Estos especímenes se clasificaron en 328 morfoespecies. No hubo relación entre la edad, área, distancia entre islas, perturbación y diversidad de hábitats, sin embargo, si una relación positiva entre el área, la complejidad topográfica y la riqueza de sus potenciales hospederos. Estos tres factores mostraron ser los más importantes en los modelos GLM para explicar la diversidad de los himenópteros parasitoides, a excepción de la diversidad filogenética, la cual no fue influenciada por el área de las islas. La diversidad filogenética mostró diferencias con la riqueza, destacando el valor de esta variable, al proporcionar una perspectiva más completa en el análisis de la biodiversidad y en los criterios de conservación de este grupo. La relación de estos factores sugiere que la diversidad del grupo surge de procesos ecológicos recientes propios de la teoría de biogeografía de islas y sin una estructuración taxonómica, más que de la influencia de la historia geológica del archipiélago relacionada con el tamaño de cada isla, y ligada fuertemente a sus hospederos en estas islas. Además de impulsar la implementación de variables de respuesta como la complejidad topográfica y medidores de la biodiversidad como la diversidad filogenética en análisis de diversidad biológica en general. El estudio destaca la importancia de Isabela, Santa Cruz, Floreana, Fernandina y Santiago tanto por su riqueza como por su diversidad. (Texto tomado de la fuente)spa
dc.description.abstractUnderstanding the factors that drive the diversity of a group in a region is fundamental to understanding its characteristics. Archipelagos offer exceptional opportunities to investigate these phenomena since each island can be considered a replicate of these processes. Despite the importance of the Galapagos archipelago in biology, there is still little knowledge about an important order such as Hymenoptera. We analyzed the relationship between the diversity of parasitoid Hymenoptera of the Galapagos Islands and the following factors: age and area of the islands, isolation, topographic complexity, disturbance, habitat diversity, and the richness of their potential hosts. Hymenoptera was collected on ten of thirteen main Galapagos islands through the first structured sampling for this group using net sweeping, pan traps, and Malaise traps. Species richness, Margalef index, and phylogenetic diversity of Galapagos parasitoid hymenopterans were calculated. These response variables were related to the different factors using Pearson's correlation index and explanatory models were developed using GLM. A total of 4994 specimens were captured. These specimens were classified into 328 morphospecies. There was no relationship between dependent variables and age, area, the distance between islands, disturbance, and habitat diversity, however, there was a positive relationship between area, topographic complexity, and richness of potential hosts. These three factors were shown to be the most important in the GLM models to explain the diversity of parasitoid hymenopterans. Phylogenetic diversity was not influenced by the island area. Phylogenetic diversity showed differences with richness, highlighting the value of this variable in providing a more complete perspective on biodiversity analysis and conservation criteria for this group. The relationship of these factors suggests that the diversity of the group arises from recent ecological processes proper to the theory of island biogeography and without a taxonomic structuring, rather than from the influence of the geological history of the archipelago related to the size of each island. The diversity of hymenopterans was strongly linked to that of their hosts on these islands. In addition to promoting the implementation of response variables such as topographic complexity and biodiversity measures such as phylogenetic diversity in biodiversity analyses in general, the study highlights the importance of Isabela, Santa Cruz, Floreana, Fernandina, and Santiago for their richness and diversity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaBiogeografíaspa
dc.description.sponsorshipEscuela Superior Politécnica de Chimborazo (ESPOCH)spa
dc.description.sponsorshipFundación Charles Darwinspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.description.sponsorshipEsta publicación tiene el número de contribución 2591 de la Fundación Charles Darwin para las Islas Galápagosspa
dc.format.extentxii, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85370
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbzhanov, A., Protas, M., Grant, B., Grant, P., & Tabin, C. (2004). Bmp4 and morphological variation of beaks in Darwin's finches. Science, 305(5689), 1462-1465.spa
dc.relation.referencesAli, J., & Fritz, U. (2021). Origins of Galápagos land-locked vertebrates: what, whence, when, how? Biological Journal of the Linnean Society. 134(2), 261-284.spa
dc.relation.referencesAmador, E., Cayot, L., Cifuentes, M., Cruz, E., Cruz, F., & Ayora, P. (1996). Determinación de la capacidad de carga turística en los sitios de visita del Parque Nacional Galápagos. Servicio Parque Nacional Galápagos, Ecuador. 42p.spa
dc.relation.referencesAnderson, A., McCormack, S., Helden, A., Sheridan, H., Kinsella, A., & Purvis, G. (2011). The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. Journal of Applied Ecology, 48(2), 382-390.spa
dc.relation.referencesArmstrong, R. A., & McGehee, R. (1980). Competitive exclusion. The American Naturalist, 115(2), 151-170.spa
dc.relation.referencesBadgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., & Yanites, B. J. (2017). Biodiversity and topographic complexity: Modern and geohistorical perspectives. Trends in Ecology and Evolution, 32(3), 211–226.spa
dc.relation.referencesBadirli, S., Picard, C. J., Mohler, G., Richert, F., Akata, Z., & Dundar, M. (2023). Classifying the unknown: Insect identification with deep hierarchical Bayesian learning. Methods in Ecology and Evolution, 14(6), 1515-1530.spa
dc.relation.referencesBaldwin, B. G., Crawford, D. J., Francisco-Ortega, J., Kim, S. C., Sang, T., & Stuessy, T. F. (1998). Molecular phylogenetic insights on the origin and evolution of oceanic island plants. In Molecular systematics of plants II (pp. 410-441). Springer, Boston, MA.spa
dc.relation.referencesBarajas‐Barbosa, M. P., Weigelt, P., Borregaard, M. K., Keppel, G., & Kreft, H. (2020). Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography, 47(10), 2248-2260.spa
dc.relation.referencesBarajas‐Barbosa, M., Weigelt, P., Borregaard, M., Keppel, G., & Kreft, H. (2020). Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography, 47(10), 2248-2260.spa
dc.relation.referencesBarrett, S. C. H. (1996). The reproductive biology and genetics of island plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 725-733.spa
dc.relation.referencesBeals, E. W. (1984). Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. In Advances in ecological research (Vol. 14, pp. 1-55). Academic Press.spa
dc.relation.referencesBeatriz, R., Zaragoza-Caballero, S., & Rodríguez, J. (2009). Diversidad de Encyrtidae (Hymenoptera: Chalcidoidea) y otras familias de Hymenoptera obtenidas con trampas Malaise en el bosque tropical caducifolio de la región de Huatulco, Oaxaca, México. Revista Mexicana de Biodiversidad, 80(3), 709-719.spa
dc.relation.referencesBerry, R. J. (1996). Small mammal differentiation on islands. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 753-764.spa
dc.relation.referencesBittinger, K. (2020). abdiv: alpha and beta diversity measures. R Package Version 0.2. 0.spa
dc.relation.referencesBlaimer, B. B., Santos, B. F., Cruaud, A., Gates, M. W., Kula, R. R., Mikó, I., Rasplus J-Y, Smith DR, Talamas EJ, Brady SG & Buffington, M. L. (2023). Key innovations and the diversification of Hymenoptera. Nature Communications, 14(1), 1212.spa
dc.relation.referencesBlondel, J. (2000). Evolution and ecology of birds on islands: trends and prospects. Vie et Milieu/Life & Environment, 205-220.spa
dc.relation.referencesBoag, P. T., & Grant, P. R. (1984). Darwin's finches (Geospiza) on Isla Daphne Major, Galapagos: breeding and feeding ecology in a climatically variable environment. Ecological Monographs, 54(4), 463-489.spa
dc.relation.referencesBorges, P. A., & Hortal, J. (2009). Time, area and isolation: factors driving the diversification of Azorean arthropods. Journal of Biogeography, 36(1), 178-191.spa
dc.relation.referencesBoyer, A., & Jetz, W. (2010). Biogeography of body size in Pacific Island birds. Ecography, 33(2), 369-379.spa
dc.relation.referencesBraaker, S., Ghazoul, J., Obrist, M. K., & Moretti, M. (2014). Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology, 95(4), 1010-1021.spa
dc.relation.referencesBrockmann, H. J. (2008). Alternative reproductive tactics in insects. Alternative reproductive tactics: an integrative approach, 177-223.spa
dc.relation.referencesBrown, B., Mitchell, R., & Graham, S. (2002). Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology, 83(8), 2328-2336.spa
dc.relation.referencesBulgarella, M., Quiroga, M., Boulton, R., Ramírez, I., Moon, R., Causton, C., & Heimpel, G. (2017). Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galápagos Islands. Annals of the Entomological Society of America, 110(3), 317-328.spa
dc.relation.referencesBungartz, F., Herrera, H., Jaramillo, P., Tirado, N., Jimenez-Uzcategui, G., Ruiz, D., & Ziemmeck, F. (2009). Charles Darwin Foundation Galápagos species checklist. Charles Darwin Foundation.spa
dc.relation.referencesBurbidge, A. A., & Manly, B. F. (2002). Mammal extinctions on Australian islands: causes and conservation implications. Journal of biogeography, 29(4), 465-473.spa
dc.relation.referencesBurks, R., Mitroiu, M. D., Fusu, L., Heraty, J. M., Janšta, P., Heydon, S., Papilloud, N. D.S., Peters, R. S., Tselikh, E. V., Woolley, J. B., Noort, S., Baur, H., Cruaud, A., Darling, C., Haas, M., Hanson, P., Krogmann, L., & Rasplus, J. Y. (2022). From hell’s heart I stab at thee! A determined approach towards a monophyletic Pteromalidae and reclassification of Chalcidoidea (Hymenoptera). Journal of Hymenoptera Research, 94, 13-88.spa
dc.relation.referencesCabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46(7), 1569-1581.spa
dc.relation.referencesCabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46(7), 1569-1581.spa
dc.relation.referencesCaccone, A., Gibbs, J., Ketmaier, V., Suatoni, E., & Powell, J. (1999). Origin and evolutionary relationships of giant Galápagos tortoises. Proceedings of the National Academy of Sciences, 96(23), 13223-13228.spa
dc.relation.referencesCadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of applied ecology, 48(5), 1079-1087.spa
dc.relation.referencesCadotte, M. W., Davies, T. J., & Peres‐Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535-551.spa
dc.relation.referencesCadotte, M. W., Davies, T. J., & Peres‐Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535-551.spa
dc.relation.referencesCadotte, M. W., Dinnage, R., & Tilman, D. (2012). Phylogenetic diversity promotes ecosystem stability. Ecology, 93(sp8), S223-S233.spa
dc.relation.referencesCadotte, M. W., Jonathan Davies, T., Regetz, J., Kembel, S. W., Cleland, E., & Oakley, T. H. (2010). Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology letters, 13(1), 96-105.spa
dc.relation.referencesCapinha, C., Seebens, H., Cassey, P., García‐Díaz, P., Lenzner, B., Mang, T., & Essl, F. (2017). Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 23(11), 1313-1322.spa
dc.relation.referencesCase, T., & Bolger, D. (1991). The role of introduced species in shaping the distribution and abundance of island reptiles. Evolutionary Ecology, 5(3), 272-290.spa
dc.relation.referencesCauston, C. E., & Sevilla, C. (2006). Latest Records of Introduced Invertebrates in Galapagos and Measures to control them. Galapagos report, 2007, 142-145.spa
dc.relation.referencesCauston, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J., & Landry, B. (2006). Alien insects: threats and implications for conservation of Galápagos Islands. Annals of the Entomological Society of America, 99(1), 121-143.spa
dc.relation.referencesCauston, C. E., Sevilla, C. R., & Porter, S. D. (2005). Eradication of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), from Marchena Island, Galapagos: on the edge of success? Florida Entomologist, 88(2), 159-168.spa
dc.relation.referencesCavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology letters, 12(7), 693-715.spa
dc.relation.referencesCebolla, R., Vanaclocha, P., Urbaneja, A., & Tena, A. (2018). Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. Journal of Pest Science, 91(1), 327-339.spa
dc.relation.referencesChan-Canché, R., Ballina-Gómez, H., Leirana-Alcocer, J., Bordera, S., y González-Moreno, A. (2020). Muestreo de himenópteros parasitoides: influencia de la altura al suelo. Revista de investigación de himenópteros, 78, 19.spa
dc.relation.referencesChao, A., Colwell, R. K., Lin, C. W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125-1133.spa
dc.relation.referencesChen, H., Lahey, Z., Talamas, E. J., Valerio, A. A., Popovici, O. A., Musetti, L., Klompen, H., Polaszek, A., Masner, L., Austin, A. D., & Johnson, N. F. (2021). An integrated phylogenetic reassessment of the parasitoid superfamily Platygastroidea (Hymenoptera: Proctotrupomorpha) results in a revised familial classification. Systematic Entomology, 46(4), 1088-1113.spa
dc.relation.referencesChen, X., Jiao, J., & Tong, X. (2011). A generalized model of island biogeography. Science China Life Sciences, 54(11), 1055-1061.spa
dc.relation.referencesChong, C. W., Dunn, M. J., Convey, P., Tan, G. A., Wong, R. C., & Tan, I. K. (2009). Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biology, 32(11), 1571-1582.spa
dc.relation.referencesChristian, K., Tracy, C. R., & Porter, W. P. (1983). Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology, 64(3), 463-468.spa
dc.relation.referencesColwell, R. K. (2009). EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2.spa
dc.relation.referencesConway, M., & Olsen, B. J. (2019). Contrasting drivers of diversification rates on islands and continents across three passerine families. Proceedings of the Royal Society B, 286(1915), 20191757.spa
dc.relation.referencesCooney, P. B., & Kwak, T. J. (2013). Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages. BioScience, 63(3), 176-190.spa
dc.relation.referencesCore, R. (2015). Team. R: a language and environment for statistical computing.spa
dc.relation.referencesCowie, R. H., & Holland, B. S. (2006). Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography.spa
dc.relation.referencesDarling, D. C., & Packer, L. (1988). Effectiveness of Malaise traps in collecting Hymenoptera: the influence of trap design, mesh size, and location. The Canadian Entomologist, 120(8-9), 787-796.spa
dc.relation.referencesDavis, R. B., Baldauf, S. L., & Mayhew, P. J. (2010). The origins of species richness in the Hymenoptera: insights from a family-level supertree. BMC evolutionary biology, 10, 1-16.spa
dc.relation.referencesDe Groot, R. S. (1983). Tourism and conservation in the Galapagos Islands. Biological Conservation, 26(4), 291-300.spa
dc.relation.referencesDel Toro, I., Ribbons, R. R., y Pelini, S. L. (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17, 133-146.spa
dc.relation.referencesDelfín H. & Burgos D. 2000: Los Bracónidos (Hymenoptera: Braconidae) como grupo parámetro de biodiversidad en las selvas deciduas del trópico: una discusión acerca de su posible uso. Acta Zool. Mex. 79: 43–56.spa
dc.relation.referencesDelgado, J. D., Arévalo, J. R., & Fernández-Palacios, J. M. (2008). Bird communities in two oceanic island forests fragmented by roads on Tenerife, Canary Islands. Ostrich-Journal of African Ornithology, 79(2), 219-226.spa
dc.relation.referencesDenslow, J. S., Space, J. C., & Thomas, P. A. (2009). Invasive exotic plants in the tropical Pacific islands: patterns of diversity. Biotropica, 41(2), 162-170.spa
dc.relation.referencesDerraik, J. G., Early, J. W., Closs, G. P., & Dickinson, K. J. (2010). Morphospecies and taxonomic species comparison for Hymenoptera. Journal of Insect Science, 10(1), 108.spa
dc.relation.referencesDing, T. S., Yuan, H. W., Geng, S., Koh, C. N., & Lee, P. F. (2006). Macro‐scale bird species richness patterns of the East Asian mainland and islands: Energy, area and isolation. Journal of Biogeography, 33(4), 683-693.spa
dc.relation.referencesDupont, Y. L., Hansen, D. M., Valido, A., & Olesen, J. M. (2004). Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biological Conservation, 118(3), 301-311.spa
dc.relation.referencesEberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, 165-187.spa
dc.relation.referencesEliasson, U. (1995). Patterns of diversity in island plants. In Islands (pp. 35-50). Springer, Berlin, Heidelberg.spa
dc.relation.referencesEmerson, R. W. (2015). Causation and Pearson's correlation coefficient. Journal of visual impairment & blindness, 109(3), 242-244.spa
dc.relation.referencesEsri. (2014). ArcGIS desktop: Release 10.3.1. Environmental Systems Research Institute.spa
dc.relation.referencesFabian, Y., Sandau, N., Bruggisser, O. T., Aebi, A., Kehrli, P., Rohr, R. P., y Bersier, L. F. (2013). The importance of landscape and spatial structure for hymenopteran‐based food webs in an agro‐ecosystem. Journal of Animal Ecology, 82(6), 1203-1214.spa
dc.relation.referencesFaith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61(1), 1-10.spa
dc.relation.referencesFaith, D. P. (2016). The PD phylogenetic diversity framework: linking evolutionary history to feature diversity for biodiversity conservation. Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis, 39-56.spa
dc.relation.referencesFaith, D. P., Reid, C. A. M., & Hunter, J. (2004). Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conservation Biology, 18(1), 255-261.spa
dc.relation.referencesFattorini, S. (2002). Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 29(1), 49-67.spa
dc.relation.referencesFernández, F., Sarmiento, C. E., & Herrera, H. W. (2018). First record of the Sclerogibbidae (Hymenoptera) from the Galapagos Islands, Ecuador. The Pan-Pacific Entomologist, 94(1), 27-31.spa
dc.relation.referencesFernández, F., y M. J. Sharkey (eds.). (2006). Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología y Universidad Nacional de Colombia, Bogotá D. C., 174-894.spa
dc.relation.referencesFernández-Mazuecos, M., Vargas, P., McCauley, R. A., Monjas, D., Otero, A., Chaves, J. A., Guevara, J. E., & Rivas-Torres, G. (2020). The radiation of Darwin’s giant daisies in the Galápagos Islands. Current Biology, 30(24), 4989-4998.spa
dc.relation.referencesFerrer, M., Bildstein, K., Penteriani, V., Casado, E., & De Lucas, M. (2011). Why birds with deferred sexual maturity are sedentary on islands: a systematic review. PloS one, 6(7), e22056.spa
dc.relation.referencesFinston, T. L., & Peck, S. B. (1995). Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galápagos Islands. Heredity, 75(4), 390-397.spa
dc.relation.referencesFlynn, D. F., Mirotchnick, N., Jain, M., Palmer, M. I., & Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships. Ecology, 92(8), 1573-1581.spa
dc.relation.referencesFox, B. J., & Fox, M. D. (2000). Factors determining mammal species richness on habitat islands and isolates: habitat diversity, disturbance, species interactions and guild assembly rules. Global Ecology and Biogeography, 9(1), 19-37.spa
dc.relation.referencesFritts, T. H. (1984). Evolutionary divergence of giant tortoises in Galápagos. Biological Journal of the Linnean Society, 21(1-2), 165-176.spa
dc.relation.referencesGarpe, K. C., & Öhman, M. C. (2003). Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia, 498(1), 191-211.spa
dc.relation.referencesGauld, I. D., & Carter, J. M. (1983). The Ophioninae of the Galápagos Islands (Hymenoptera: Ichneumonidae). Journal of Natural History, 17(2), 145-155.spa
dc.relation.referencesGeist, D. J. (1996). On the emergence and submergence of the Galápagos Islands. Noticias De Galápagos, 56, 5–9spa
dc.relation.referencesGeist, D. J., Snell, H., Snell, H., Goddard, C., & Kurz, M. D. (2014). A paleogeographic model of the Galápagos Islands and biogeographical and evolutionary implications. The Galápagos: a natural laboratory for the earth sciences, 204, 145-166.spa
dc.relation.referencesGentile, G., Fabiani, A., Marquez, C., Snell, H. L., Snell, H. M., Tapia, W., & Sbordoni, V. (2009). An overlooked pink species of land iguana in the Galápagos. Proceedings of the National Academy of Sciences, 106(2), 507-511.spa
dc.relation.referencesGibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032(1), 1-38.spa
dc.relation.referencesGil‐Tapetado, D., Durán‐Montes, P., García‐París, M., López‐Estrada, E. K., Sánchez‐Vialas, A., Jiménez‐Ruiz, Y., Gómez, J. F., & Nieves‐Aldrey, J. L. (2022). Host specialization is ancestral in Torymus (Hymenoptera, Chalcidoidea) cynipid gall parasitoids. Zoologica Scripta, 51(1), 91-118.spa
dc.relation.referencesGonzález-Pérez, F., & Cubero-Pardo, P. (2010). Short-term effects of tourism activities on the behavior of representative fauna on the Galapagos Islands, Ecuador. Latin American Journal of Aquatic Research, 38(3), 493-500.spa
dc.relation.referencesGrant, B. R., & Grant, P. R. (1996a). High survival of Darwin's finch hybrids: effects of beak morphology and diets. Ecology, 77(2), 500-509.spa
dc.relation.referencesGrant, P. R. (1968). Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Systematic Biology, 17(3), 319-333.spa
dc.relation.referencesGrant, P. R. (2017). Ecology and Evolution of Darwin's Finches (Princeton Science Library Edition). In Ecology and Evolution of Darwin's Finches (Princeton Science Library Edition). Princeton University Press.spa
dc.relation.referencesGrant, P. R., & Grant, B. R. (1996b). Speciation and hybridization in island birds. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 765-772.spa
dc.relation.referencesGrant, P. R., Grant, B. R., Keller, L. F., & Petren, K. (2000). Effects of El Niño events on Darwin's finch productivity. Ecology, 81(9), 2442-2457.spa
dc.relation.referencesGumbs, R., Chaudhary, A., Daru, B. H., Faith, D. P., Forest, F., Gray, C. L., & Owen, N. R. (2021). The Post-2020 Global Biodiversity Framework must safeguard the Tree of Life. bioRxiv.spa
dc.relation.referencesGuo, Q. (2015). Island biogeography theory: emerging patterns and human effects. Earth Systems and Environmental Sciences 5 p., 32(1), 1-5.spa
dc.relation.referencesHackett, T. D., Sauve, A. M., Davies, N., Montoya, D., Tylianakis, J. M., & Memmott, J. (2019). Reshaping our understanding of species’ roles in landscape‐scale networks. Ecology Letters, 22(9), 1367-1377.spa
dc.relation.referencesHamann, O. (1993). Sobre recuperación de vegetación, cabras y tortugas gigantes en Isla Pinta, Galápagos, Ecuador. Biodiversidad y conservación, 2 (2), 138-151.spa
dc.relation.referencesHammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.spa
dc.relation.referencesHardin, J. W., & Hilbe, J. M. (2007). Generalized linear models and extensions. Stata press.spa
dc.relation.referencesHeaney, L. R. (2000). Dynamic disequilibrium: a long‐term, large‐scale perspective on the equilibrium model of island biogeography. Global Ecology and Biogeography, 9(1), 59-74.spa
dc.relation.referencesMazerolle, M. J., & Mazerolle, M. M. J. (2017). Package ‘AICcmodavg’. R package, 281.spa
dc.relation.referencesMeijaard, E. (2003). Mammals of south‐east Asian islands and their Late Pleistocene environments. Journal of Biogeography, 30(8), 1245-1257.spa
dc.relation.referencesMelo, M., Warren, B. H., & Jones, P. J. (2011). Rapid parallel evolution of aberrant traits in the diversification of the Gulf of Guinea white‐eyes (Aves, Zosteropidae). Molecular Ecology, 20(23), 4953-4967.spa
dc.relation.referencesMendel, Z., Protasov, A., Fisher, N., y La Salle, J. (2004). Taxonomy and biology of Leptocybe invasa gen. y sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Australian Journal of Entomology, 43(2), 101-113.spa
dc.relation.referencesMeynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., & Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography, 20(6), 893-903.spa
dc.relation.referencesMiller, J. T., Jolley‐Rogers, G., Mishler, B. D., & Thornhill, A. H. (2018). Phylogenetic diversity is a better measure of biodiversity than taxon counting. Journal of Systematics and Evolution, 56(6), 663-667.spa
dc.relation.referencesMiller, R. G. (1974). The jackknife-a review. Biometrika, 61(1), 1-15.spa
dc.relation.referencesMisra, V. (2023). El Niño and the Southern Oscillation. In An Introduction to Large-Scale Tropical Meteorology (pp. 157-195). Cham: Springer International Publishing.spa
dc.relation.referencesMontgomery, S. L. (1983). Carnivorous caterpillars: the behavior, biogeography and conservation of Eupithecia (Lepidoptera: Geometridae) in the Hawaiian Islands. GeoJournal, 7(6), 549-556.spa
dc.relation.referencesMoreira, E., Santos, R., Penna, U., Angel-Coca, C., de Oliveira, F., & Viana, B. (2016). Are pan traps colors complementary to sample community of potential pollinator insects?. Journal of Insect Conservation, 20, 583-596.spa
dc.relation.referencesMori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological reviews, 88(2), 349-364.spa
dc.relation.referencesMorlon, H. (2014). Phylogenetic approaches for studying diversification. Ecology letters, 17(4), 508-525.spa
dc.relation.referencesMugrabi, D., & Azevedo, C. (2010). Insecta, Hymenoptera, Bethylidae: Range extension and filling gaps in Madagascar. Check List, 6(1), 62-63.spa
dc.relation.referencesMühlenberg, M., Leipold, D., Mader, H. J., & Steinhauer, B. (1977). Island ecology of arthropods: I. Diversity, niches, and resources on some Seychelles islands. Oecologia, 29, 117-134.spa
dc.relation.referencesMulya, H., Santosa, Y., & Hilwan, I. (2021). Comparison of four species diversity indices in mangrove community. Biodiversitas Journal of Biological Diversity, 22(9).spa
dc.relation.referencesNali, R. C., Becker, C. G., Zamudio, K. R., & Prado, C. P. (2020). Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Diversity and Distributions, 26(12), 1798-1812.spa
dc.relation.referencesNASA. (2013). NASA shuttle radar topography mission global 1 arc second. NASA LP DAAC, https://gdex.cr.usgs.gov/gdex/spa
dc.relation.referencesNieves-Aldrey, J. L., Fontal-Cazalla, F., & Fernández, F. (2006). Introducción a los Hymenoptera de la Región Neotropical. Universidad Nacional de Colombia.spa
dc.relation.referencesNilsson, S. G., Bengtsson, J., & As, S. (1988). Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. The Journal of Animal Ecology, 685-704.spa
dc.relation.referencesNoss, R. F., & Harris, L. D. (1986). Nodes, networks, and MUMs: preserving diversity at all scales. Environmental management, 10, 299-309.spa
dc.relation.referencesNoyes, J. S. (2000). Encyrtidae of Costa Rica (Hymenoptera: Chalcidoidea), 1. The subfamily Tetracneminae, parasitoids of mealybugs (Homoptera: Pseudococcidae). Memoirs of the American Entomological Institute, 62, 1-355.spa
dc.relation.referencesNyffeler, M., & Birkhofer, K. (2017). An estimated 400–800 million tons of prey are annually killed by the global spider community. The Science of nature, 104(3), 1-12.spa
dc.relation.referencesOpedal, Ø. H., Armbruster, W. S., & Graae, B. J. (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8(3), 305-315.spa
dc.relation.referencesOrellana‐Rovirosa, F., & Richards, M. (2018). Emergence/subsidence histories along the Carnegie and Cocos Ridges and their bearing upon biological speciation in the Galápagos. Geochemistry, Geophysics, Geosystems, 19(11), 4099-4129.spa
dc.relation.referencesOromí, P., Zurita, N., Morales, E., & López, H. (2015). Diversidad de artrópodos terrestres en las Islas Canarias. Revista IDE@, Ibero Diversidad Entomológica @ccesible, 4, 1-14.spa
dc.relation.referencesOzdemir, I., Mert, A., Ozkan, U. Y., Aksan, S., & Unal, Y. (2018). Predicting bird species richness and micro-habitat diversity using satellite data. Forest ecology and management, 424, 483-493.spa
dc.relation.referencesPalomino, D., & Carrascal, L. M. (2005). Birds on novel island environments. A case study with the urban avifauna of Tenerife (Canary Islands). Ecological Research, 20(5), 611-617.spa
dc.relation.referencesParadis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290.spa
dc.relation.referencesParent, C. E., & Crespi, B. J. (2006). Sequential colonization and diversification of Galapagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution, 60(11), 2311-2328.spa
dc.relation.referencesParent, C. E., Caccone, A., & Petren, K. (2008). Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3347-3361.spa
dc.relation.referencesPark, D. S., & Razafindratsima, O. H. (2019). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148-161.spa
dc.relation.referencesPeck, S. B. (1994). Aerial dispersal of insects between and to islands in the Galapagos Archipelago, Ecuador. Annals of the Entomological Society of America, 87(2), 218-224spa
dc.relation.referencesPeck, S. B. (1996). Diversity and distribution of the orthopteroid insects of the Galápagos Islands, Ecuador. Canadian Journal of Zoology, 74(8), 1497-1510.spa
dc.relation.referencesPeck, S. B. (2001). Smaller orders of insects of the Galápagos Islands, Ecuador: evolution, ecology and diversity. NRC Research Press.spa
dc.relation.referencesPeck, S. B. (2006). The beetles of the Galápagos Islands, Ecuador: evolution, ecology, and diversity (Insecta: Coleoptera). NRC Research Press.spa
dc.relation.referencesPennacchio, F., y Strand, M. R. (2006). Evolution of developmental strategies in parasitic Hymenoptera. Annual Review of Entomology. 51, 233-258.spa
dc.relation.referencesPeters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B., & Niehuis, O. (2017). Evolutionary history of the Hymenoptera. Current Biology, 27(7), 1013-1018.spa
dc.relation.referencesPeters, R. S., Niehuis, O., Gunkel, S., Bläser, M., Mayer, C., Podsiadlowski, L., Kozlov, A., Donath, A., Noort, S. V., Liu, S., Zhou, X., Misof, B., Heraty, J., & Krogmann, L. (2018). Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular phylogenetics and evolution, 120, 286-296.spa
dc.relation.referencesPhillips, J. G., Linscott, T. M., Rankin, A. M., Kraemer, A. C., Shoobs, N. F., & Parent, C. E. (2020). Archipelago-wide patterns of colonization and speciation among an endemic radiation of Galápagos Land Snails. Journal of Heredity, 111(1), 92-102.spa
dc.relation.referencesPilgrim, E. M., Von Dohlen, C. D., & Pitts, J. P. (2008). Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zoologica Scripta, 37(5), 539-560.spa
dc.relation.referencesPizzitutti, F., Walsh, S. J., Rindfuss, R. R., Gunter, R., Quiroga, D., Tippett, R., & Mena, C. F. (2017). Scenario planning for tourism management: a participatory and system dynamics model applied to the Galapagos Islands of Ecuador. Journal of Sustainable Tourism, 25(8), 1117-1137.spa
dc.relation.referencesPodos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409(6817), 185-188.spa
dc.relation.referencesPolaszek, A., & Vilhemsen, L. (2023). Biodiversity of hymenopteran parasitoids. Current Opinion in Insect Science, 101026.spa
dc.relation.referencesPortillo, J. T. D. M., Ouchi‐Melo, L. S., Crivellari, L. B., de Oliveira, T. A. L., Sawaya, R. J., & Duarte, L. D. S. (2019). Area and distance from mainland affect in different ways richness and phylogenetic diversity of snakes in Atlantic Forest coastal islands. Ecology and evolution, 9(7), 3909-3917.spa
dc.relation.referencesPoulakakis, N., Miller, J. M., Jensen, E. L., Beheregaray, L. B., Russello, M. A., Glaberman, S., & Caccone, A. (2020). Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. Journal of Zoological Systematics and Evolutionary Research, 58(4), 1262-1275.spa
dc.relation.referencesPower, D. M. (1972). Numbers of bird species on the California Islands. Evolution, 451-463.spa
dc.relation.referencesQGIS Development Team. 2016. QGIS geographic information system. Gossau ZH (Switzeland): Open Source Geospatial Foundation Project.spa
dc.relation.referencesQGIS.org, 2022. QGIS 3.22. Geographic Information System API Documentation. QGIS Association. Electronic document: https://qgis.org/pyqgis/3.22/index.htmlspa
dc.relation.referencesQuicke, D. L. (2014). The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology. John Wiley & Sons.spa
dc.relation.referencesQuimbayo, J. P., Dias, M. S., Kulbicki, M., Mendes, T. C., Lamb, R. W., Johnson, A. F., & Floeter, S. R. (2019). Determinants of reef fish assemblages in tropical Oceanic islands. Ecography, 42(1), 77-87.spa
dc.relation.referencesQuintero, I., & Landis, M. J. (2020). Interdependent phenotypic and biogeographic evolution driven by biotic interactions. Systematic biology, 69(4), 739-755.spa
dc.relation.referencesRazowski, J., Landry, B., & Roque-Albelo, L. (2008). The Tortricidae (Lepidoptera) of the Galápagos Islands, Ecuador. Revue suisse de zoologie, 115(1), 185.spa
dc.relation.referencesRecher, H. F. (1969). Bird species diversity and habitat diversity in Australia and North America. The American Naturalist, 103(929), 75-80.spa
dc.relation.referencesRentería, J. L., & Buddenhagen, C. (2006). Invasive plants in the Scalesia pedunculata forest at los Gemelos, Santa Cruz, Galapagos.spa
dc.relation.referencesRevell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in ecology and evolution, (2), 217-223.spa
dc.relation.referencesReyes-Novelo, E., Meléndez, V., Delfín, H., y Ayala, R. (2008). Wild bees (hymenoptera: apoidea) as bioindicators in the neotropics. Tropical and Subtropical Agroecosystems, 10(1), 1-13.spa
dc.relation.referencesRicciardi, A. (2012). Invasive species. In Ecological systems: selected entries from the Encyclopedia of sustainability science and technology (pp. 161-178). New York, NY: Springer New York.spa
dc.relation.referencesRichman, A. D., Case, T. J., & Schwaner, T. D. (1988). Natural and unnatural extinction rates of reptiles on islands. The American Naturalist, 131(5), 611-630.spa
dc.relation.referencesRicklefs, R. E. (1977). Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist, 111(978), 376-381.spa
dc.relation.referencesRiley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of sciences, 5(1-4), 23-27.spa
dc.relation.referencesRincón, A., Gómez, V., & García, C. (2021). Test of the island biogeography theory on boulders in a seagrass bed/Test de la teoria de biogeografia de islas con piedras en una pradera de pastos marinos. Revista Acta Biologica Colombiana, 26(1), 131-135.spa
dc.relation.referencesRodrigues, A.S.L., Brooks, T.M. & Gaston, K.J. (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference. Phylogeny and conservation (ed. by A. Purvis, J.L. Gittleman and T.M. Brooks), pp. 101–116. Cambridge University Press, Cambridge.spa
dc.relation.referencesRoell, Y. E., Phillips, J. G., & Parent, C. E. (2021). Effect of topographic complexity on species richness in the Galápagos Islands. Journal of Biogeography.spa
dc.relation.referencesRonquist, F. (1995). Phylogeny and early evolution of the Cynipoidea (Hymenoptera). Systematic Entomology, 20(4), 309-335.spa
dc.relation.referencesRoque–Albelo, L. & B. Landry. (2016). CDF checklist of Galapagos butterfl ies and moths - FCD lista de especies de mariposas y polillas de Galápagos. In: F. Bungartz, H. W. Herrera, P. Jaramillo, N. Tirado, G. Jiménez-Uzcátegui, D. Ruiz, A. Guézou & F. Ziemmeck (Eds.). 59 Charles Darwin Foundation Galapagos Species Checklist–Lista de Especies de Galápagos de la Fundación Charles Darwin. Charles Darwin Foundation / Fundación Charles Darwin, Puerto Ayora, Galápagos. Available from http://darwinfoundation.org/datazone/checklists/terrestrial–invertebrates/ lepidoptera/ (accessed 15 November 2017)spa
dc.relation.referencesRoque-Albelo, L., Causton, C. E., & Mieles, A. (2003). Population Decline of Galapagos endemic Lepidoptera on Volcán Alcedo (Isabela Island, Galapagos Islands, Ecuador): An effect of the introduction of the cottony cushion scale. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique, 73, 177-180.spa
dc.relation.referencesRoyston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and computing, 2, 117-119.spa
dc.relation.referencesRStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.spa
dc.relation.referencesRussell, J. C., Meyer, J. Y., Holmes, N. D., & Pagad, S. (2017). Invasive alien species on islands: impacts, distribution, interactions and management. Environmental Conservation, 44(4), 359-370.spa
dc.relation.referencesRutledge, R. W., Basore, B. L., & Mulholland, R. J. (1976). Ecological stability: an information theory viewpoint. Journal of Theoretical Biology, 57(2), 355-371.spa
dc.relation.referencesSakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., MacCauley, D. E., O´Neil, P., Parker, I. M., Thompson, J. N., & Weller, S. G. (2001). The population biology of invasive species. Annual review of ecology and systematics, 32(1), 305-332.spa
dc.relation.referencesSalcedo-Andrade, R. A. (2008). Galápagos: conflictos en el paraíso. Universidad Andina Simón Bolívar, Sede Ecuador; Corporación Editora Nacional; Ediciones Abya Yala.spa
dc.relation.referencesSallarés, V., Charvis, P., y Calahorrano, A. (2009). Naturaleza y formación de la Provincia Volcánica de Galápagos. Geología y geofísica marina y terrestre del Ecuador. Comisión Nacional del Derecho del Mar (CNDM).spa
dc.relation.referencesSanchez, J. A., Carrasco‐Ortiz, A., López‐Gallego, E., & La‐Spina, M. (2020). Ants (Hymenoptera: Formicidae) reduce the density of Cacopsylla pyri (Linnaeus, 1761) in Mediterranean pear orchards. Myrmecological News, 30.spa
dc.relation.referencesSanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891-904.spa
dc.relation.referencesSarnat, E. M., & Moreau, C. S. (2011). Biogeography and morphological evolution in a Pacific island ant radiation. Molecular ecology, 20(1), 114-130.spa
dc.relation.referencesSchofield, E. K. (1989). Effects of introduced plants and animals on island vegetation: examples from Galápagos Archipelago. Conservation Biology, 3(3), 227-239.spa
dc.relation.referencesSchweiger, O., Klotz, S., Durka, W., & Kühn, I. (2008). A comparative test of phylogenetic diversity indices. Oecologia, 157(3), 485-495.spa
dc.relation.referencesSequeira, A. S., Sijapati, M., Lanteri, A. A., & Roque Albelo, L. (2008). Nuclear and mitochondrial sequences confirm complex colonization patterns and clear species boundaries for flightless weevils in the Galápagos archipelago. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3439-3451.spa
dc.relation.referencesSharanowski, B. J., Ridenbaugh, R. D., Piekarski, P. K., Broad, G. R., Burke, G. R., Deans, A. R., Lemmon, A. R., Lemmon, E. C. M., Diehl, G. J., Whitfield, J. B., & Hines, H. M. (2021). Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Molecular Phylogenetics and Evolution, 156, 107023.spa
dc.relation.referencesSharkey, M. J., Carpenter, J. M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A. P., Schulmeister, S., Murray, D., Decanos, A. R., Ronquist, F., Krogmann, L., & Wheeler, W. C. (2012). Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28(1), 80-112.spa
dc.relation.referencesSheikh, A. H., Thomas, M., Bhandari, R., & Meshram, H. (2016). Malaise trap and insect sampling: Mini Review. Bio Bulletin, 2(2), 35-40.spa
dc.relation.referencesSheikh, S. I. (2021). Cryptic diversity and evolution in a genus of oak-gall-associated parasitoid wasps (Doctoral dissertation, The University of Iowa).spa
dc.relation.referencesSherwin, W., & Prat, N. (2019). The introduction of entropy and information methods to ecology by Ramon Margalef. Entropy, 21(8), 794.spa
dc.relation.referencesSimberloff, D. S., & Wilson, E. O. (1969). Experimental zoogeography of islands: the colonization of empty islands. Ecology, 50(2), 278-296.spa
dc.relation.referencesSimkin, T. (1984). Geología de Galápagos. Revista biológica de la Linnean Society, 21(1-2), 61-75.spa
dc.relation.referencesSinclair, B. J. (2023). An annotated checklist of the Diptera of the Galápagos Archipelago (Ecuador). Zootaxa, 5283(1), 1-102.spa
dc.relation.referencesSmith, S. D., Ané, C., y Baum, D. A. (2008). The role of pollinator shifts in the floral diversification of Iochroma (Solanaceae). Evolution: International Journal of Organic Evolution. 62(4), 793-806.spa
dc.relation.referencesSt Lars & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272.spa
dc.relation.referencesStange, E. E., & Ayres, M. P. (2010). Climate change impacts: Insects. eLS.spa
dc.relation.referencesSteadman, D. W., Stafford, T. W., Donahue, D. J., & Jull, A. J. (1991). Chronology of Holocene vertebrate extinction in the Galápagos Islands. Quaternary research, 36(1), 126-133.spa
dc.relation.referencesStireman III, J. O., & Shaw, S. R. (2022). Natural History and Ecology of Caterpillar Parasitoids. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World (pp. 225-272). Cham: Springer International Publishing.spa
dc.relation.referencesStoldt, M., Macit, M. N., Collin, E., & Foitzik, S. (2022). Molecular (co) evolution of hymenopteran social parasites and their hosts. Current Opinion in Insect Science, 50, 100889.spa
dc.relation.referencesStuessy, T. F., Jakubowsky, G., Gómez, R. S., Pfosser, M., Schlüter, P. M., Fer, T., & Kato, H. (2006). Anagenetic evolution in island plants. Journal of Biogeography, 33(7), 1259-1265.spa
dc.relation.referencesTalavera, J. A., Cunha, L., Arévalo, J. R., Talavera, I. P., Kille, P., & Novo, M. (2020). Anthropogenic disturbance and environmental factors drive the diversity and distribution of earthworms in São Miguel Island (Azores, Portugal). Applied Soil Ecology, 145, 103301.spa
dc.relation.referencesToft, C. A., & Schoener, T. W. (1983). Abundance and diversity of orb spiders on 106 Bahamian islands: biogeography at an intermediate trophic level. Oikos, 411-426.spa
dc.relation.referencesTojo, K., Sekiné, K., Takenaka, M., Isaka, Y., Komaki, S., Suzuki, T., & Schoville, S. D. (2017). Species diversity of insects in Japan: their origins and diversification processes. Entomological Science, 20(1), 357-381.spa
dc.relation.referencesToral-Granda, M. V., Causton, C. E., Jäger, H., Trueman, M., Izurieta, J. C., Araujo, E., Cruz, M., Zander, K. K., Izurieta, A., & Garnett, S. T. (2017). Alien species pathways to the Galapagos Islands, Ecuador. PLoS One, 12(9), e0184379.spa
dc.relation.referencesTorres‐Carvajal, O., Barnes, C. W., Pozo‐Andrade, M. J., Tapia, W., & Nicholls, G. (2014). Older than the islands: origin and diversification of Galápagos leaf‐toed geckos (Phyllodactylidae: Phyllodactylus) by multiple colonizations. Journal of Biogeography, 41(10), 1883-1894.spa
dc.relation.referencesTrøjelsgaard, K., Báez, M., Espadaler, X., Nogales, M., Oromí, P., Roche, F. L., & Olesen, J. M. (2013). Island biogeography of mutualistic interaction networks. Journal of Biogeography, 40(11), 2020-2031.spa
dc.relation.referencesTucker, C. M., Davies, T. J., Cadotte, M. W., & Pearse, W. D. (2018). On the relationship between phylogenetic diversity and trait diversity. Ecology, 99(6), 1473-1479.spa
dc.relation.referencesTuell, J. K., & Isaacs, R. (2009). Elevated pan traps to monitor bees in flowering crop canopies. Entomologia experimentalis et applicata, 131(1), 93-98.spa
dc.relation.referencesTylianakis, J. M., Tscharntke, T., y Klein, A. M. (2006). Diversity, ecosystem function, and stability of parasitoid–host interactions across a tropical habitat gradient. Ecology, 87(12), 3047-3057.spa
dc.relation.referencesUgland, K. I., Gray, J. S., & Ellingsen, K. E. (2003). The species–accumulation curve and estimation of species richness. Journal of animal ecology, 72(5), 888-897.spa
dc.relation.referencesValente, L. M., Phillimore, A. B., & Etienne, R. S. (2015). Equilibrium and non‐equilibrium dynamics simultaneously operate in the Galápagos islands. Ecology letters, 18(8), 844-852.spa
dc.relation.referencesvan der Werff, H. (1983). Species number, area and habitat diversity in the Galapagos Islands. Vegetatio, 54(3), 167-175.spa
dc.relation.referencesVasconcelos, R., Brito, J. C., Carvalho, S. B., Carranza, S., & Harris, D. J. (2012). Identifying priority areas for island endemics using genetic versus specific diversity–the case of terrestrial reptiles of the Cape Verde Islands. Biological Conservation, 153, 276-286.spa
dc.relation.referencesVasconcelos, R., Carranza, S., & James Harris, D. (2010). Insight into an island radiation: the Tarentola geckos of the Cape Verde archipelago. Journal of Biogeography, 37(6), 1047-1060.spa
dc.relation.referencesVillareal, H. M., Álvarez, M., Córdoba-Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). Manual de métodos para el desarrollo de inventarios de biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Panamericana Formas e Impresos S.A.spa
dc.relation.referencesVinson, S. B. (1976). Host selection by insect parasitoids. Annual review of entomology, 21(1), 109-133.spa
dc.relation.referencesWardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology letters, 9(7), 870-886.spa
dc.relation.referencesWardle, D. A., Zackrisson, O., Hornberg, G., & Gallet, C. (1997). The influence of island area on ecosystem properties. Science, 277(5330), 1296-1299.spa
dc.relation.referencesWarren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., & Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty years after MacArthur‐Wilson. Ecology Letters, 18(2), 200-217.spa
dc.relation.referencesWeigelt, P., & Kreft, H. (2013). Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography, 36(4), 417-429.spa
dc.relation.referencesWerner, R., Hoernle, K., van den Bogaard, P., Ranero, C., von Huene, R., & Korich, D. (1999). Drowned 14-my-old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology, 27(6), 499-502.spa
dc.relation.referencesWhittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: ecology, evolution, and conservation. Oxford University Press.spa
dc.relation.referencesWhittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography: Taking the long view of nature’s laboratories. Science, 357(6354).spa
dc.relation.referencesWhittaker, R. J., Rigal, F., Borges, P. A., Cardoso, P., Terzopoulou, S., Casanoves, F., & Triantis, K. A. (2014). Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences, 111(38), 13709-13714.spa
dc.relation.referencesWhittaker, R. J., Triantis, K. A., & Ladle, R. J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35(6), 977-994.spa
dc.relation.referencesWhittaker, R. J., Willis, K. J., & Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of biogeography, 28(4), 453-470.spa
dc.relation.referencesWhittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour?. Journal of animal ecology, 75(5), 1182-1189.spa
dc.relation.referencesWickham, H. (2007). Reshaping data with the reshape package. Journal of statistical software, 21, 1-20.spa
dc.relation.referencesWickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.spa
dc.relation.referencesWinter, M., Devictor, V., & Schweiger, O. (2013). Phylogenetic diversity and nature conservation: where are we? Trends in ecology & evolution, 28(4), 199-204.spa
dc.relation.referencesWohlwend, M. R., Craven, D., Weigelt, P., Seebens, H., Winter, M., Kreft, H., & Knight, T. M. (2021). Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity and Distributions.spa
dc.relation.referencesYang, X., Yang, Y., Wan, Y., Wu, R., Feng, D., & Li, K. (2021). Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Science of the Total Environment, 786, 147436.spa
dc.relation.referencesYeakley, J. A., & Weishampel, J. F. (2000). Multiple source pools and dispersal barriers for Galapagos plant species distribution. Ecology, 81(4), 893-898.spa
dc.relation.referencesYi, Z., Jinchao, F., Dayuan, X., Weiguo, S., & Axmacher, J. C. (2012). A comparison of terrestrial arthropod sampling methods. Journal of Resources and Ecology, 3(2), 174-182.spa
dc.relation.referencesZambrano, C. D. A., y León, L. R. (2016). Una mirada. Republica de Ecuador. Dominio de las Ciencias, 2(3), 55-66.spa
dc.relation.referencesZevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth surface processes and landforms, 12(1), 47-56.spa
dc.relation.referencesZou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617-628.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc590 - Animales::595 - Artrópodosspa
dc.subject.lccBiodiversidadspa
dc.subject.lccBiodiversityeng
dc.subject.lccPhylogenetic diversityeng
dc.subject.lccBiogeografíaspa
dc.subject.lccBiogeographyeng
dc.subject.lccInsectos -- Sociedadesspa
dc.subject.lccInsect societieseng
dc.subject.lccHimenópterosspa
dc.subject.lccHymenopteraeng
dc.subject.lembAnimales y plantas-Distribución geográficaspa
dc.subject.lembGeographical distribution of animals and plantseng
dc.subject.lembFilogeniaspa
dc.subject.lembPhylogenyeng
dc.subject.lembFenómenos genéticosspa
dc.subject.lembGenetic Phenomenaeng
dc.subject.lembDiversidad biológicaspa
dc.subject.lembBiological diversityeng
dc.subject.proposalBiogeografíaspa
dc.subject.proposalTeoría de islasspa
dc.subject.proposalAvispasspa
dc.subject.proposalParasitoidesspa
dc.subject.proposalComplejidad topográficaspa
dc.subject.proposalDiversidad Filogenéticaspa
dc.subject.proposalBiogeographyeng
dc.subject.proposalIsland theoryeng
dc.subject.proposalWaspseng
dc.subject.proposalParasitoidseng
dc.subject.proposalTopographic complexityeng
dc.subject.proposalPhylogenetic diversityeng
dc.subject.wikidataDiversidad filogenéticaspa
dc.subject.wikidataBiogeografía insularspa
dc.subject.wikidataInsular biogeographyeng
dc.titleParasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidadspa
dc.title.translatedParasitoids (Hymenoptera) of the Galapagos archipelago, factors associated with their diversity.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio de especies invasoras y diversidad de invertebrados terrestres en las islas Galápagos, en el marco del convenio entre la Escuela Superior Politécnica de Chimborazo y la Fundación Charles Darwin (ID: IDIPI-104)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
0150408599.2023.pdf
Tamaño:
3.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: