Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
dc.contributor.advisor | Santa Marín, Juan Felipe | |
dc.contributor.advisor | Arbeláez Toro, Juan José | |
dc.contributor.advisor | Toro, Alejandro | |
dc.contributor.author | Restrepo Barrientos, Pablo | |
dc.contributor.researchgroup | Grupo de Tribología y Superficies | spa |
dc.date.accessioned | 2024-05-17T15:20:03Z | |
dc.date.available | 2024-05-17T15:20:03Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones | spa |
dc.description.abstract | In Metro de Medellín as well as in several railway systems around the world, the presence of defects has generated a high cost associated with the maintenance and replacement of track components. These problems have been approached from different methods in the literature, in this case the analysis of the elastic properties of the track is proposed from the multibody modelling methodology. In this work the modelling of the CAF train of Metro de Medellín was carried out. The main components that affect the dynamic performance of the vehicle and its mechanical and geometric properties are identified, for the implementation of track model the elastic characterization of the track components is performed, and a discrete model that allows separating the stiffness of the pad and the ballast is proposed. With this, the analysis of how the elastic properties of the track affect the dynamic performance of the vehicle is proposed. The CAF train vehicle was modeled and validated through different methods including previous reports, vehicle accelerations in a specific area of the system, force distribution, among others. After validation, the elastic properties of the track were evaluated considering the measurements taken for its characterization, parameters such as accelerations in the wheelset, system frequencies, accelerations in the sleeper, among others, were evaluated. The results of this work correspond with typical behaviors found in recent studies. The comparison between the frequencies obtained from the model and the measured data shows a maximum difference of 10%. Finally, the results of the stiffness characterizations of the track are 57 kN/mm, which corresponds with the theoretical value reported in the literature of 50 kN/mm. (Tomado de la fuente) | eng |
dc.description.abstract | En el Metro de Medellín, así como en diversos sistemas ferroviarios alrededor del mundo, la presencia de defectos ha generado un alto costo asociado al mantenimiento y reemplazo de componentes de la via. Esta problemática ha sido abordada desde distintos métodos en la literatura y en este trabajo se realizaron simulaciones multicuerpo para realizar el análisis de las propiedades elásticas de la vía. En este trabajo se realizó el modelamiento del tren CAF del Metro de Medellín. Para esto se realizó la identificación de los principales componentes que afectan el desempeño dinámico del vehículo y sus propiedades mecánicas y geométricas. Se implementó un modelo completo que incluyó la caracterización elástica de los componentes de la vía, y se planteó un modelo discreto que permitió separar la rigidez del pad y del balasto. Con este modelo se realizó el análisis del efecto de las propiedades elásticas de la vía en el desempeño dinámico del vehículo. Se realizó el modelamiento del vehículo del tren CAF y la validación a través de distintos métodos incluyendo reportes previos, aceleraciones del vehículo en una zona determinada, distribución de fuerzas, entre otros. Luego de realizar la validación, se hizo la evaluación de las propiedades elásticas de la vía considerando las mediciones realizadas para la caracterización. Se evaluó la aceleración en el wheelset, las frecuencias del sistema, las aceleraciones en el durmiente, entre otros. Los resultados de este trabajo coinciden con los comportamientos típicos encontrados en estudios recientes, las comparativa entre las frecuencias obtenidas del modelo y los datos medidos en el sistema tienen una diferencia máxima del 10%, ademas, los resultados de las caracterizaciones de rigidez de la vía dan un promedio de 57kN/mm que se asemeja al valor teórico reportado en el estado del arte de 50 kN/mm. | spa |
dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | spa |
dc.format.extent | 93 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86105 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Aldasoro, J. (2010). LISTA DE PARAMETROS MEDELLIN (bogie CAF). | spa |
dc.relation.references | Areiza, Y. A., Garcés, S. I., Santa, J. F., Vargas, G., & Toro, A. (2015). Field measurement of coefficient of friction in rails using a hand-pushed tribometer. Tribology International, 82(PB), 274–279. https://doi.org/10.1016/j.triboint.2014.08.009 | spa |
dc.relation.references | Badorrey Jáudenes, I. (2015). MODELADO Y ENSAYO DEL BOGIE DE UN VEHÍCULO FERROVIARIO. Universidad Carlos III de Madrid. | spa |
dc.relation.references | Bosso, N., Gugliotta, A., & Zampieri, N. (2018). A Mixed Numerical Approach to Evaluate the Dynamic Behavior of Long Trains. Procedia Structural Integrity, 12, 330–343. https://doi.org/10.1016/j.prostr.2018.11.083 | spa |
dc.relation.references | British Standard. (2017). Railway applications - Testing for the acceptance of running characteristics of railway vehicles - Testing of running behaviour and stationary tests. In BS EN 14363:2005. | spa |
dc.relation.references | CAF. (n.d.). METRO MEDELLIN. Https://Www.Caf.Net/Es/Soluciones/Proyectos/Proyecto-Detalle.Php?P=27. | spa |
dc.relation.references | CAF. (2010). Cálculos dinámicos METRO MEDELLÍN. | spa |
dc.relation.references | Cannon, D. F., Edel, K.-O., Grassie, S. L., & Sawley, K. (2003). Rail defects: an overview. | spa |
dc.relation.references | Costa, J. N., Antunes, P., Magalhães, H., Pombo, J., & Ambrósio, J. (2021). A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications. Computers & Structures, 254, 106519. https://doi.org/https://doi.org/10.1016/j.compstruc.2021.106519 | spa |
dc.relation.references | Egana, J. I., Vinolas, J., & Seco, M. (2006). Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear, 261(2), 216–224. https://doi.org/10.1016/j.wear.2005.10.004 | spa |
dc.relation.references | Elkhoury, N., Hitihamillage, L., Moridpour, S., & Robert, D. (2018). Degradation Prediction of Rail Tracks: A Review of the Existing Literature. The Open Transportation Journal, 12(1), 88–104. https://doi.org/10.2174/1874447801812010088 | spa |
dc.relation.references | Esmaeili, M., & Noghabi, H. H. (2013). Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-Dimensional Space. https://doi.org/10.1061/(ASCE) | spa |
dc.relation.references | Gallou, M. (2018). The assessment of track deflection and rail joint performance. | spa |
dc.relation.references | Ghofrani, F., Pathak, A., Mohammadi, R., Aref, A., & He, Q. (2020). Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering, 35(2), 101–115. https://doi.org/10.1111/mice.12453 | spa |
dc.relation.references | Grassie, S. L. (2005). Rolling contact fatigue on the British railway system: Treatment. Wear, 258(7–8), 1310–1318. https://doi.org/10.1016/j.wear.2004.03.065 | spa |
dc.relation.references | Grassie, S. L. (2009). Rail corrugation: Characteristics, causes, and treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(6), 581–596. https://doi.org/10.1243/09544097JRRT264 | spa |
dc.relation.references | Grassie, S. L. (2016). Studs and squats: The evolving story. Wear, 366–367, 194–199. https://doi.org/10.1016/j.wear.2016.03.021 | spa |
dc.relation.references | Grassie, S. L., Kalousek, J., & Magel, E. E. (1999). Treatment of Raíl Corrugation and Problems of Wheel and Raíl Damage. | spa |
dc.relation.references | Grupo de Estudios en Mantenimiento Industrial – GEMI. (n.d.). Manual de Operación y procedimiento SPD Trenes serie MAN y CAF (Hardware) SPD-TMC-03A. | spa |
dc.relation.references | Hasan, N. (2019). Rail Pad Stiffness and Classification System. Journal of Transportation Engineering, Part A: Systems, 145(5), 04019012. https://doi.org/10.1061/jtepbs.0000231 | spa |
dc.relation.references | Hecht, M., Mahr, A., Schmidt, L.-M., Wolfgang Grönlund, Yu, M., & WaBmann, R. (1998). Mediciones experimentales de esfuerzos dinámicos en marcha 1997 - Metro Medellín -. | spa |
dc.relation.references | Iwnicki, S. , S. M. , C. C. , & M. T. (2019). Handbook of Railway Vehicle Dynamics (Taylor & Francis, Ed.). | spa |
dc.relation.references | Jans Bertilsson, M. (2015). Verification of Simulated Wheel-Rail Forces with Measured Data. KTH Royal Institute of Technology. | spa |
dc.relation.references | Kalker, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1–13. https://doi.org/10.1080/00423118208968684 | spa |
dc.relation.references | Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact (Vol. 2). Springer Netherlands. https://doi.org/10.1007/978-94-015-7889-9 | spa |
dc.relation.references | Kurzeck, B., & Hecht, M. (2010). Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results. Vehicle System Dynamics, 48(SUPPL. 1), 121–138. https://doi.org/10.1080/00423111003669045 | spa |
dc.relation.references | Maes, J., Sol, H., & Guillaume, P. (2006). Measurements of the dynamic railpad properties. Journal of Sound and Vibration, 293(3–5), 557–565. https://doi.org/10.1016/j.jsv.2005.08.042 | spa |
dc.relation.references | Magel, E., & Kalousek, J. (2017). Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(7), 805–818. https://doi.org/10.1177/0954409717708079 | spa |
dc.relation.references | METRO DE MEDELLÍN. (2005). PERFIL DE RUEDA NRC. | spa |
dc.relation.references | Metro de Medellín Ltda. (n.d.-a). Manual Descriptivo Sección 3 Acoplamiento. | spa |
dc.relation.references | Metro de Medellín Ltda. (n.d.). Manual Descriptivo Sección 4 Bogies. | spa |
dc.relation.references | Metro de Medellín Ltda. (n.d.-b). RECOPILACION DE DATOS DE LOS INFORMES HISTORICOS REALIZADOS AL METRO DE MEDELLIN. | spa |
dc.relation.references | Mills, R. (2023). Columbia_tests.vi. Laboratory for Verification and Validation. | spa |
dc.relation.references | NEXTSENSE. (2023). RAIL CROSS PROFILE MEASUREMENT WITHOUT SURFACE CONTACT. Https://Www.Nextsense-Worldwide.Com/En/Industries/Railway/Rail-Cross-Profile-Measurement.Html. | spa |
dc.relation.references | Skrinjar, L., Slavič, J., & Boltežar, M. (2018). A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 145, 171–187. https://doi.org/10.1016/j.ijmecsci.2018.07.010 | spa |
dc.relation.references | Sol-Sánchez, M., Moreno-Navarro, F., & Rubio-Gámez, M. C. (2015). The use of elastic elements in railway tracks: A state of the art review. In Construction and Building Materials (Vol. 75, pp. 293–305). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2014.11.027 | spa |
dc.relation.references | Steišunas, S., Dižo, J., Bureika, G., & Žuraulis, V. (2017). Examination of Vertical Dynamics of Passenger Car with Wheel Flat Considering Suspension Parameters. Procedia Engineering, 187, 235–241. https://doi.org/10.1016/j.proeng.2017.04.370 | spa |
dc.relation.references | Sushila, R. (2018). AN EXPERIMENTAL INVESTIGATION OF CANTILEVER BEAM USING IMPULSE MODAL ANALYSIS TECHNIQUE (Vol. 6, Issue 1). www.ijcrt.org | spa |
dc.relation.references | Tang, Z., Yuan, X., Xie, X., Jiang, J., & Zhang, J. (2019). Implementing railway vehicle dynamics simulation in general-purpose multibody simulation software packages. Advances in Engineering Software, 131, 153–165. https://doi.org/10.1016/j.advengsoft.2018.12.003 | spa |
dc.relation.references | Thompson, D. (2009). Track Vibration. In Railway Noise and Vibration (pp. 29–95). Elsevier. https://doi.org/10.1016/b978-0-08-045147-3.00003-7 | spa |
dc.relation.references | Vossloh. (2022). Rail defects. Https://Www.Vossloh.Com/En/Products-and-Solutions/Products-at-a-Glance/Rail-Turnouts.Maintenance/Schienenfehler.Html#:~:Text=Rail%20defects%20can%20be%20roughly,But%20also%20on%20its%20severity. | spa |
dc.relation.references | Wang, P. (2015). Track Stiffness Design. In Design of High-Speed Railway Turnouts (pp. 163–189). Elsevier. https://doi.org/10.1016/b978-0-323-39617-2.00005-9 | spa |
dc.relation.references | Wei, X., Yin, X., Hu, Y., He, Y., & Jia, L. (2020). Squats and corrugation detection of railway track based on time-frequency analysis by using bogie acceleration measurements. Vehicle System Dynamics, 58(8), 1167–1188. https://doi.org/10.1080/00423114.2019.1610181 | spa |
dc.relation.references | Yang, Y. B., Wang, Z. L., Shi, K., Xu, H., Mo, X. Q., & Wu, Y. T. (2020). Two-axle test vehicle for damage detection for railway tracks modeled as simply supported beams with elastic foundation. Engineering Structures, 219. https://doi.org/10.1016/j.engstruct.2020.110908 | spa |
dc.relation.references | Yin, X., Wei, X., & Jia, L. (2015). Detection of Railway Track Squats by Using Bogie Acceleration Measurement. | spa |
dc.relation.references | Zhai, W. (2019). Vehicle–Track Coupled Dynamics (Springer Publishing, Ed.). | spa |
dc.relation.references | Zhai, W. (2020). Vehicle–Track Coupled Dynamics Models. In W. Zhai (Ed.), Vehicle–Track Coupled Dynamics: Theory and Applications (pp. 17–149). Springer Singapore. https://doi.org/10.1007/978-981-32-9283-3_2 | spa |
dc.relation.references | Zhang, W. (2020). Dynamic modeling of coupled systems in the high-speed train. In Dynamics of Coupled Systems in High-Speed Railways (pp. 55–181). Elsevier. https://doi.org/10.1016/b978-0-12-813375-0.00002-9 | spa |
dc.relation.references | Zhang, X., Thompson, D. J., Li, Q., Kostovasilis, D., Toward, M. G. R., Squicciarini, G., & Ryue, J. (2019). A model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound and Vibration, 438, 153–174. https://doi.org/10.1016/j.jsv.2018.09.026 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera | spa |
dc.subject.ddc | 380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviario | spa |
dc.subject.lemb | Transporte ferroviario - Medellín (Colombia) | |
dc.subject.lemb | Vías férreas - Medellín (Colombia) | |
dc.subject.lemb | Ferrocarriles - Mantenimiento y reparación | |
dc.subject.lemb | Durmientes (Ferrocarriles) | |
dc.subject.proposal | Vehículo ferroviario | spa |
dc.subject.proposal | Modelamiento multicuerpo | spa |
dc.subject.proposal | Modelamiento dinámico | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Validación | spa |
dc.subject.proposal | Railway vehicle | eng |
dc.subject.proposal | Multibody modelling | eng |
dc.subject.proposal | Dynamic modelling | eng |
dc.subject.proposal | Simulation | eng |
dc.subject.proposal | Validation | eng |
dc.title | Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure | eng |
dc.title.translated | Modelamiento dinámico de la interacción vía-vehículo en sistemas ferroviarios : efecto de propiedades elásticas de la vía y la subestructura | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.awardtitle | Estudio de seguimiento y optimización de los perfiles de los rieles de la vía férrea y de su interacción con los vehículos férreos de las series MAN y CAF, para definir estrategias de mejoramiento de durabilidad y de optimización de labores de mantenimiento | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020490792.2024.pdf
- Tamaño:
- 4.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: