Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico

dc.contributor.advisorFontanilla Duque, Martha Raquel
dc.contributor.authorMillán Cortés, Diana Milena
dc.contributor.researchgroupGrupo de Trabajo en Ingeniería de Tejidosspa
dc.date.accessioned2022-09-06T14:20:31Z
dc.date.available2022-09-06T14:20:31Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLa carencia de nervios donantes ha conducido al desarrollo de conductos nerviosos para conectar los muñones nerviosos periféricos seccionados y ayudar a prevenir la formación de neuromas. A menudo, los diámetros estándar de estos dispositivos no se pueden adaptar en el momento de la cirugía al diámetro del nervio lesionado. En este trabajo, se desarrollaron soportes para formar conductos nerviosos rellenos con una matriz interna con canales unidireccionales cubiertos por una zona porosa multidireccional. Con tal fin, dos dispersiones de colágeno tipo I (5 mg/g y 8 mg/g) se congelaron secuencialmente utilizando diferentes métodos para obtener seis soportes laminares (NC, P1 a P5) formados por una zona con poros unidireccionales (U) adyacente a una zona de poros multidireccionales (M). Las propiedades fisicoquímicas y microestructurales de los soportes se determinaron y compararon, así como, su biodegradabilidad, el contenido de glutaraldehído residual y su citocompatibilidad. Adicionalmente, a los conductos obtenidos al enrollar los soportes desde la zona unidireccional a la multidireccional se les determinó el módulo de Young. Teniendo en cuenta los resultados de las evaluaciones mencionadas, se escogió el soporte P3 para determinar la proliferación y diferenciación de células mesenquimales de tejido adiposo humano (hASC). Las células sembradas en este soporte se adhirieron, alinearon en la misma dirección que las fibras unidireccionales del soporte, proliferaron y diferenciaron a células de Schwann. Los conductos P3 ajustables elaborados con el soporte P3 se implantaron en lesiones de nervio ciático de 10 mm en un modelo murino de lesión de nervio periférico. En estos ensayos se incluyeron lesiones injertadas con nervio ciático autólogo - considerado el tratamiento estándar - como control. Los resultados in vivo demostraron que el conducto P3 adaptado al diámetro de los muñones nerviosos sirve como guía del crecimiento axonal y promueve la regeneración nerviosa. (Texto tomado de la fuente)spa
dc.description.abstractShortness of donor nerves has led to the development of nerve conduits that connect sectioned peripheral nerve stumps and help to prevent the formation of neuromas. Often, the standard diameters of these devices cannot be adapted at the time of surgery to the diameter of the nerve injured. In this work, scaffolds were developed to form filled nerve conduits with an inner matrix with unidirectional channels covered by a multidirectional pore zone. Collagen type I dispersions (5 mg/g and 8 mg/g) were sequentially frozen using different methods to obtain six laminar scaffolds (P1 to P5) formed by a unidirectional (U) pore/channel zone adjacent to a multidirectional (M) pore zone. The physicochemical and microstructural properties of the scaffolds were determined and compared, as well as their biodegradability, residual glutaraldehyde and cytocompatibility. Also, the Young’s modulus of the conduits made by rolling up the bizonal scaffolds from the unidirectional to the multidirectional zone was determined. Based on these comparisons, the proliferation and differentiation of hASC were assessed only in the P3 scaffolds. The cells adhered, aligned in the same direction as the unidirectional porous fibers, proliferated, and differentiated into Schwann-like cells. Adjustable conduits made with the P3 scaffold were implanted in rats 10 mm sciatic nerve lesions to compare their performance with that of autologous sciatic nerve grafted lesions. The in vivo results demonstrated that the tested conduit can be adapted to the diameter of the nerve stumps to guide their growth and promote their regeneration.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.methodsEstudios experimentales in vitro e in vivo.spa
dc.description.researchareaIngeniería de Tejidosspa
dc.description.sponsorshipMinCiencias Grand RC 838-2015spa
dc.format.extent139 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82254
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología (IBUN)spa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesCarvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.spa
dc.relation.referencesPatent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdfspa
dc.relation.referencesSong S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/fullspa
dc.relation.referencesPawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85spa
dc.relation.referencesGustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.spa
dc.relation.referencesBrill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.spa
dc.relation.referencesHuang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663spa
dc.relation.referencesDaly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.spa
dc.relation.referencesSalvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124spa
dc.relation.referencesGanji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.spa
dc.relation.referencesChang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.spa
dc.relation.referencesForest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.spa
dc.relation.referencesTopp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.spa
dc.relation.referencesBorschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.spa
dc.relation.referencesDadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874– 81.spa
dc.relation.referencesKim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.spa
dc.relation.referencesReid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.spa
dc.relation.referencesRebowe R, Rogers A, Yang X, Kundu S, Smith T, Li Z. Nerve Repair with Nerve Conduits: Problems, Solutions, and Future Directions. J Hand Microsurg. 2018;10(02):61–5.spa
dc.relation.referencesWojtkiewicz DM, Saunders J, Domeshek L, Novak CB, Kaskutas V, Mackinnon SE. Social Impact of Peripheral Nerve Injuries. HAND [Internet]. 2015 Jun 25;10(2):161–7. Available from: http://journals.sagepub.com/doi/10.1007/s11552-014-9692-0spa
dc.relation.referencesRasulić L, Savić A, Vitošević F, Samardžić M, Živković B, Mićović M, et al. Iatrogenic Peripheral Nerve Injuries—Surgical Treatment and Outcome: 10 Years’ Experience. World Neurosurg [Internet]. 2017 Jul;103:841-851.e6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878875017306071spa
dc.relation.referencesGrinsell D, Keating CP. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. Biomed Res Int [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/bmri/2014/698256/spa
dc.relation.referencesSachanandani NF, Pothula A, Tung TH. Nerve gaps. Plast Reconstr Surg. 2014;133(2):313–9.spa
dc.relation.referencesTos P, Artiaco S, Papalia I, Marcoccio I, Geuna S, Battiston B. Chapter 14 End‐to‐Side Nerve Regeneration. In 2009. p. 281–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0074774209870141spa
dc.relation.referencesSunderland IRP, Brenner MJ, Singham J, Rickman SR, Hunter DA, Mackinnon SE. Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg. 2004;53(4):382–7.spa
dc.relation.referencesMobini S, Spearman BS, Lacko CS, Schmidt CE. Recent advances in strategies for peripheral nerve tissue engineering. Curr Opin Biomed Eng. 2017;4:134–42.spa
dc.relation.referencesIsaacs J, Mallu S, Yan W, Little B. Consequences of oversizing: Nerve-to-nerve tube diameter mismatch. J Bone Jt Surg - Am Vol. 2014;96(17):1461–7.spa
dc.relation.referencesStang F, Keilhoff G, Fansa H. Biocompatibility of different nerve tubes. Vol. 2, Materials. 2009. p. 1480–507.spa
dc.relation.referencesArslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: Technology update. Vol. 7, Medical Devices: Evidence and Research. 2014. p. 405–24.spa
dc.relation.referencesMoore AM, Macewan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, et al. Acellular nerve allografts in peripheral nerve regeneration: A comparative study. Muscle Nerve [Internet]. 2011 Aug;44(2):221–34. Available from: http://doi.wiley.com/10.1002/mus.22033spa
dc.relation.referencesKornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift. 2018;169(9):240–251.spa
dc.relation.referencesKehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Vol. 43, Injury. 2012. p. 553–72.spa
dc.relation.referencesTaras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011;36(9):1441–6.spa
dc.relation.referencesBąk M, Gutlowska O, Wagner E, Gosk J. The role of chitin and chitosan in peripheral nerve reconstruction. Polym Med. 2017;47(1):43–7.spa
dc.relation.referencesWangensteen KJ, Kalliainen LK. Collagen tube conduits in peripheral nerve repair: A retrospective analysis. Hand. 2010;5(3):273–7.spa
dc.relation.referencesBoni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25(1):1–21.spa
dc.relation.referencesDu J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: A crucial step towards optimal peripheral nerve regeneration. Vol. 6, Biomaterials Science. 2018. p. 1299–311.spa
dc.relation.referencesChiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Vol. 131, Progress in Neurobiology. 2015. p. 87–104.spa
dc.relation.referencesKim Y tae, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29(21):3117–27.spa
dc.relation.referencesSpivey EC, Khaing ZZ, Shear JB, Schmidt CE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Vol. 33, Biomaterials. 2012. p. 4264–76.spa
dc.relation.referencesChew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29(6):653–61.spa
dc.relation.referencesWang Y, Wang W, Wo Y, Gui T, Zhu H, Mo X, et al. Orientated guidance of peripheral nerve regeneration using conduits with a microtube array sheet (MTAS). ACS Appl Mater Interfaces. 2015;7(16):8437–50.spa
dc.relation.referencesBozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):2971–9.spa
dc.relation.referencesBozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–75.spa
dc.relation.referencesSuesca E, Dias AMA, Braga MEM, de Sousa HC, Fontanilla MR. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Mater Sci Eng C. 2017;77:333–41.spa
dc.relation.referencesBarrett KE, Barman SM, Boitano S, Brooks HL. Tejido excitable: nervios. In: Fisiología médica. 27th ed. 2016. p. 85–97.spa
dc.relation.referencesSchmidt CE, Leach JB. Neural Tissue Engineering: Strategies for Repair and Regeneration. Annu Rev Biomed Eng. 2003;5(1):293–347.spa
dc.relation.referencesVerkhratsky A, Ho MS, Zorec R, Parpura V. The Concept of Neuroglia. In 2019. p. 1–13. Available from: http://link.springer.com/10.1007/978-981-13-9913-8_1spa
dc.relation.referencesRaasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells [Internet]. 2020 Feb 18;9(2):470. Available from: https://www.mdpi.com/2073-4409/9/2/470spa
dc.relation.referencesCermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E, et al. Lipids in the nervous system: From biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2015 Jan;1851(1):51–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1388198114001668spa
dc.relation.referencesPoitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells [Internet]. 2020 Mar 27;9(4):812. Available from: https://www.mdpi.com/2073-4409/9/4/812spa
dc.relation.referencesReina MA, Sala-Blanch X, Arriazu R, Machés F. Microscopic Morphology and Ultrastructure of Human Peripheral Nerves. In: Nerves and Nerve Injuries [Internet]. Elsevier; 2015. p. 91–106. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012410390000007Xspa
dc.relation.referencesKaemmer D, Bozkurt A, Otto J, Junge K, Klink C, Weis J, et al. Evaluation of tissue components in the peripheral nervous system using Sirius red staining and immunohistochemistry: A comparative study (human, pig, rat). J Neurosci Methods. 2010;190(1):112–6.spa
dc.relation.referencesPavelka M, Roth J. Peripheral Nerve: Connective Tissue Components. In: Functional Ultrastructure [Internet]. Vienna: Springer Vienna; 2010. p. 324–5. Available from: http://link.springer.com/10.1007/978-3-211-99390-3_166spa
dc.relation.referencesFaroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: Experimental strategies and future perspectives. Vol. 82, Advanced Drug Delivery Reviews. 2015. p. 160–7.spa
dc.relation.referencesHart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res [Internet]. 2008 Dec 19;30(10):999–1011. Available from: http://www.tandfonline.com/doi/full/10.1179/174313208X362479spa
dc.relation.referencesSeddon HJ. Three types of nerve injury. Brain [Internet]. 1943;66(4):237–88. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/66.4.237spa
dc.relation.referencesRyu J, Beimesch CF, Lalli TJ. (iii) Peripheral nerve repair. Orthop Trauma. 2011;25(3):174–80.spa
dc.relation.referencesDeumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol [Internet]. 2010 Nov;92(3):245–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301008210001723spa
dc.relation.referencesSunderland S. A classification of peripheral nerve injuries producing loss of function. Brain [Internet]. 1951;74(4):491–516. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/74.4.491spa
dc.relation.referencesWolfla CE, Resnick DK, editors. 68 Surgical Techniques for Peripheral Nerve Repair. In: Spine and Peripheral Nerves [Internet]. Stuttgart: Georg Thieme Verlag; 2007. Available from: http://www.thieme-connect.de/products/ebooks/abstract/10.1055/b-0034-84037spa
dc.relation.referencesMillesi H. Bridging defects: autologous nerve grafts. Vol. 100, Acta neurochirurgica. Supplement. 2007. p. 37–8.spa
dc.relation.referencesHussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci [Internet]. 2020;16(1):116–34. Available from: http://www.ijbs.com/v16p0116.htmspa
dc.relation.referencesLundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000;25(3):391–414.spa
dc.relation.referencesPhilips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng [Internet]. 2018 Apr 1;15(2):021003. Available from: https://doi.org/10.1088/1741-2552/aaa21aspa
dc.relation.referencesHudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng [Internet]. 2004 Nov;10(9–10):1346–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15588395spa
dc.relation.referencesBrooks DN, Weber R V., Chao JD, Rinker BD, Zoldos J, Robichaux MR, et al. Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery [Internet]. 2012 Jan;32(1):1–14. Available from: http://doi.wiley.com/10.1002/micr.20975spa
dc.relation.referencesMeans KR, Rinker BD, Higgins JP, Payne SH, Merrell GA, Wilgis EFS. A Multicenter, Prospective, Randomized, Pilot Study of Outcomes for Digital Nerve Repair in the Hand Using Hollow Conduit Compared With Processed Allograft Nerve. HAND [Internet]. 2016 Jun 17;11(2):144–51. Available from: http://journals.sagepub.com/doi/10.1177/1558944715627233spa
dc.relation.referencesMuheremu A, Ao Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. Biomed Res Int [Internet]. 2015;2015:1–6. Available from: http://www.hindawi.com/journals/bmri/2015/237507/spa
dc.relation.referencesKonofaos P, Ver Halen J. Nerve Repair by Means of Tubulization: Past, Present, Future. J Reconstr Microsurg [Internet]. 2013 Jan 9;29(03):149–64. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1333316spa
dc.relation.referencesYang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, et al. Repair of Rat Sciatic Nerve Gap by a Silk Fibroin-Based Scaffold Added with Bone Marrow Mesenchymal Stem Cells. Tissue Eng - Part A. 2011;17(17–18):2231–44.spa
dc.relation.referencesTang X, Xue C, Wang Y, Ding F, Yang Y, Gu X. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials [Internet]. 2012 May;33(15):3860–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961212001731spa
dc.relation.referencesMosahebi A, Wiberg M, Terenghi G. Addition of Fibronectin to Alginate Matrix Improves Peripheral Nerve Regeneration in Tissue-Engineered Conduits. Tissue Eng [Internet]. 2003 Apr;9(2):209–18. Available from: https://www.liebertpub.com/doi/10.1089/107632703764664684spa
dc.relation.referencesDing F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, et al. Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(lactic- co -glycolic acid)-Based Scaffold Included with Bone Marrow Mesenchymal Cells for Bridging 50-mm Dog Sciatic Nerve Gaps. Tissue Eng Part A [Internet]. 2010 Dec;16(12):3779–90. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2010.0299spa
dc.relation.referencesFrattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, et al. Mesenchymal Stem Cells in a Polycaprolactone Conduit Promote Sciatic Nerve Regeneration and Sensory Neuron Survival after Nerve Injury. Tissue Eng Part A [Internet]. 2012 Oct;18(19–20):2030–9. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2011.0496spa
dc.relation.referencesKornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift [Internet]. 2019 Jun 13;169(9–10):240–51. Available from: http://link.springer.com/10.1007/s10354-018-0675-6spa
dc.relation.referencesLavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci [Internet]. 2021 Jan 8;22(2):572. Available from: https://www.mdpi.com/1422-0067/22/2/572spa
dc.relation.referencesKim HA, Maurel P. Primary Schwann Cell Cultures. In: Doering LC, editor. Protocols for Neural Cell Culture, Springer Protocols Handbooks. 4th ed. 2009. p. 253–68.spa
dc.relation.referencesSchuh CMAP, Sandoval-Castellanos AM, De Gregorio C, Contreras-Kallens P, Haycock JW. The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair. In: Cell Engineering and Regeneration [Internet]. Cham: Springer International Publishing; 2020. p. 1–22. Available from: http://link.springer.com/10.1007/978-3-319-37076-7_5-1spa
dc.relation.referencesYi S ZY, Gu X HL, K Z, Qian T GX. Application of stem cells in peripheral nerve regeneration. Burn Trauma [Internet]. 2020;27(8). Available from: http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdfspa
dc.relation.referencesJiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci [Internet]. 2017 Jan 5;18(1):94. Available from: http://www.mdpi.com/1422-0067/18/1/94spa
dc.relation.referencesGu Y, Li Z, Huang J, Wang H, Gu X, Gu J. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. J Tissue Eng Regen Med [Internet]. 2017 Aug;11(8):2250–60. Available from: http://doi.wiley.com/10.1002/term.2123spa
dc.relation.referencesRicard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol [Internet]. 2011 Jan 1;3(1):a004978–a004978. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a004978spa
dc.relation.referencesLin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater [Internet]. 2019 Jan;29(3):1804943. Available from: http://doi.wiley.com/10.1002/adfm.201804943spa
dc.relation.referencesKagan HM, Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem [Internet]. 2003 Mar 1;88(4):660–72. Available from: http://doi.wiley.com/10.1002/jcb.10413spa
dc.relation.referencesGu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143–56.spa
dc.relation.referencesFornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol [Internet]. 2020 Oct 16;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.554257/fullspa
dc.relation.referencesKim Y, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials [Internet]. 2008 Jul;29(21):3117–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002263spa
dc.relation.referencesVijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater [Internet]. 2020 Apr;106:54–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120300817spa
dc.relation.referenceshttps://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector.spa
dc.relation.referencesBustos RH, Suesca E, Millán D, González JM, Fontanilla MR. Real-Time Quantification of Proteins Secreted by Artificial Connective Tissue Made from Uni- Or Multidirectional Collagen I Scaffolds and Oral Mucosa Fibroblasts. Anal Chem [Internet]. 2014 Mar 4;86(5):2421–8. Available from: https://pubs.acs.org/doi/10.1021/ac4033164spa
dc.relation.referencesFontanilla MR, Suesca E, Jiménez RA. Procedimiento para la preparación de colágeno tipo 1 y de soportes unidireccionales y multidireccionales que lo contienen. [Internet]. Colombia; WO/2016/071876, 2016. Available from: https://patents.google.com/patent/WO2016071876A1/es?oq=WO%2F2016%2F071876spa
dc.relation.referencesSuesca E. Optimización de la obtención de soportes de colágeno y estudio del efecto de su microestructura en el desarrollo de mucosa oral artificial. 2013.spa
dc.relation.referencesBelbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.spa
dc.relation.referencesDe Campos Vidal B, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–9.spa
dc.relation.referencesReddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Vol. 33, Trends in Biotechnology. 2015. p. 362–9.spa
dc.relation.referencesZhu S-ML. European Patent Office. Method and apparatus for rapidly assaying aldehyde-containing disinfectant [Internet]. EP1256799A2, 2002. Available from: https://patentimages.storage.googleapis.com/49/90/7d/1097d57b3e735c/EP1256799A2.pdfspa
dc.relation.referencesWilliams DF. On the mechanisms of biocompatibility. Biomaterials [Internet]. 2008 Jul;29(20):2941–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002676spa
dc.relation.referencesFerrari M, Cirisano F, Morán MC. Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces. 2019;3(2):48.spa
dc.relation.referencesGrundke K, Pöschel K, Synytska A, Frenzel R, Drechsler A, Nitschke M, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces — Toward the understanding and control of wettability for different applications. Adv Colloid Interface Sci [Internet]. 2015 Aug;222:350–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868614002905spa
dc.relation.referencesMetwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C [Internet]. 2019 Nov;104:109883. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493119304576spa
dc.relation.referencesAndersen ND, Srinivas S, Piñero G, Monje P V. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep [Internet]. 2016 Aug 23;6(1):31781. Available from: http://www.nature.com/articles/srep31781spa
dc.relation.referencesAraña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. In: Methods in Molecular Biology [Internet]. 2013. p. 47–61. Available from: http://link.springer.com/10.1007/978-1-62703-511-8_4spa
dc.relation.referencesISO 10993-5, Biological evaluation of medical devices - Part 5: in vitro cytotoxicity tests. 3rd Edition. [Internet]. 2009 [cited 2020 Jun 6]. Available from: https:/www.iso.org/standard/36406.html.spa
dc.relation.referencesGeorgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials [Internet]. 2015 Jan;37:242–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961214010564spa
dc.relation.referencesSun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, et al. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: Potential advantage of cellular transient memory function. Stem Cell Res Ther [Internet]. 2018 Dec 11;9(1):133. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0884-3spa
dc.relation.referencesKilkenny C, Browne W, Cuthill I, Emerson M, Altman D. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. Animals [Internet]. 2014 Feb 3;4(1):35–44. Available from: http://www.mdpi.com/2076-2615/4/1/35spa
dc.relation.referencesMorton D, Griffiths P. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec [Internet]. 1985 Apr 20;116(16):431–6. Available from: https://veterinaryrecord.bmj.com/lookup/doi/10.1136/vr.116.16.431spa
dc.relation.referencesGuide for the Care and Use of Laboratory Animals [Internet]. Guide for the Care and Use of Laboratory Animals. Washington, D.C.: National Academies Press; 2011. Available from: https://doi.org/10.17226/12910.spa
dc.relation.referencesCosta L, Simoes M, Mauricio A, Varejao A. International Review of Neurobiology. Essays on Peripheral Nerve Repair and Regeneration. In: Elsevier, editor. International Review of Neurobiology. 2009. p. 127–36.spa
dc.relation.referencesMa F, Xiao Z, Meng D, Hou X, Zhu J, Dai J, et al. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats. Int J Mol Sci. 2014;15(10):18593–609.spa
dc.relation.referencesvan Neerven SGA, Haastert-Talini K, Boecker A, Schriever T, Dabhi C, Claeys K, et al. Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J Tissue Eng Regen Med. 2017;11(12):3349–61.spa
dc.relation.referencesAVMA. 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc [Internet]. 2001 Mar;218(5):669–96. Available from: http://avmajournals.avma.org/doi/abs/10.2460/javma.2001.218.669spa
dc.relation.referencesNair M, Best SM, Cameron RE. Crosslinking Collagen Constructs: Achieving Cellular Selectivity Through Modifications of Physical and Chemical Properties. Appl Sci [Internet]. 2020 Oct 2;10(19):6911. Available from: https://www.mdpi.com/2076-3417/10/19/6911spa
dc.relation.referencesDominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy [Internet]. 2006;8(4):315–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1465324906708817spa
dc.relation.referencesCarvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.spa
dc.relation.referencesPatent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdfspa
dc.relation.referenceshttps://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector sitio consultado el 22/02/2020.spa
dc.relation.referencesSong S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/fullspa
dc.relation.referencesPawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85spa
dc.relation.referencesGustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.spa
dc.relation.referencesBrill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.spa
dc.relation.referencesHuang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663spa
dc.relation.referencesDaly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.spa
dc.relation.referencesSalvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124spa
dc.relation.referencesGanji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.spa
dc.relation.referencesChang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.spa
dc.relation.referencesForest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.spa
dc.relation.referencesTopp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.spa
dc.relation.referencesBorschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.spa
dc.relation.referencesDadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874–81.spa
dc.relation.referencesKim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.spa
dc.relation.referencesReid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaspa
dc.subject.otherNervios Periféricosspa
dc.subject.otherPeripheral Nerveseng
dc.subject.otherColágeno Tipo Ispa
dc.subject.otherCollagen Type Ieng
dc.subject.proposalConductos nerviososspa
dc.subject.proposalNervio periféricospa
dc.subject.proposalIngeniería de tejidosspa
dc.subject.proposalRegeneraciónspa
dc.subject.proposalAxonesspa
dc.subject.proposalPeripheral nerveeng
dc.subject.proposalNerve conduitseng
dc.subject.proposalRegenerationeng
dc.subject.proposalAxonseng
dc.titleDesarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periféricospa
dc.title.translatedDevelopment of laminar biphasic conduits of type I collagen for use in peripheral nerve regenerationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52748725.2022.pdf
Tamaño:
13.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: