Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure

dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.advisorArbeláez Toro, Juan José
dc.contributor.advisorToro, Alejandro
dc.contributor.authorRestrepo Barrientos, Pablo
dc.contributor.researchgroupGrupo de Tribología y Superficiesspa
dc.date.accessioned2024-05-17T15:20:03Z
dc.date.available2024-05-17T15:20:03Z
dc.date.issued2024
dc.descriptionilustracionesspa
dc.description.abstractIn Metro de Medellín as well as in several railway systems around the world, the presence of defects has generated a high cost associated with the maintenance and replacement of track components. These problems have been approached from different methods in the literature, in this case the analysis of the elastic properties of the track is proposed from the multibody modelling methodology. In this work the modelling of the CAF train of Metro de Medellín was carried out. The main components that affect the dynamic performance of the vehicle and its mechanical and geometric properties are identified, for the implementation of track model the elastic characterization of the track components is performed, and a discrete model that allows separating the stiffness of the pad and the ballast is proposed. With this, the analysis of how the elastic properties of the track affect the dynamic performance of the vehicle is proposed. The CAF train vehicle was modeled and validated through different methods including previous reports, vehicle accelerations in a specific area of the system, force distribution, among others. After validation, the elastic properties of the track were evaluated considering the measurements taken for its characterization, parameters such as accelerations in the wheelset, system frequencies, accelerations in the sleeper, among others, were evaluated. The results of this work correspond with typical behaviors found in recent studies. The comparison between the frequencies obtained from the model and the measured data shows a maximum difference of 10%. Finally, the results of the stiffness characterizations of the track are 57 kN/mm, which corresponds with the theoretical value reported in the literature of 50 kN/mm. (Tomado de la fuente)eng
dc.description.abstractEn el Metro de Medellín, así como en diversos sistemas ferroviarios alrededor del mundo, la presencia de defectos ha generado un alto costo asociado al mantenimiento y reemplazo de componentes de la via. Esta problemática ha sido abordada desde distintos métodos en la literatura y en este trabajo se realizaron simulaciones multicuerpo para realizar el análisis de las propiedades elásticas de la vía. En este trabajo se realizó el modelamiento del tren CAF del Metro de Medellín. Para esto se realizó la identificación de los principales componentes que afectan el desempeño dinámico del vehículo y sus propiedades mecánicas y geométricas. Se implementó un modelo completo que incluyó la caracterización elástica de los componentes de la vía, y se planteó un modelo discreto que permitió separar la rigidez del pad y del balasto. Con este modelo se realizó el análisis del efecto de las propiedades elásticas de la vía en el desempeño dinámico del vehículo. Se realizó el modelamiento del vehículo del tren CAF y la validación a través de distintos métodos incluyendo reportes previos, aceleraciones del vehículo en una zona determinada, distribución de fuerzas, entre otros. Luego de realizar la validación, se hizo la evaluación de las propiedades elásticas de la vía considerando las mediciones realizadas para la caracterización. Se evaluó la aceleración en el wheelset, las frecuencias del sistema, las aceleraciones en el durmiente, entre otros. Los resultados de este trabajo coinciden con los comportamientos típicos encontrados en estudios recientes, las comparativa entre las frecuencias obtenidas del modelo y los datos medidos en el sistema tienen una diferencia máxima del 10%, ademas, los resultados de las caracterizaciones de rigidez de la vía dan un promedio de 57kN/mm que se asemeja al valor teórico reportado en el estado del arte de 50 kN/mm.spa
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.format.extent93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86105
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAldasoro, J. (2010). LISTA DE PARAMETROS MEDELLIN (bogie CAF).spa
dc.relation.referencesAreiza, Y. A., Garcés, S. I., Santa, J. F., Vargas, G., & Toro, A. (2015). Field measurement of coefficient of friction in rails using a hand-pushed tribometer. Tribology International, 82(PB), 274–279. https://doi.org/10.1016/j.triboint.2014.08.009spa
dc.relation.referencesBadorrey Jáudenes, I. (2015). MODELADO Y ENSAYO DEL BOGIE DE UN VEHÍCULO FERROVIARIO. Universidad Carlos III de Madrid.spa
dc.relation.referencesBosso, N., Gugliotta, A., & Zampieri, N. (2018). A Mixed Numerical Approach to Evaluate the Dynamic Behavior of Long Trains. Procedia Structural Integrity, 12, 330–343. https://doi.org/10.1016/j.prostr.2018.11.083spa
dc.relation.referencesBritish Standard. (2017). Railway applications - Testing for the acceptance of running characteristics of railway vehicles - Testing of running behaviour and stationary tests. In BS EN 14363:2005.spa
dc.relation.referencesCAF. (n.d.). METRO MEDELLIN. Https://Www.Caf.Net/Es/Soluciones/Proyectos/Proyecto-Detalle.Php?P=27.spa
dc.relation.referencesCAF. (2010). Cálculos dinámicos METRO MEDELLÍN.spa
dc.relation.referencesCannon, D. F., Edel, K.-O., Grassie, S. L., & Sawley, K. (2003). Rail defects: an overview.spa
dc.relation.referencesCosta, J. N., Antunes, P., Magalhães, H., Pombo, J., & Ambrósio, J. (2021). A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications. Computers & Structures, 254, 106519. https://doi.org/https://doi.org/10.1016/j.compstruc.2021.106519spa
dc.relation.referencesEgana, J. I., Vinolas, J., & Seco, M. (2006). Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear, 261(2), 216–224. https://doi.org/10.1016/j.wear.2005.10.004spa
dc.relation.referencesElkhoury, N., Hitihamillage, L., Moridpour, S., & Robert, D. (2018). Degradation Prediction of Rail Tracks: A Review of the Existing Literature. The Open Transportation Journal, 12(1), 88–104. https://doi.org/10.2174/1874447801812010088spa
dc.relation.referencesEsmaeili, M., & Noghabi, H. H. (2013). Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-Dimensional Space. https://doi.org/10.1061/(ASCE)spa
dc.relation.referencesGallou, M. (2018). The assessment of track deflection and rail joint performance.spa
dc.relation.referencesGhofrani, F., Pathak, A., Mohammadi, R., Aref, A., & He, Q. (2020). Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering, 35(2), 101–115. https://doi.org/10.1111/mice.12453spa
dc.relation.referencesGrassie, S. L. (2005). Rolling contact fatigue on the British railway system: Treatment. Wear, 258(7–8), 1310–1318. https://doi.org/10.1016/j.wear.2004.03.065spa
dc.relation.referencesGrassie, S. L. (2009). Rail corrugation: Characteristics, causes, and treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(6), 581–596. https://doi.org/10.1243/09544097JRRT264spa
dc.relation.referencesGrassie, S. L. (2016). Studs and squats: The evolving story. Wear, 366–367, 194–199. https://doi.org/10.1016/j.wear.2016.03.021spa
dc.relation.referencesGrassie, S. L., Kalousek, J., & Magel, E. E. (1999). Treatment of Raíl Corrugation and Problems of Wheel and Raíl Damage.spa
dc.relation.referencesGrupo de Estudios en Mantenimiento Industrial – GEMI. (n.d.). Manual de Operación y procedimiento SPD Trenes serie MAN y CAF (Hardware) SPD-TMC-03A.spa
dc.relation.referencesHasan, N. (2019). Rail Pad Stiffness and Classification System. Journal of Transportation Engineering, Part A: Systems, 145(5), 04019012. https://doi.org/10.1061/jtepbs.0000231spa
dc.relation.referencesHecht, M., Mahr, A., Schmidt, L.-M., Wolfgang Grönlund, Yu, M., & WaBmann, R. (1998). Mediciones experimentales de esfuerzos dinámicos en marcha 1997 - Metro Medellín -.spa
dc.relation.referencesIwnicki, S. , S. M. , C. C. , & M. T. (2019). Handbook of Railway Vehicle Dynamics (Taylor & Francis, Ed.).spa
dc.relation.referencesJans Bertilsson, M. (2015). Verification of Simulated Wheel-Rail Forces with Measured Data. KTH Royal Institute of Technology.spa
dc.relation.referencesKalker, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1–13. https://doi.org/10.1080/00423118208968684spa
dc.relation.referencesKalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact (Vol. 2). Springer Netherlands. https://doi.org/10.1007/978-94-015-7889-9spa
dc.relation.referencesKurzeck, B., & Hecht, M. (2010). Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results. Vehicle System Dynamics, 48(SUPPL. 1), 121–138. https://doi.org/10.1080/00423111003669045spa
dc.relation.referencesMaes, J., Sol, H., & Guillaume, P. (2006). Measurements of the dynamic railpad properties. Journal of Sound and Vibration, 293(3–5), 557–565. https://doi.org/10.1016/j.jsv.2005.08.042spa
dc.relation.referencesMagel, E., & Kalousek, J. (2017). Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(7), 805–818. https://doi.org/10.1177/0954409717708079spa
dc.relation.referencesMETRO DE MEDELLÍN. (2005). PERFIL DE RUEDA NRC.spa
dc.relation.referencesMetro de Medellín Ltda. (n.d.-a). Manual Descriptivo Sección 3 Acoplamiento.spa
dc.relation.referencesMetro de Medellín Ltda. (n.d.). Manual Descriptivo Sección 4 Bogies.spa
dc.relation.referencesMetro de Medellín Ltda. (n.d.-b). RECOPILACION DE DATOS DE LOS INFORMES HISTORICOS REALIZADOS AL METRO DE MEDELLIN.spa
dc.relation.referencesMills, R. (2023). Columbia_tests.vi. Laboratory for Verification and Validation.spa
dc.relation.referencesNEXTSENSE. (2023). RAIL CROSS PROFILE MEASUREMENT WITHOUT SURFACE CONTACT. Https://Www.Nextsense-Worldwide.Com/En/Industries/Railway/Rail-Cross-Profile-Measurement.Html.spa
dc.relation.referencesSkrinjar, L., Slavič, J., & Boltežar, M. (2018). A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 145, 171–187. https://doi.org/10.1016/j.ijmecsci.2018.07.010spa
dc.relation.referencesSol-Sánchez, M., Moreno-Navarro, F., & Rubio-Gámez, M. C. (2015). The use of elastic elements in railway tracks: A state of the art review. In Construction and Building Materials (Vol. 75, pp. 293–305). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2014.11.027spa
dc.relation.referencesSteišunas, S., Dižo, J., Bureika, G., & Žuraulis, V. (2017). Examination of Vertical Dynamics of Passenger Car with Wheel Flat Considering Suspension Parameters. Procedia Engineering, 187, 235–241. https://doi.org/10.1016/j.proeng.2017.04.370spa
dc.relation.referencesSushila, R. (2018). AN EXPERIMENTAL INVESTIGATION OF CANTILEVER BEAM USING IMPULSE MODAL ANALYSIS TECHNIQUE (Vol. 6, Issue 1). www.ijcrt.orgspa
dc.relation.referencesTang, Z., Yuan, X., Xie, X., Jiang, J., & Zhang, J. (2019). Implementing railway vehicle dynamics simulation in general-purpose multibody simulation software packages. Advances in Engineering Software, 131, 153–165. https://doi.org/10.1016/j.advengsoft.2018.12.003spa
dc.relation.referencesThompson, D. (2009). Track Vibration. In Railway Noise and Vibration (pp. 29–95). Elsevier. https://doi.org/10.1016/b978-0-08-045147-3.00003-7spa
dc.relation.referencesVossloh. (2022). Rail defects. Https://Www.Vossloh.Com/En/Products-and-Solutions/Products-at-a-Glance/Rail-Turnouts.Maintenance/Schienenfehler.Html#:~:Text=Rail%20defects%20can%20be%20roughly,But%20also%20on%20its%20severity.spa
dc.relation.referencesWang, P. (2015). Track Stiffness Design. In Design of High-Speed Railway Turnouts (pp. 163–189). Elsevier. https://doi.org/10.1016/b978-0-323-39617-2.00005-9spa
dc.relation.referencesWei, X., Yin, X., Hu, Y., He, Y., & Jia, L. (2020). Squats and corrugation detection of railway track based on time-frequency analysis by using bogie acceleration measurements. Vehicle System Dynamics, 58(8), 1167–1188. https://doi.org/10.1080/00423114.2019.1610181spa
dc.relation.referencesYang, Y. B., Wang, Z. L., Shi, K., Xu, H., Mo, X. Q., & Wu, Y. T. (2020). Two-axle test vehicle for damage detection for railway tracks modeled as simply supported beams with elastic foundation. Engineering Structures, 219. https://doi.org/10.1016/j.engstruct.2020.110908spa
dc.relation.referencesYin, X., Wei, X., & Jia, L. (2015). Detection of Railway Track Squats by Using Bogie Acceleration Measurement.spa
dc.relation.referencesZhai, W. (2019). Vehicle–Track Coupled Dynamics (Springer Publishing, Ed.).spa
dc.relation.referencesZhai, W. (2020). Vehicle–Track Coupled Dynamics Models. In W. Zhai (Ed.), Vehicle–Track Coupled Dynamics: Theory and Applications (pp. 17–149). Springer Singapore. https://doi.org/10.1007/978-981-32-9283-3_2spa
dc.relation.referencesZhang, W. (2020). Dynamic modeling of coupled systems in the high-speed train. In Dynamics of Coupled Systems in High-Speed Railways (pp. 55–181). Elsevier. https://doi.org/10.1016/b978-0-12-813375-0.00002-9spa
dc.relation.referencesZhang, X., Thompson, D. J., Li, Q., Kostovasilis, D., Toward, M. G. R., Squicciarini, G., & Ryue, J. (2019). A model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound and Vibration, 438, 153–174. https://doi.org/10.1016/j.jsv.2018.09.026spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carreteraspa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviariospa
dc.subject.lembTransporte ferroviario - Medellín (Colombia)
dc.subject.lembVías férreas - Medellín (Colombia)
dc.subject.lembFerrocarriles - Mantenimiento y reparación
dc.subject.lembDurmientes (Ferrocarriles)
dc.subject.proposalVehículo ferroviariospa
dc.subject.proposalModelamiento multicuerpospa
dc.subject.proposalModelamiento dinámicospa
dc.subject.proposalSimulaciónspa
dc.subject.proposalValidaciónspa
dc.subject.proposalRailway vehicleeng
dc.subject.proposalMultibody modellingeng
dc.subject.proposalDynamic modellingeng
dc.subject.proposalSimulationeng
dc.subject.proposalValidationeng
dc.titleDynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructureeng
dc.title.translatedModelamiento dinámico de la interacción vía-vehículo en sistemas ferroviarios : efecto de propiedades elásticas de la vía y la subestructuraspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.awardtitleEstudio de seguimiento y optimización de los perfiles de los rieles de la vía férrea y de su interacción con los vehículos férreos de las series MAN y CAF, para definir estrategias de mejoramiento de durabilidad y de optimización de labores de mantenimientospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020490792.2024.pdf
Tamaño:
4.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: