Imágenes térmicas y respuestas espectrales para identificar condiciones de estrés hídrico y estado nutricional con relación al nitrógeno en papa amarilla diploide (Solanum tuberosum Grupo Phureja)

dc.contributor.advisorMartínez Martínez, Luis Joel
dc.contributor.advisorRodríguez Molano, Luis Ernesto
dc.contributor.authorVelandia Sánchez, Edisson Andrés
dc.date.accessioned2022-09-01T16:08:40Z
dc.date.available2022-09-01T16:08:40Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa papa amarilla diploide (Solanum tuberosum Grupo Phureja) es susceptible a condiciones de déficit hídrico, afectando negativamente el potencial de rendimiento. La variabilidad climática aumenta la frecuencia de la sequía, por lo que es necesario generar estrategias que permitan diagnosticar a tiempo y así mitigar los efectos causados por el estrés hídrico en el cultivo. El objetivo de este trabajo fue evaluar el uso de imágenes térmicas y la respuesta espectral para identificar condiciones de estrés hídrico y estado nutricional con relación al N en papa amarilla diploide (Solanum tuberosum Grupo Phureja) cv. Criolla Colombia bajo invernadero. Se establecieron tubérculos-semilla en bolsas con suelo de siete litros de capacidad regadas cada tercer día a capacidad de campo hasta el inicio de tuberización 45 dds (días después de siembra), sometidas a dos regímenes hídricos: i) riego continuo (CW) y, ii) déficit hídrico por suspensión de riego total (SW) durante 13 días, las dosis de fertilización con N fueron 0%, 50%, 100% y 150% de la dosis comercial utilizada para el cultivo. Se usó un modelo factorial completamente al azar de medidas repetidas y análisis descriptivo. Se encontró que a partir de la TD se pudo determinar la deficiencia de agua en las plantas destacando que, bajo condiciones de invernadero, desde el día cinco ddt fue posible detectar el déficit hídrico que presentaron las plantas del cv. Criolla Colombia por medio de la temperatura proveniente de las imágenes térmicas, y con mayor claridad hacia los siete ddt. Se propuso el índice MED556 como importante para la determinación de N en las plantas. Los resultados revelaron índices espectrales como el NDVI y PRInorm presentaron una relación con el LN desde el primer muestreo a los 3 ddt, siendo parámetros que favorablemente se puede usar para determinar el estado del N en las plantas, mientras que índices como el WI representaron mejor el experimento para la determinación del estado hídrico de las plantas. (Texto tomado de la fuente)spa
dc.description.abstractDiploid yellow potato (Solanum tuberosum Phureja Group) is susceptible to water deficit conditions, negatively affecting yield potential. Climate variability increases the frequency of drought, so it is necessary to generate strategies that allow early diagnosis and thus mitigate the effects caused by water stress on the crop. The objective of this work was to evaluate the use of thermal imaging and spectral response to identify water stress conditions and nutritional status in relation to N in yellow diploid potato (Solanum tuberosum Phureja Group) cv. Criolla Colombia in greenhouse conditions. Seed tubers were established in seven-liter bags with soil, irrigated every third day at field capacity until the onset of tuberization 45 dds (days after planting), subjected to two water regimes: i) continuous irrigation (CW) and, ii) water deficit by suspension of total irrigation (SW) for 13 days, the N fertilization doses were 0%, 50%, 100% and 150% of the commercial dose used for the crop. A completely randomized factorial model with repeated measures and descriptive analysis was used. It was found that from the TD it was possible to determine the water deficiency in the plants, highlighting that, under greenhouse conditions, from day five ddt it was possible to detect the water deficit in the plants of the Criolla Colombia cv. by means of the temperature from the thermal images, and with greater clarity at seven ddt. The MED556 index was proposed as important for the determination of N in the plants. The results revealed spectral indices such as NDVI and PRInorm presented a relationship with LN from the first sampling at 3 ddt, being parameters that can be favorably used to determine the N status of the plants, while indices such as WI better represented the experiment for the determination of the water status of the plants.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxvi, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82236
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAllen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations, 110–115. https://doi.org/10.1016/S0141-1187(05)80058-6spa
dc.relation.referencesAnderson, M. C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B., & Pimstein, A. (2013). An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications. Journal of Hydrometeorology, 14(4), 1035–1056. https://doi.org/10.1175/JHM-D-12-0140.1spa
dc.relation.referencesAriza, W. (2017). Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosums grupo Phureja) en déficit hídrico.spa
dc.relation.referencesAriza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. group phureja). Agronomia Colombiana, 38(1), 48–56. https://doi.org/10.15446/agron.colomb.v38n1.78982spa
dc.relation.referencesBabich, G. A., & Camps, O. I. (1996). Weighted Parzen windows for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(5), 567–570. https://doi.org/10.1109/34.494647spa
dc.relation.referencesBanerjee, K., Krishnan, P., & Mridha, N. (2018). Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions. Biosystems Engineering, 166, 13–27. https://doi.org/10.1016/j.biosystemseng.2017.10.012spa
dc.relation.referencesBarragán, J. N. (2019). La Papa Incluida - Desempeño y perspectivas económicas del subsector papa 2018-2019. Revista Papa, 47, pag 45-48. https://fedepapa.com/wp-content/uploads/2017/01/REVISTA-47-COMPLETA.pdfspa
dc.relation.referencesBendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79–87. https://doi.org/10.1016/j.jag.2015.02.012spa
dc.relation.referencesBerni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E., & Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, 113(11), 2380–2388. https://doi.org/10.1016/j.rse.2009.06.018spa
dc.relation.referencesBorhan, M. S., Panigrahi, S., Satter, M. A., & Gu, H. (2017). Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture, 4(4), 275–282. https://doi.org/10.1016/j.inpa.2017.07.005spa
dc.relation.referencesBuitrago, M. F., Groen, T. A., Hecker, C. A., & Skidmore, A. K. (2016). Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS Journal of Photogrammetry and Remote Sensing, 111, 22–31. https://doi.org/10.1016/j.isprsjprs.2015.11.003spa
dc.relation.referencesCampos, H., & Ortíz, O. (2020). The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind (H. Campos & O. Ortíz, Eds.). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-28683-5spa
dc.relation.referencesCao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., Yue, S., Cheng, S., Ustin, S. L., & Khosla, R. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54–67. https://doi.org/10.1016/j.compag.2014.08.012spa
dc.relation.referencesCavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote sensing of plant biodiversity. In Remote Sensing of Plant Biodiversity. https://doi.org/10.1007/978-3-030-33157-3spa
dc.relation.referencesCho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193. https://doi.org/10.1016/j.rse.2005.12.011spa
dc.relation.referencesCilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Boschetti, M., Picchi, V., & Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549–6565. https://doi.org/10.3390/rs6076549spa
dc.relation.referencesÇolak, Y., Yazar, A., Sesveren, S., & Çolak, I. (2017). Evaluation of yield and leaf water potantial ( LWP ) for eggplant under varying irrigation regimes using surface and subsurface drip systems Yes. Scientia Horticulturae, 219, 10–21. https://doi.org/10.1016/j.scienta.2017.02.051spa
dc.relation.referencesCosta, J. M., Egipto, R., Sánchez-Virosta, A., Lopes, C. M., & Chaves, M. M. (2019). Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agricultural Water Management, 216(November 2017), 484–496. https://doi.org/10.1016/j.agwat.2018.06.001spa
dc.relation.referencesCruz De Carvalho, M. H. (2008a). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536spa
dc.relation.referencesCruz De Carvalho, M. H. (2008b). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536spa
dc.relation.referencesCucho-Padin, G., Rinza, J., Ninanya, J., Loayza, H., Quiroz, R., & Ramírez, D. A. (2020). Development of an open-source thermal image processing software for improving irrigation management in potato crops (Solanum tuberosum L.). Sensors (Switzerland), 20(2), 1–17. https://doi.org/10.3390/s20020472spa
dc.relation.referencesCunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129–143. https://doi.org/10.1016/j.rse.2016.05.019spa
dc.relation.referencesDalla Costa, L., Delle Vedove, G., Gianquinto, G., Giovanardi, R., & Peressotti, A. (1997). Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress. Potato Research, 40(1), 19–34. https://doi.org/10.1007/BF02407559spa
dc.relation.referencesDeJonge, K. C., Taghvaeian, S., Trout, T. J., & Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156, 51–62. https://doi.org/10.1016/j.agwat.2015.03.023spa
dc.relation.referencesDevaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for Sustainable Global Food Security. Potato Research, 57(3–4), 185–199. https://doi.org/10.1007/s11540-014-9265-1spa
dc.relation.referencesDuan, T., Chapman, S. C., Guo, Y., & Zheng, B. (2017). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Research, 210(May), 71–80. https://doi.org/10.1016/j.fcr.2017.05.025spa
dc.relation.referencesEgea, G., Padilla, C. M., Martinez, J., Fernández, J. E., & Pérez, M. (2017). Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agricultural Water Management, 187, 210–221. https://doi.org/10.1016/J.AGWAT.2017.03.030spa
dc.relation.referencesEzenne, G. I., Jupp, L., Mantel, S. K., & Tanner, J. L. (2019). Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agricultural Water Management, 218(March), 158–164. https://doi.org/10.1016/j.agwat.2019.03.034spa
dc.relation.referencesFAO. (2016). Flying robots for food security. Food and Agriculture Organization of the United Nations. http://www.fao.org/zhc/detail-events/en/c/428256/spa
dc.relation.referencesFar, S. T., & Rezaei-Moghaddam, K. (2018). Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Information Processing in Agriculture, 5(1), 173–184. https://doi.org/10.1016/j.inpa.2017.09.001spa
dc.relation.referencesFeng, R., Zhang, Y., Yu, W., Hu, W., Wu, J., Ji, R., Wang, H., & Zhao, X. (2013). Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress. Acta Ecologica Sinica, 33(6), 301–307. https://doi.org/10.1016/j.chnaes.2013.09.001spa
dc.relation.referencesGabriel, J. L., Zarco-tejada, P. J., Juan, P. L., Alonso-ayuso, M., Quemada, M., Enrique, P., & Obispo, S. (2017). Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystems Engineering, 160, 124–133. https://doi.org/10.1016/j.biosystemseng.2017.06.003spa
dc.relation.referencesGao, B.-C. (1996). NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sens. Environ, 7212(April), 257–266.spa
dc.relation.referencesGarcía-Tejero, I. F., Gutiérrez-Gordillo, S., Ortega-Arévalo, C., Iglesias-Contreras, M., Moreno, J. M., Souza-Ferreira, L., & Durán-Zuazo, V. H. (2018). Thermal imaging to monitor the crop-water status in almonds by using the non-water stress baselines. Scientia Horticulturae, 238(April), 91–97. https://doi.org/10.1016/j.scienta.2018.04.045spa
dc.relation.referencesGarcía-Tejero, I., Rubio, A. E., Viñuela, I., Hernández, A., Gutiérrez-Gordillo, S., Rodríguez-Pleguezuelo, C. R., & Durán-Zuazo, V. H. (2018). Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies. Agricultural Water Management, 208(May), 176–186. https://doi.org/10.1016/j.agwat.2018.06.002spa
dc.relation.referencesGeorge, T. S., Taylor, M. A., Dodd, I. C., & White, P. J. (2018). Climate Change and Consequences for Potato Production: a Review of Tolerance to Emerging Abiotic Stress. Potato Research, 60(3–4), 239–268. https://doi.org/10.1007/s11540-018-9366-3spa
dc.relation.referencesGerhards, M., Rock, G., Schlerf, M., & Udelhoven, T. (2016). Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. International Journal of Applied Earth Observation and Geoinformation, 53, 27–39. https://doi.org/10.1016/j.jag.2016.08.004spa
dc.relation.referencesGetahun, B. B. (2018). Potato Breeding for Nitrogen-Use Efficiency : Constraints , Achievements , and Future Prospects. 2018(10), 269–281.spa
dc.relation.referencesGiraldo, C., Velandia, E. A., Fischer, G., Martínez, L. J., & Gómez-Caro, S. (2020). Hyperspectral response of cape gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f. sp. physali for vascular wilt detection. Revista Colombiana de Ciencias Hortícolas, 14(November), 3–29. https://doi.org/10.17584/rcch.2020v14i3.10938spa
dc.relation.referencesGonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P. J., & Fereres, E. (2015). Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation Science. https://doi.org/10.1007/s00271-014-0447-zspa
dc.relation.referencesGonzalez-Dugo, V., Zarco-Tejada, P., Berni, J. A. J., Suárez, L., Goldhamer, D., & Fereres, E. (2012). Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agricultural and Forest Meteorology, 154–155, 156–165. https://doi.org/10.1016/j.agrformet.2011.11.004spa
dc.relation.referencesGoyer, A. (2017). Maximizing the Nutritional Potential of Potato: the Case of Folate. Potato Research, 60(3–4), 319–325. https://doi.org/10.1007/s11540-018-9374-3spa
dc.relation.referencesGrant, O. M., Tronina, Ł., Jones, H. G., & Chaves, M. M. (2007). Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, May 2014, 1–11. https://doi.org/10.1093/jxb/erl153spa
dc.relation.referencesGuo, J., Tian, G., Zhou, Y., Wang, M., Ling, N., Shen, Q., & Guo, S. (2016). Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research, 196, 463–472. https://doi.org/10.1016/j.fcr.2016.08.008spa
dc.relation.referencesGupta, S. D., & Ibaraki, Y. (2015). Plant Image Analysis. In S. D. Gupta & Y. Ibaraki (Eds.), Plant Image Analysis. Taylor & Francis Group. https://doi.org/10.1201/b17441spa
dc.relation.referencesHaboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. https://doi.org/10.1016/S0034-4257(02)00018-4spa
dc.relation.referencesHan, M., Zhang, H., DeJonge, K. C., Comas, L. H., & Trout, T. J. (2016). Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 177, 400–409. https://doi.org/10.1016/j.agwat.2016.08.031spa
dc.relation.referencesHu, D. W., Sun, Z. P., Li, T. L., Yan, H. Z., & Zhang, H. (2014). Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. Journal of Integrative Agriculture, 13(5), 1008–1016. https://doi.org/10.1016/S2095-3119(13)60408-6spa
dc.relation.referencesHunt, R., & Rock, B. (1989). Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sensing and Enviroment, 30(1), 43–54. https://doi.org/10.1016/0034-4257(89)90046-1spa
dc.relation.referencesHussain, H., Hussain, S., Khaliq, A., Ashraf, U., & Anjum, S. (2018). Chilling and Drought Stresses in Crop Plants : Implications , Cross Talk , and Potential Management Opportunities. Frontiers in Plant Science, 9(April), 1–21. https://doi.org/10.3389/fpls.2018.00393spa
dc.relation.referencesIhuoma, S. O., & Madramootoo, C. A. (2017). Recent advances in crop water stress detection. Computers and Electronics in Agriculture, 141, 267–275. https://doi.org/10.1016/j.compag.2017.07.026spa
dc.relation.referencesIshida, T., Kurihara, J., Viray, F. A., Namuco, S. B., Paringit, E. C., Perez, G. J., Takahashi, Y., & Marciano, J. J. (2018). A novel approach for vegetation classification using UAV-based hyperspectral imaging. Computers and Electronics in Agriculture, 144(November 2017), 80–85. https://doi.org/10.1016/j.compag.2017.11.027spa
dc.relation.referencesKassambara, A., & Mundt, F. (2017). Factoextra extract and visualize the results of multivariate data analyses (pp. 337–354).spa
dc.relation.referencesKhanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22–32. https://doi.org/10.1016/j.compag.2017.05.001spa
dc.relation.referencesKhorsandi, A., Hemmat, A., Mireei, S. A., Amirfattahi, R., & Ehsanzadeh, P. (2018). Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agricultural Water Management, 204, 222–233. https://doi.org/10.1016/j.agwat.2018.04.012spa
dc.relation.referencesKim, Y., Glenn, D. M., Park, J., Ngugi, H. K., & Lehman, B. L. (2011). Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture, 77(2), 155–160. https://doi.org/10.1016/j.compag.2011.04.008spa
dc.relation.referencesKullberg, E. G., DeJonge, K. C., & Chávez, J. L. (2017). Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural Water Management, 179, 64–73. https://doi.org/10.1016/j.agwat.2016.07.007spa
dc.relation.referencesLahlou, O., Ouattar, S., & Ledent, J. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 23, 257–268. https://doi.org/10.1051/agrospa
dc.relation.referencesLê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01spa
dc.relation.referencesLi, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S. L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123. https://doi.org/10.1016/j.fcr.2013.12.018spa
dc.relation.referencesLiu, F., Jensen, C. R., Shahanzari, A., Andersen, M. N., & Jacobsen, S. E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168(3), 831–836. https://doi.org/10.1016/j.plantsci.2004.10.016spa
dc.relation.referencesLiu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C., & Guo, W. (2018). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252, 144–154. https://doi.org/10.1016/J.AGRFORMET.2018.01.021spa
dc.relation.referencesMahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019spa
dc.relation.referencesMahmud, A., Hossain, M. M., Zakaria, M., Mian, M. A. K., & Karim, M. A. (2015). Effects of water stress on plant canopy, yield attributes and yield of potato. Kasetsart Journal - Natural Science, 49(4), 491–505.spa
dc.relation.referencesMangus, D. L., Sharda, A., & Zhang, N. (2016). Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 121, 149–159. https://doi.org/10.1016/J.COMPAG.2015.12.007spa
dc.relation.referencesMartinez, L. J., & Ramos, A. (2015). Estimation of chlorophyll concentration in maize using spectral reflectance. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(7W3), 65–71. https://doi.org/10.5194/isprsarchives-XL-7-W3-65-2015spa
dc.relation.referencesMehrabi, F., & Sepaskhah, A. R. (2019). Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat. Agricultural Water Management, 223(January), 105688. https://doi.org/10.1016/j.agwat.2019.105688spa
dc.relation.referencesMilroy, S. P., Wang, P., & Sadras, V. (2019). Field Crops Research De fi ning upper limits of nitrogen uptake and nitrogen use e ffi ciency of potato in response to crop N supply. Field Crops Research, 239(May), 38–46. https://doi.org/10.1016/j.fcr.2019.05.011spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Sostenible. (2019). ESTRATEGIA DE ORDENAMIENTO DE LA PRODUCCIÓN - CADENA PRODUCTIVA DE LA PAPA Y SU INDUSTRIA. In Plan de ordenamiento papa 2019-2023. https://sioc.minagricultura.gov.co/Papa/Normatividad/Plan de Ordenamiento papa 2019-2023.pdfspa
dc.relation.referencesMohd Asaari, M. S., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121–138. https://doi.org/10.1016/j.isprsjprs.2018.02.003spa
dc.relation.referencesMompié, E., Martín, R., & Morales, D. (2015). Comportamiento de la acumulación y distribución de masa seca en tres variedades de papa (Solanum tuberosum L .). Cultivos Tropicales, 36(4), 70–76.spa
dc.relation.referencesMotalebifard, R., Najafi, N., Oustan, S., Nyshabouri, M. R., & Valizadeh, M. (2013). The combined effects of phosphorus and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162, 31–38. https://doi.org/10.1016/j.scienta.2013.07.043spa
dc.relation.referencesMunnaf, M. A., Haesaert, G., van Meirvenne, M., & Mouazen, A. M. (2020). Map-based site-specific seeding of consumption potato production using high-resolution soil and crop data fusion. Computers and Electronics in Agriculture, 178(July), 105752. https://doi.org/10.1016/j.compag.2020.105752spa
dc.relation.referencesO’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D., & Howell, T. A. (2011). Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98(10), 1523–1535. https://doi.org/10.1016/j.agwat.2011.05.005spa
dc.relation.referencesPancorbo, J. L., Camino, C., Alonso-Ayuso, M., Raya-Sereno, M. D., Gonzalez-Fernandez, I., Gabriel, J. L., Zarco-Tejada, P. J., & Quemada, M. (2021). Simultaneous assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors. European Journal of Agronomy, 127(August 2020), 126287. https://doi.org/10.1016/j.eja.2021.126287spa
dc.relation.referencesPanigada, C., Rossini, M., Meroni, M., Cilia, C., Busetto, L., Amaducci, S., Boschetti, M., Cogliati, S., Picchi, V., Pinto, F., Marchesi, A., & Colombo, R. (2014). Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. International Journal of Applied Earth Observation and Geoinformation, 30(1), 167–178. https://doi.org/10.1016/j.jag.2014.02.002spa
dc.relation.referencesPeñuelas, J., & Inoue, Y. (1999). Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica, 36(3), 355–360. https://doi.org/10.1023 / A: 1007033503276spa
dc.relation.referencesPeñuelas, J., Pinol, J., Ogaya, R., & Filella, I. (1997). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). International Journal of Remote Sensing, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396spa
dc.relation.referencesPerakis, K., Lampathaki, F., Nikas, K., Georgiou, Y., Marko, O., & Maselyne, J. (2020). CYBELE – Fostering precision agriculture & livestock farming through secure access to large-scale HPC enabled virtual industrial experimentation environments fostering scalable big data analytics. Computer Networks, 168. https://doi.org/10.1016/j.comnet.2019.107035spa
dc.relation.referencesPoblete, T., Ortega-Farías, S., & Ryu, D. (2018). Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated cabernet sauvignon vineyard. Sensors (Switzerland). https://doi.org/10.3390/s18020397spa
dc.relation.referencesPoirier-Pocovi, M., Volder, A., & Bailey, B. N. (2020). Modeling of reference temperatures for calculating crop water stress indices from infrared thermography. Agricultural Water Management, 233(December 2019), 106070. https://doi.org/10.1016/j.agwat.2020.106070spa
dc.relation.referencesPou, A., Diago, M. P., Medrano, H., Baluja, J., & Tardaguila, J. (2014). Validation of thermal indices for water status identification in grapevine. Agricultural Water Management, 134, 60–72. https://doi.org/10.1016/j.agwat.2013.11.010spa
dc.relation.referencesQuebrajo, L., Perez-Ruiz, M., Pérez-Urrestarazu, L., Martínez, G., & Egea, G. (2018). Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosystems Engineering, 165, 77–87. https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.08.013spa
dc.relation.referencesRay, S. S., & Jain, N. (2011). Utility of Hyperspectral Data for Potato Late Blight Disease Detection. 39(June), 161–169. https://doi.org/10.1007/s12524-011-0094-2spa
dc.relation.referencesRaza, S. E. A., Prince, G., Clarkson, J. P., & Rajpoot, N. M. (2015). Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE, 10(4), 1–20. https://doi.org/10.1371/journal.pone.0123262spa
dc.relation.referencesRaza, S. E. A., Smith, H. K., Clarkson, G. J. J., Taylor, G., Thompson, A. J., Clarkson, J., & Rajpoot, N. M. (2014). Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. PLoS ONE, 9(6), 1–10. https://doi.org/10.1371/journal.pone.0097612spa
dc.relation.referencesRibeiro da Luz, B., & Crowley, J. K. (2007). Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm). Remote Sensing of Environment, 109(4), 393–405. https://doi.org/10.1016/j.rse.2007.01.008spa
dc.relation.referencesRibera-Fonseca, A., Jorquera-Fontena, E., Castro, M., Acevedo, P., Parra, J. C., & Reyes-Diaz, M. (2019). Exploring VIS/NIR reflectance indices for the estimation of water status in highbush blueberry plants grown under full and deficit irrigation. Scientia Horticulturae, 256(April), 108557. https://doi.org/10.1016/j.scienta.2019.108557spa
dc.relation.referencesRodríguez, L. E., Ñustez, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomia Colombiana, 27(3), 289–303.spa
dc.relation.referencesRodríguez-Pérez, L., Ñústez L., C. E., & Moreno F., L. P. (2017). El estrés por sequía afecta los parámetros fisiológicos, pero no el rendimiento de los tubérculos en tres cultivares andinos de papa (Solanum tuberosum L.). Agronomia Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901spa
dc.relation.referencesRomero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8(September). https://doi.org/10.3389/fpls.2017.01608spa
dc.relation.referencesRouse, J. W. J., Haas, R. H., Deering, D. W., Shell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation, NASA/GSFC Type III Final Report: Greenbelt, MD, USA. 371.spa
dc.relation.referencesRud, R., Cohen, Y., Alchanatis, V., Levi, A., Brikman, R., Shenderey, C., Heuer, B., Markovitch, T., Dar, Z., Rosen, C., Mulla, D., & Nigon, T. (2014). Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precision Agriculture, 15, 273–289. https://doi.org/10.1007/s11119-014-9351-zspa
dc.relation.referencesSalgadoe, A. S. A., Robson, A. J., Lamb, D. W., & Schneider, D. (2019). A non-reference temperature histogram method for determining Tc from ground-based thermal imagery of orchard tree canopies. Remote Sensing, 11(6). https://doi.org/10.3390/RS11060714spa
dc.relation.referencesSantesteban, L. G., di Gennaro, S. F., Herrero-Langreo, A., Miranda, C., Royo, J. B., & Matese, A. (2017). High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2016.08.026spa
dc.relation.referencesSchellberg, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture on grassland: Applications, perspectives and constraints. European Journal of Agronomy, 29(2–3), 59–71. https://doi.org/10.1016/j.eja.2008.05.005spa
dc.relation.referencesScholander, P. F., Hammel, H. T., Bradstreet, E. D., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science, 148(3668), 339–346. https://doi.org/10.1126/science.148.3668.339spa
dc.relation.referencesSeelig, H. D., Hoehn, A., Stodieck, L. S., Klaus, D. M., Adams, W. W., & Emery, W. J. (2008). Relations of remote sensing leaf water indices to leaf water thickness in cowpea, bean, and sugarbeet plants. Remote Sensing of Environment, 112(2), 445–455. https://doi.org/10.1016/j.rse.2007.05.002spa
dc.relation.referencesSenthilnath, J., Kandukuri, M., Dokania, A., & Ramesh, K. N. (2017). Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Computers and Electronics in Agriculture, 140, 8–24. https://doi.org/10.1016/j.compag.2017.05.027spa
dc.relation.referencesStark, B., Smith, B., & Chen, Y. (2014). Survey of thermal infrared remote sensing for Unmanned Aerial Systems. 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 1294–1299. https://doi.org/10.1109/ICUAS.2014.6842387spa
dc.relation.referencesStruthers, R., Ivanova, A., Tits, L., Swennen, R., & Coppin, P. (2015). Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees. International Journal of Applied Earth Observation and Geoinformation, 39, 9–17. https://doi.org/10.1016/j.jag.2015.02.006spa
dc.relation.referencesTilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., & Belford, R. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104(1–3), 77–85. https://doi.org/10.1016/j.fcr.2007.03.023spa
dc.relation.referencesTu, Y.-H., Johansen, K., Phinn, S., & Robson, A. J. (2019). Measuring Canopy Structure and Condition Using Multi-Spectral UAS Imagery in a Horticultural Environment. Remote Sensing, 11(269), 15–17. https://doi.org/10.3390/rs11030269spa
dc.relation.referencesVaro-Martínez, M. Á., Navarro-Cerrillo, R. M., Hernández-Clemente, R., & Duque-Lazo, J. (2017). Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. International Journal of Applied Earth Observation and Geoinformation, 56, 54–64. https://doi.org/10.1016/j.jag.2016.12.002spa
dc.relation.referencesVergara-Díaz, O., Zaman-Allah, M. A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B. M., Cairns, J. E., & Araus, J. L. (2016). A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00666spa
dc.relation.referencesVollmer, M., & Möllmann, K.-P. (2018). Infrared Thermal Imaging (Second Edi). WILEY-VCH Verlag GmbH & Co.KGaA.spa
dc.relation.referencesWang, X., Yang, W., Wheaton, A., Cooley, N., & Moran, B. (2010). Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring. Computers and Electronics in Agriculture, 73(1), 74–83. https://doi.org/10.1016/j.compag.2010.04.007spa
dc.relation.referencesZarco-Tejada, P. J., González-Dugo, V., & Berni, J. A. J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337. https://doi.org/10.1016/j.rse.2011.10.007spa
dc.relation.referencesZarco-Tejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85(1), 109–124. https://doi.org/10.1016/S0034-4257(02)00197-9spa
dc.relation.referencesZhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., & Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127, 406–412. https://doi.org/10.1016/j.compag.2016.06.019spa
dc.relation.referencesZhou, X., Huang, W., Kong, W., Ye, H., Luo, J., & Chen, P. (2016). Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements. Advances in Space Research, 58(9), 1627–1637. https://doi.org/10.1016/j.asr.2016.06.034spa
dc.relation.referencesZhou, Z., Majeed, Y., Diverres Naranjo, G., & Gambacorta, E. M. T. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182(February). https://doi.org/10.1016/j.compag.2021.106019spa
dc.relation.referencesZia, S., Spohrer, K., Merkt, N., Wenyong, D., He, X., & Joachim, M. (2014). Non-invasive water status detection in grapevine ( Vitis vinifera L .) by thermography Non-invasive water status detection in grapevine ( Vitis vinifera L .) by thermography. January 2010. https://doi.org/10.3965/j.issn.1934-6344.2009.04.046-054spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocdrought stresseng
dc.subject.agrovocSolanum tuberosum
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.proposalTemperatura del doselspa
dc.subject.proposalÍndices espectralesspa
dc.subject.proposalEstado hídrico foliarspa
dc.subject.proposalEstrés por nitrógenospa
dc.subject.proposalCanopy temperatureeng
dc.subject.proposalSpectral indiceseng
dc.subject.proposalLeaf water statuseng
dc.subject.proposalNitrogen stresseng
dc.titleImágenes térmicas y respuestas espectrales para identificar condiciones de estrés hídrico y estado nutricional con relación al nitrógeno en papa amarilla diploide (Solanum tuberosum Grupo Phureja)spa
dc.title.translatedThermal imaging and spectral responses to identify water stress conditions and nutritional status in relation to nitrogen in diploid yellow potato (Solanum tuberosum tuberosum Phureja Group)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleUSO DE IMÁGENES TÉRMICAS EN LA ESTIMACIÓN DEL ESTRÉS HÍDRICO EN PAPA (Solanum tuberosum Grupo Phureja)spa
oaire.fundernameCentro de Investigación y Extensión Rural (CIER)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030578888.2022.pdf
Tamaño:
7.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: