Método de compresión de archivos de imagen usando técnicas de deep learning

dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorVaras González, Mario
dc.date.accessioned2022-10-27T20:08:54Z
dc.date.available2022-10-27T20:08:54Z
dc.date.issued2022
dc.descriptionIlustracionesspa
dc.description.abstractEn los últimos años, el tráfico en internet ha estado mayormente dominado por aplicaciones relacionadas con archivos de imagen y vídeo, especialmente servicios de streaming de contenido y aplicaciones de distribución de video bajo demanda. Más de tres cuartas partes del tráfico total de internet corresponden a archivos de imagen y vídeo. Que estas tareas sean lo más eficientes posible repercute directamente en la experiencia de uso que tengan los usuarios y en la calidad del servicio prestado. Preservar la calidad de esta experiencia de usuario es el principal objetivo en el desarrollo de estos sistemas de compresión, así como el punto donde estos sistemas más pueden flaquear. Es por ello que minimizar la distorsión o pérdida de información generada en el proceso de compresión de un archivo es algo prioritario y un asunto que ha tratado de abordarse desde diversas perspectivas y métodos a lo largo de la historia. El presente trabajo se centra en aquellas propuestas de reciente publicación donde el aprendizaje profundo o Deep Learning juega un papel principal en este proceso, proponiendo un método basado en redes neuronales para enfrentar el problema de compresión de archivos de imagen, mostrando la investigación llevada a cabo, el desarrollo del método y su puesta a prueba. (texto tomado de la fuente)spa
dc.description.abstractIn recent years, Internet traffic has been largely dominated by applications related to image and video files, especially content streaming services and video-on-demand distribution applications. Today, more than three quarters of all Internet traffic is image and video files. Making these tasks as efficient as possible has a direct impact on the user experience and the quality of the service provided. Preserving the quality of this user experience is the main objective in the development of these compression systems, as well as the point where these systems can falter the most. That is why minimizing the distortion or loss of information generated in the file compression process is a priority and an issue that has been addressed from various perspectives and methods throughout history. This project focuses on those recently published proposals where Deep Learning plays a major role in this process, proposing a method based on neural networks to address the problem of image files compression, showing the research carried out, the development of the method and its testingeng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemasspa
dc.format.extentxv, 170 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82524
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.referencesAbbas, H. (n.d.). Neural model for Karhunen-Loéve transform with application to adaptive image compression.spa
dc.relation.referencesAbu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S. (2016). YouTube-8M: A Large-Scale Video Classification Benchmark. http://arxiv.org/abs/1609.08675spa
dc.relation.referencesAhlswede, R., Ahlswede, A., Althöfer, I., Deppe, C., & Tamm, U. (2014). LZW Data compression. Foundations in Signal Processing, Communications and Networking, 10(02), 9–38. https://doi.org/10.1007/978-3-319-05479-7_2spa
dc.relation.referencesAkyazi, P., & Ebrahimi, T. (2019). Learning-Based Image Compression using Convolutional Autoencoder and Wavelet Decomposition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June, 1–5.spa
dc.relation.referencesAntoine, J.-P. (2003). Wavelet Transforms and Their ApplicationsWavelet Transforms and Their Applications , Lokenath Debnath , Birkhäuser, Boston, 2002. $79.95 (565 pp.). ISBN 0-8176-4204- 8 . Physics Today, 56(4), 68–68. https://doi.org/10.1063/1.1580056spa
dc.relation.referencesAVIF for Next-Generation Image Coding | by Netflix Technology Blog | Netflix TechBlog. (n.d.). Retrieved June 18, 2022, from https://netflixtechblog.com/avif-for-next-generation-image-coding- b1d75675fe4spa
dc.relation.referencesBallé, J., Laparra, V., & Simoncelli, E. P. (2017). End-to-end optimized image compression. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings.spa
dc.relation.referencesCai, C., Lu, G., Hu, Q., Chen, L., & Gao, Z. (2019). Efficient learning based sub-pixel image compression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June.spa
dc.relation.referencesCheng, Z., Sun, H., Takeuchi, M., & Katto, J. (2018). Deep Convolutional AutoEncoder-based Lossy Image Compression. 2018 Picture Coding Symposium, PCS 2018 - Proceedings, 253–257. https://doi.org/10.1109/PCS.2018.8456308spa
dc.relation.referencesChest X-Ray Images (Pneumonia) | Kaggle. (n.d.). Retrieved June 19, 2022, from https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?resource=downloadspa
dc.relation.referencesChua, L., & Lin, T. (1988). A neural network approach to transform image coding.spa
dc.relation.referencesCramer, C., Gelenbe, E., & Bakircioglu, H. (1996). Video compression with random neural networks. Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, NICROSP, 476–484. https://doi.org/10.1109/nicrsp.1996.542792spa
dc.relation.referencesDaugman, J. G. (1988). Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7), 1169–1179. https://doi.org/10.1109/29.1644spa
dc.relation.referencesDhawale, N. (2015). Implementation of Huffman algorithm and study for optimization. Proceedings - 2014 IEEE International Conference on Advances in Communication and Computing Technologies, ICACACT 2014. https://doi.org/10.1109/EIC.2015.7230711spa
dc.relation.referencesDu, B., Yuang, D., & Zhang, H. (2022). Collaborative image compression and classification with multi- task learning for visual Internet of Things.spa
dc.relation.referencesElectronics, A. K., & Paper, W. (n.d.). 8k: the next level in imaging. 1–15.spa
dc.relation.referencesGardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0spa
dc.relation.referencesGelenbe, E. (1989). Random Neural Networks with Negative and Positive Signals and Product Form Solution. Neural Computation, 1(4), 502–510. https://doi.org/10.1162/neco.1989.1.4.502spa
dc.relation.referencesGelenbe, E., & Sungur, M. (1994). Random network learning and image compression. IEEE International Conference on Neural Networks - Conference Proceedings, 6, 3996–3999. https://doi.org/10.1109/icnn.1994.374852spa
dc.relation.referencesGitHub - Netflix/vmaf: Perceptual video quality assessment based on multi-method fusion. (n.d.). Retrieved June 18, 2022, from https://github.com/Netflix/vmafspa
dc.relation.referencesHai, F., Hussain, K. F., & Gelenbe, E. (2001). Video compression with wavelets and random neural network approximations.spa
dc.relation.referencesHoré, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. Proceedings - International Conference on Pattern Recognition, August, 2366–2369. https://doi.org/10.1109/ICPR.2010.579spa
dc.relation.referencesLeCun, Y., & Bengio, Y. (2015). Deep Learning, Nature, vol. 521, no. 7553, p. 436.spa
dc.relation.referencesMelegati, J., Wang, X., & Abrahams, P. (2019). Hypotheses Engineering: First Essential Steps of Experiment-Driven Software Development.spa
dc.relation.referencesRippel, O., & Bourdev, L. (2017). Real-time adaptive image compression,.spa
dc.relation.referencesS. Golomb. (1966). Run-length encodings (Corresp.),. 6–8.spa
dc.relation.referencesSambasivan, N., Kapania, S., & Highfll, H. (2021). Everyone wants to do the model work, not the data work: Data cascades in high-stakes ai. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3411764.3445518spa
dc.relation.referencesSi, Z., & Shen, K. (2016). Research on the WebP image format. Lecture Notes in Electrical Engineering, 369, 271–277. https://doi.org/10.1007/978-981-10-0072-0_35spa
dc.relation.referencesSkodras, A., Christopoulos, C., & Ebrahimi, T. (2001). The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 18(5), 36–58. https://doi.org/10.1109/79.952804spa
dc.relation.referencesSpringenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: The all convolutional net. 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings, 1–14.spa
dc.relation.referencesTheis, L., Shi, W., Cunningham, A., & Huszár, F. (2017). Lossy image compression with compressive autoencoders. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 1–19.spa
dc.relation.referencesVMAF: The Journey Continues. by Zhi Li, Christos Bampis, Julie... | by Netflix Technology Blog | Netflix TechBlog. (n.d.). Retrieved June 18, 2022, from https://netflixtechblog.com/vmaf-the-journey- continues-44b51ee9ed12spa
dc.relation.referencesWallace, G. K. (1992). The JPEG still Picture Compression Standard. Architecture, 38(1).spa
dc.relation.referencesWang, Y., Wang, L., Yang, J., An, W., & Guo, Y. (2019). Flickr1024: A large-scale dataset for stereo image super-resolution. Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, 3852–3857. https://doi.org/10.1109/ICCVW.2019.00478spa
dc.relation.referencesXu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical Evaluation of Rectified Activations in Convolutional Network. http://arxiv.org/abs/1505.00853spa
dc.relation.referencesYamanaka, J., Kuwashima, S., & Kurita, T. (2017). Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10635 LNCS, 217–225. https://doi.org/10.1007/978-3-319-70096-0_23spa
dc.relation.referencesZhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 Million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1452–1464. https://doi.org/10.1109/TPAMI.2017.2723009spa
dc.relation.referencesZhou, L., Cai, C., Gao, Y., Su, S., & Wu, J. (2018). Variational autoencoder for low bit-rate image compression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-Janua, 2617–2620.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembProcesamiento de imágenes
dc.subject.proposalDeep Learning
dc.subject.proposalfile compression
dc.subject.proposalCompresión de archivosspa
dc.subject.proposalImage processingeng
dc.subject.proposalProcesamiento de imágenesspa
dc.subject.proposalFile compressioneng
dc.titleMétodo de compresión de archivos de imagen usando técnicas de deep learningspa
dc.title.translatedImage files compression method using deep learning techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
712484.2022.pdf
Tamaño:
72.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: