Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
dc.contributor.advisor | Bernal, César Augusto | |
dc.contributor.advisor | Mancera, Jose Ernesto | |
dc.contributor.author | Bernal-Glen, Daniel Felipe | |
dc.contributor.orcid | Bernal Glen, Daniel Felipe [0009000097643819] | spa |
dc.contributor.researchgroup | Modelacion de Ecosistemas Costeros | spa |
dc.date.accessioned | 2024-07-12T20:17:35Z | |
dc.date.available | 2024-07-12T20:17:35Z | |
dc.date.issued | 2024-07 | |
dc.description.abstract | Entre los ecosistemas costeros considerados estratégicos en la mitigación del cambio climático se encuentran las praderas de pastos marinos, debido a su alta productividad primaria y altas tasas de captura de carbono. En el presente trabajo se analizó la relación entre la reserva de carbono orgánico en praderas de pastos marinos de la isla de San Andrés, reserva internacional de Biosfera Seaflower, y la dinámica del sistema de carbonatos, con el fin de evaluar cuantitativamente el efecto modulador que la captura de carbono en el pasto marino podría ejercer sobre el sistema de carbonatos en las masas de agua. Se tomaron mediciones de Alcalinidad Total y Carbono Inorgánico Disuelto sobre una pradera de pastos marinos y sobre un punto adyacente sin pasto durante varias épocas climáticas entre 2019 y 2021. Adicionalmente se evaluó la biomasa en pie, biomasa rizoidal y contenido de carbono orgánico en el sedimento de la pradera. Se encontró una fuerte influencia estacional caracterizada por valores de Carbono Inorgánico más bajos durante la época seca. Al mismo tiempo, en la época húmeda la pradera está sujeta a un fuerte fenómeno de remineralización que anula temporalmente el efecto de la captura de carbono sobre el sistema de carbonatos. Los flujos de carbono orgánico e inorgánico alóctono entre la pradera, el bosque de manglar y el arrecife coralino, así como el rol de los organismos calcificadores, surgen como puntos fundamentales a dilucidar para comprender cabalmente el ciclo de carbono inorgánico dentro de la pradera de pasto marino (Texto tomado de la fuente) | spa |
dc.description.abstract | Among the coastal ecosystems considered strategic in climate change mitigation are seagrass meadows, due to their high primary productivity and high carbon capture rates. In the present work, the relationship between the organic carbon reserve in seagrass meadows of San Andrés Island, an international Biosphere Reserve Seaflower, and the carbonate system dynamics was analyzed to quantitatively evaluate the modulatory effect that carbon capture in seagrass could exert on the carbonate system in water masses. Total Alkalinity and Dissolved Inorganic Carbon measurements were taken over a seagrass meadow and an adjacent point without seagrass during various climatic seasons between 2019 and 2021. Additionally, the standing biomass, rhizoidal biomass, and organic carbon content in the meadow sediment were evaluated. A strong seasonal influence was found, characterized by lower Inorganic Carbon values during the dry season. At the same time, during the wet season, the meadow is subject to a strong remineralization phenomenon that temporarily nullifies the effect of carbon capture on the carbonate system. The fluxes of allochthonous organic and inorganic carbon between the meadow, mangrove forest, and coral reef, as well as the role of calcifying organisms, emerge as fundamental points to elucidate to fully understand the inorganic carbon cycle within the seagrass meadow. | eng |
dc.description.curriculararea | Otra. Sede Caribe | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biología | spa |
dc.description.researcharea | Modelación de Ecosistemas | spa |
dc.description.sponsorship | The Ocean Foundation es una fundación comunitaria con sede en Washington, D.C. y establecida en 2002. Su misión es "apoyar, fortalecer y promover aquellas organizaciones dedicadas a revertir la tendencia de destrucción de los ambientes oceánicos en todo el mundo". | spa |
dc.format.extent | XIV, 64 paginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86442 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Caribe | spa |
dc.publisher.department | Centro de estudios en Ciencias del mar-CECIMAR | spa |
dc.publisher.faculty | Facultad Caribe | spa |
dc.publisher.place | San Andrés Islas | spa |
dc.publisher.program | Caribe - Caribe - Maestría en Ciencias - Biología | spa |
dc.relation.references | Akhand, A., Watanabe, K., Chanda, A., Tokoro, T., Chakraborty, K., Moki, H., Tanaya, T., Ghosh, J., & Kuwae, T. (2021). Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.142190 | spa |
dc.relation.references | Albis-Salas, M. R., & Gavio, B. (2015). NOTES ON THE MARINE ALGAE OF THE INTERNATIONAL BIOSPHERE RESERVE SEAFLOWER, CARIBBEAN COLOMBIA IV: NEW RECORDS OF MACROALGAL EPIPHYTES ON THE SEAGRASS THALASSIA TESTUDINUM. Bol. Invest. Mar. Cost, 44(1), 55–70. | spa |
dc.relation.references | Andersson, A. J., & Gledhill, D. (2013). Ocean acidification and coral reefs: Effects on breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science, 5, 321–348. https://doi.org/10.1146/annurev-marine-121211-172241 | spa |
dc.relation.references | Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., & Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences, 10(7), 4897–4909. https://doi.org/10.5194/bg-10-4897-2013 | spa |
dc.relation.references | APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington DC: American Public Health Association. | spa |
dc.relation.references | Astor, Y. M., Lorenzoni, L., Guzman, L., Fuentes, G., Muller-Karger, F., Varela, R., Scranton, M., Taylor, G. T., & Thunell, R. (2017). Distribution and variability of the dissolved inorganic carbon system in the Cariaco Basin, Venezuela. Marine Chemistry, 195(July), 15–26. https://doi.org/10.1016/j.marchem.2017.08.004 | spa |
dc.relation.references | Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S. I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., … Xu, S. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383–413. https://doi.org/10.5194/essd-8-383-2016 | spa |
dc.relation.references | Basu, S., & Mackey, K. R. M. (2018). Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030869 | spa |
dc.relation.references | Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., & Santana-Casiano, J. M. (2014). A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography, 27(1), 126–141. https://doi.org/10.5670/oceanog.2014.16 | spa |
dc.relation.references | Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., & Johnson, R. J. (2012). Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9(7), 2509–2522. https://doi.org/10.5194/bg-9-2509-2012 | spa |
dc.relation.references | Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., & Regnier, P. A. G. (2013a). The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70. https://doi.org/10.1038/nature12857 | spa |
dc.relation.references | Beaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & De Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80–83. https://doi.org/10.1038/nature10295 | spa |
dc.relation.references | Bergstrom, E., Silva, J., Martins, C., & Horta, P. (2019). Seagrass can mitigate negative ocean acidification effects on calcifying algae. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-35670-3 | spa |
dc.relation.references | Bernal, C. A., Gómez Batista, M., Sanchez Cabeza, J. A., Cartas Aguila, H., Herrera Merlo, J., Ruíz-Rodríguez, G., & Hernández-Ayón, M. (2021). Determinación de alcalinidad total en agua de mar utilizando dispensador manual. Método de titulación en celda abierta. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 9 pp. | spa |
dc.relation.references | Bernal, C. A., Sanchez-Cabeza, J. A., Martínez-Galarza, R. A., Gómez Batista, M., & Norzagaray-López, C. O. (2021). Determinación de carbono inorgánico disuelto en agua de mar utilizando analizador automático con detección infrarrojo- AIRICA. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 18 pp. | spa |
dc.relation.references | Borges, A. V., Delille, B., & Frankignoulle, M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophysical Research Letters, 32(14), 1–4. https://doi.org/10.1029/2005GL023053 | spa |
dc.relation.references | Bouillon, S., Dehairs, F., Velimirov, B., Abril, G., & Borges, A. V. (2007). Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). Journal of Geophysical Research: Biogeosciences, 112(2). https://doi.org/10.1029/2006JG000325 | spa |
dc.relation.references | Bouillon, S., Moens, T., & Dehairs, F. (2004). Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya). In Biogeosciences (Vol. 1). www.biogeosciences.net/bg/1/71/ | spa |
dc.relation.references | Cabré, A., Marinov, I., & Leung, S. (2015). Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Climate Dynamics, 45(5–6), 1253–1280. https://doi.org/10.1007/s00382-014-2374-3 | spa |
dc.relation.references | Cao, R., Liu, Y., Wang, Q., Zhang, Q., Yang, D., Liu, H., Qu, Y., & Zhao, J. (2018). The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas. Fish and Shellfish Immunology, 81(July), 456–462. https://doi.org/10.1016/j.fsi.2018.07.055 | spa |
dc.relation.references | Cao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., & Gan, J. (2011). Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. Journal of Geophysical Research: Biogeosciences, 116(2), 1–14. https://doi.org/10.1029/2010JG001596 | spa |
dc.relation.references | Carstensen, J., & Duarte, C. M. (2019). Drivers of pH Variability in Coastal Ecosystems [Review-article]. Environmental Science and Technology, 53(8), 4020–4029. https://doi.org/10.1021/acs.est.8b03655 | spa |
dc.relation.references | Chauvin, A., Denis, V., & Cuet, P. (2011). Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs, 30(4), 911–923. https://doi.org/10.1007/s00338-011-0786-7 | spa |
dc.relation.references | Chavez, F. P., Messié, M., & Pennington, J. T. (2011). Marine primary production in relation to climate variability and change. Annual Review of Marine Science, 3, 227–260. https://doi.org/10.1146/annurev.marine.010908.163917 | spa |
dc.relation.references | Chen, G., Azkab, M. H., Chmura, G. L., Chen, S., Sastrosuwondo, P., Ma, Z., Dharmawan, I. W. E., Yin, X., & Chen, B. (2017). Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7. https://doi.org/10.1038/srep42406 | spa |
dc.relation.references | Church, M. J., Lomas, M. W., & Muller-Karger, F. (2013). Sea change: Charting the course for biogeochemical ocean time-series research in a new millennium. Deep-Sea Research Part II: Topical Studies in Oceanography, 93, 2–15. https://doi.org/10.1016/j.dsr2.2013.01.035 | spa |
dc.relation.references | Clargo, N. M., Salt, L. A., Thomas, H., & de Baar, H. J. W. (2015). Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes. Marine Chemistry, 177, 566–581. https://doi.org/10.1016/j.marchem.2015.08.010 | spa |
dc.relation.references | CORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28. | spa |
dc.relation.references | Dai, M., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Z., Xu, Y., Gan, J., Hu, J., & Du, C. (2013). Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10), 2154–2158. https://doi.org/10.1002/grl.50390 | spa |
dc.relation.references | DANE. (2019). San Andrés. Archipiélago de San Andrés. https://sitios.dane.gov.co/cnpv/app/views/informacion/perfiles/88001_infografia.pdf | spa |
dc.relation.references | De La Rocha, C. L., & Passow, U. (2007). Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(5–7), 639–658. https://doi.org/10.1016/j.dsr2.2007.01.004 | spa |
dc.relation.references | De Marchi, L., Pretti, C., Chiellini, F., Morelli, A., Neto, V., Soares, A. M. V. M., Figueira, E., & Freitas, R. (2019). The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. Science of the Total Environment, 666, 1178–1187. https://doi.org/10.1016/j.scitotenv.2019.02.109 | spa |
dc.relation.references | Devries, T. (2014). The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles, 28(7), 631–647. https://doi.org/10.1002/2013GB004739 | spa |
dc.relation.references | Diaz, J. M., Gómez-López, D. I., Barrios, L. M., & Montoya, P. (2003). Composición y distribución de las praderas de pastos marinos en Colombia. In Las praderas de pastos marinos en Colombia: estructura y distribución de un ecosistema complejo. INVEMAR, Serie Publicaciones Especiales No. 10, Santa Marta. (pp. 25–80). https://doi.org/10.13140/2.1.4073.6322 | spa |
dc.relation.references | Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics, 22(2), 113–127. | spa |
dc.relation.references | Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. In Deep-Sea Research (Vol. 34, Issue 111). | spa |
dc.relation.references | Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., & McCulloch, M. (2013). Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts, 36(2), 221–236. https://doi.org/10.1007/s12237-013-9594-3 | spa |
dc.relation.references | Elliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007 | spa |
dc.relation.references | Fuentes-Lema, A., Sanleón-Bartolomé, H., Lubián, L. M., & Sobrino, C. (2018). Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters. Biogeosciences, 15(22), 6927–6940. https://doi.org/10.5194/bg-15-6927-2018 | spa |
dc.relation.references | Gao, K., & Campbell, D. A. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Functional Plant Biology, 41(5), 449–459. https://doi.org/10.1071/FP13247 | spa |
dc.relation.references | Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles, 10(4), 809–837. https://doi.org/10.1029/96GB01608 | spa |
dc.relation.references | Guerra-Vargas, L. A., Gillis, L. G., & Mancera-Pineda, J. E. (2020a). Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Frontiers in Marine Science, 7(July), 1–15. https://doi.org/10.3389/fmars.2020.00628 | spa |
dc.relation.references | Heck, K. L., Carruthers, T. J. B., Duarte, C. M., Randall Hughes, A., Kendrick, G., Orth, R. J., & Williams, S. W. (2008). Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. In Ecosystems (Vol. 11, Issue 7, pp. 1198–1210). https://doi.org/10.1007/s10021-008-9155-y | spa |
dc.relation.references | Heinrich, L., & Krause, T. (2017). Fishing in acid waters: A vulnerability assessment of the norwegian fishing industry in the face of increasing ocean acidification. Integrated Environmental Assessment and Management, 13(4), 778–789. https://doi.org/10.1002/ieam.1843 | spa |
dc.relation.references | Hendriks, I. E., Duarte, C. M., Olsen, Y. S., Steckbauer, A., Ramajo, L., Moore, T. S., Trotter, J. A., & McCulloch, M. (2015). Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science, 152, A1–A8. https://doi.org/10.1016/j.ecss.2014.07.019 | spa |
dc.relation.references | Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., & Duarte, C. M. (2014a). Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences, 11(2), 333–346. https://doi.org/10.5194/bg-11-333-2014 | spa |
dc.relation.references | Herr, D., & Landis, E. (2014). Coastal blue carbon ecosystems. In National Wetlands Newsletter (Vol. 36, Issue 1). | spa |
dc.relation.references | Hofmann, M., & Schellnhuber, H. (2009). Oceanic acidification affects marine carbon pump. In Situ, 1–6. | spa |
dc.relation.references | Holmberg, R. J., Wilcox-Freeburg, E., Rhyne, A. L., Tlusty, M. F., Stebbins, A., Nye, S. W., Honig, A., Johnston, A. E., San Antonio, C. M., Bourque, B., & Hannigan, R. E. (2019). Ocean acidification alters morphology of all otolith types in Clark’s anemonefish (Amphiprion clarkii). PeerJ, 2019(1), 1–24. https://doi.org/10.7717/peerj.6152 | spa |
dc.relation.references | Huang, H., Yuan, X. C., Cai, W. J., Zhang, C. L., Li, X., & Liu, S. (2014). Positive and negative responses of coral calcification to elevated pCO 2: Case studies of two coral species and the implications of their responses. Marine Ecology Progress Series, 502(May), 145–156. https://doi.org/10.3354/meps10720 | spa |
dc.relation.references | Hurd, C. L. (2015). Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology, 51(4), 599–605. https://doi.org/10.1111/jpy.12307 | spa |
dc.relation.references | Ibarra, Karen., Obando Paola., & Espinosa, L. (2023). Análisis: Departamento Archipiélago de San Andrés, Providencia y Santa Catalina. In J. Cusba, P. Obando, & L. Espinosa (Eds.), INVEMAR. 2023. Diagnóstico de calidad ambiental marina REDCAM. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia – REDCAM: INVEMAR, MinAmbiente, CORALINA... Informe técnico final 2022, Santa Marta. 233 p. (pp. 45–56). | spa |
dc.relation.references | IGAC. (1986). San Andrés y Providencia: aspectos geográficos. Ministerio de Hacienda y Crédito Público, Instituto Geográfico" Agustín Codazzi," Subdirección de Investigación y Divulgación Geográfica. | spa |
dc.relation.references | Kawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi, A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura, T., & Suzuki, A. (2019). Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house.” In Progress in Earth and Planetary Science (Vol. 6, Issue 1). Progress in Earth and Planetary Science. https://doi.org/10.1186/s40645-018-0239-9 | spa |
dc.relation.references | Koch, F., Beszteri, S., Harms, L., & Trimborn, S. (2019). The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica. Limnology and Oceanography, 64(1), 357–375. https://doi.org/10.1002/lno.11045 | spa |
dc.relation.references | Laffoley, D., Baxter, J. M., Arias-Isaza, F. A., Sierra-Correa, P. C., Lagos, N., Graco, M., Jewett, E. B., & Isensee, K. (2019). Regional action plan on ocean acidification for Latin America and the Caribbean – encouraging collaboration and inspiring action. In Serie de Publicaciones Generales (Vol. 99). | spa |
dc.relation.references | Laruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P., Goossens, N., & Regnier, P. A. G. (2013). Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17(5), 2029–2051. https://doi.org/10.5194/hess-17-2029-2013 | spa |
dc.relation.references | Le Quéré, C., Barbero, L., Hauck, J., Andrew, R. M., Canadell, J. G., Sitch, S., & Korsbakken, J. I. (2018). Global Carbon Budget 2016 Global Carbon Budget 2016. Earth System Science Data, 0(April 2017), 2141–2194. | spa |
dc.relation.references | Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H., Wanninkhof, R., Feely, R. A., & Key, R. M. (2006). Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters, 33(19), 1–5. https://doi.org/10.1029/2006GL027207 | spa |
dc.relation.references | Lemasson, A. J., Fletcher, S., Hall-Spencer, J. M., & Knights, A. M. (2017). Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: A review. Journal of Experimental Marine Biology and Ecology, 492, 49–62. https://doi.org/10.1016/j.jembe.2017.01.019 | spa |
dc.relation.references | Liu, J., Weinbauer, M. G., Maier, C., Dai, M., & Gattuso, J. P. (2010). Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology, 61(3), 291–305. https://doi.org/10.3354/ame01446 | spa |
dc.relation.references | Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., & Long, M. C. (2016). Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles, 30(9), 1276–1287. https://doi.org/10.1002/2016GB005426 | spa |
dc.relation.references | Marinov, I., Follows, M. J., Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2008). How does ocean biology affect atmospheric pCO2? Theory and models. Journal of Geophysical Research: Oceans, 113(7), 1–20. https://doi.org/10.1029/2007JC004598 | spa |
dc.relation.references | Mazarrasa, I., Marbà, N., Krause-Jensen, D., Kennedy, H., Santos, R., Lovelock, C. E., & Duarte, C. M. (2019). Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 159(July 2018), 103147. https://doi.org/10.1016/j.aquabot.2019.103147 | spa |
dc.relation.references | Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., & Duarte, C. M. (2015). Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 12(16), 4993–5003. https://doi.org/10.5194/bg-12-4993-2015 | spa |
dc.relation.references | McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004 | spa |
dc.relation.references | Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE. Limnology and Oceanography, 18(6), 897–907. https://doi.org/10.4319/lo.1973.18.6.0897 | spa |
dc.relation.references | Meyer, K. M., Ridgwell, A., & Payne, J. L. (2016). The influence of the biological pump on ocean chemistry: Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology, 14(3), 207–219. https://doi.org/10.1111/gbi.12176 | spa |
dc.relation.references | Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019RG000681 | spa |
dc.relation.references | Muller-Karger, F. E., Astor, Y. M., Benitez-Nelson, C. R., Buck, K. N., Fanning, K. A., Lorenzoni, L., Montes, E., Rueda-Roa, D. T., Scranton, M. I., Tappa, E., Taylor, G. T., Thunell, R. C., Troccoli, L., & Varela, R. (2019). The scientific legacy of the CARIACO ocean time-series program. Annual Review of Marine Science, 11(November 1995), 413–437. https://doi.org/10.1146/annurev-marine-010318-095150 | spa |
dc.relation.references | Pan, T. C. F., Applebaum, S. L., & Manahan, D. T. (2015). Experimental ocean acidification alters the allocation of metabolic energy. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4696–4701. https://doi.org/10.1073/pnas.1416967112 | spa |
dc.relation.references | Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. | spa |
dc.relation.references | Ponce Oliva, R. D., Vasquez-Lavín, F., San Martin, V. A., Hernández, J. I., Vargas, C. A., Gonzalez, P. S., & Gelcich, S. (2019). Ocean Acidification, Consumers’ Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry. Ecological Economics, 158(October 2018), 42–50. https://doi.org/10.1016/j.ecolecon.2018.12.011 | spa |
dc.relation.references | Ramajo, L., Lagos, N. A., & Duarte, C. M. (2019). Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Marine Pollution Bulletin, 146(December 2018), 247–254. https://doi.org/10.1016/j.marpolbul.2019.06.011 | spa |
dc.relation.references | Rheuban, J. E., Doney, S. C., Cooley, S. R., & Hart, D. R. (2018). Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE, 13(9), 1–21. https://doi.org/10.1371/journal.pone.0203536 | spa |
dc.relation.references | Riebesell, U., Rtzinger, A. K., & Oschlies, A. (2009). Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20602–20609. https://doi.org/10.1073/pnas.0813291106 | spa |
dc.relation.references | Saderne, V., Baldry, K., Anton, A., Agustí, S., & Duarte, C. M. (2019). Characterization of the CO2 System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. Journal of Geophysical Research: Oceans, 124(11), 7513–7528. https://doi.org/10.1029/2019JC015266 | spa |
dc.relation.references | Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W., Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery, P. S., Lovelock, C. E., Marba, N., Masqué, P., Mateo, M. A., … Duarte, C. M. (2019). Role of carbonate burial in Blue Carbon budgets. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08842-6 | spa |
dc.relation.references | Semesi, I. S., Beer, S., & Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382, 41–47. https://doi.org/10.3354/meps07973 | spa |
dc.relation.references | Seroy, S. K., & Grünbaum, D. (2018). Individual and population level effects of ocean acidification on a predator−prey system with inducible defenses: Bryozoan−nudibranch interactions in the Salish Sea. Marine Ecology Progress Series, 607, 1–18. https://doi.org/10.3354/meps12793 | spa |
dc.relation.references | Serrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021a). Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90544-5 | spa |
dc.relation.references | Simeone, S., Molinaroli, E., Conforti, A., & De Falco, G. (2018). Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach. Climatic Change, 150(3–4), 227–242. https://doi.org/10.1007/s10584-018-2282-3 | spa |
dc.relation.references | Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles, 30(Dic), 753–766. https://doi.org/10.1111/1462-2920.13280 | spa |
dc.relation.references | Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., & Greenwood, J. (2007). The effect of biogeochemical processes on pH. Marine Chemistry, 105(1–2), 30–51. https://doi.org/10.1016/j.marchem.2006.12.012 | spa |
dc.relation.references | Speers, A. E., Besedin, E. Y., Palardy, J. E., & Moore, C. (2016). Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological-economic model. Ecological Economics, 128, 33–43. https://doi.org/10.1016/j.ecolecon.2016.04.012 | spa |
dc.relation.references | Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis (2nd ed.). Fisheries Research Board of Canada. | spa |
dc.relation.references | Sutton, A. J., Sabine, C. L., Feely, R. A., Cai, W. J., Cronin, M. F., McPhaden, M. J., Morell, J. M., Newton, J. A., Noh, J. H., Ólafsdóttir, S. R., Salisbury, J. E., Send, U., Vandemark, D. C., & Weller, R. A. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13(17), 5065–5083. https://doi.org/10.5194/bg-13-5065-2016 | spa |
dc.relation.references | Takahashi, T., & Azevedo, A. E. G. (2008). The oceans as a CO2 reservoir. AIP Conference Proceedings, 83, 83–110. https://doi.org/10.1063/1.33473 | spa |
dc.relation.references | Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., & Nojiri, Y. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(9–10), 1601–1622. https://doi.org/10.1016/S0967-0645(02)00003-6 | spa |
dc.relation.references | Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., … de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8–10), 554–577. https://doi.org/10.1016/j.dsr2.2008.12.009 | spa |
dc.relation.references | Taylor, G. T., Muller-Karger, F. E., Thunell, R. C., Scranton, M. I., Astor, Y., Varela, R., Ghinaglia, L. T., Lorenzoni, L., Fanning, K. A., Hameed, S., & Doherty, O. (2012). Ecosystem responses in the southern Caribbean Sea to global climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19315–19320. https://doi.org/10.1073/pnas.1207514109 | spa |
dc.relation.references | Tong, S., Hutchins, D. A., & Gao, K. (2019). Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation. Biogeosciences, 16(2), 561–572. https://doi.org/10.5194/bg-16-561-2019 | spa |
dc.relation.references | Touratier, F., Azouzi, L., & Goyet, C. (2007). CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus, Series B: Chemical and Physical Meteorology, 59(2), 318–325. https://doi.org/10.1111/j.1600-0889.2006.00247.x | spa |
dc.relation.references | Touratier, F., & Goyet, C. (2004). Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean. Journal of Marine Systems, 46(1–4), 181–197. https://doi.org/10.1016/j.jmarsys.2003.11.020 | spa |
dc.relation.references | Tribollet, A., Chauvin, A., & Cuet, P. (2019). Carbonate dissolution by reef microbial borers: a biogeological process producing alkalinity under different pCO 2 conditions. Facies, 65(2), 1–10. https://doi.org/10.1007/s10347-018-0548-x | spa |
dc.relation.references | UNESCO. (1983). CHEMICAL METHODS FOR USE IN MARINE ENVIRONMENTAL MONITORING. Intergovernmental Oceanographic Commission. Manuals and Guides, 12. | spa |
dc.relation.references | Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Research, 21, 161–162. | spa |
dc.relation.references | Van Dam, B. R., Zeller, M. A., Lopes, C., Smyth, A. R., Böttcher, M. E., Osburn, C. L., Zimmerman, T., Pröfrock, D., Fourqurean, J. W., & Thomas, H. (2021). Calcification-driven CO2emissions exceed “blue Carbon” sequestration in a carbonate seagrass meadow. Science Advances, 7(51), 1–12. https://doi.org/10.1126/sciadv.abj1372 | spa |
dc.relation.references | Vargas-Rojas, J. S. (2020). Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental [Master Thesis]. Universidad Nacional de Colombia. | spa |
dc.relation.references | Vázquez-Rodríguez, M., Padin, X. A., Ríos, A. F., Bellerby, R. G. J., & Pérez, F. F. (2009). An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO<sub>2</sub> in the Atlantic Ocean. Biogeosciences Discussions, 6(2), 4527–4571. | spa |
dc.relation.references | Vázquez-Rodríguez, M., Touratier, F., Monaco, C. Lo, Waugh, D. W., Padin, X. A., Bellerby, R. G. J., Goyet, C., Metzl, N., Ríos, A. F., & Pérez, F. F. (2009). Anthropogenic carbon distributions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic. Biogeosciences, 6(3), 439–451. https://doi.org/10.5194/bg-6-439-2009 | spa |
dc.relation.references | Wang, Z. A., Wanninkhof, R., Cai, W. J., Byrne, R. H., Hu, X., Peng, T. H., & Huang, W. J. (2013). The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography, 58(1), 325–342. https://doi.org/10.4319/lo.2013.58.1.0325 | spa |
dc.relation.references | Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12(JUN), 351–362. https://doi.org/10.4319/lom.2014.12.351 | spa |
dc.relation.references | Ware, J. R., Smith, S. V, & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11, 127–130. | spa |
dc.relation.references | Webb, A. E., Pomponi, S. A., van Duyl, F. C., Reichart, G. J., & de Nooijer, L. J. (2019). pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-36702-8 | spa |
dc.relation.references | Yu, T., & Chen, Y. (2019). Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment, 655, 865–879. https://doi.org/10.1016/j.scitotenv.2018.11.301 | spa |
dc.relation.references | Zeebe, R. E., & Wolf-Gradow, D. (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes (D. Halpern, Ed.). Elsiever Ocenaographic Series. https://doi.org/10.1016/s0924-7963(02)00179-3 | spa |
dc.relation.references | Zunino, S., Canu, D. M., Zupo, V., & Solidoro, C. (2019). Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecology and Conservation, 18, e00625. https://doi.org/10.1016/j.gecco.2019.e00625 | spa |
dc.relation.references | Gavio, B., Palmer-Cantillo, S., & Mancera, J. E. (2010). Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFlower Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin, 60(7), 1018–1030. https://doi.org/10.1016/j.marpolbul.2010.01.025 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.proposal | Thalassia testudinum | spa |
dc.subject.proposal | Thalassia testudinum | eng |
dc.subject.proposal | Calcificación | spa |
dc.subject.proposal | Productividad primaria | spa |
dc.subject.proposal | Carbono azul | spa |
dc.subject.proposal | Biomasa | spa |
dc.subject.proposal | Blue carbon | eng |
dc.subject.proposal | Primary production | eng |
dc.subject.proposal | Biomass | eng |
dc.title | Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano | spa |
dc.title.translated | Variation of the carbonate system and accumulation of organic carbon in water masses adjacent to seagrass meadows in the Colombian insular Caribbean | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Seagrass Restoration as Mitigation of Ocean Acidification in the Caribbean Region: Blue Carbon Restoration - Código Hermes 46559 | spa |
oaire.fundername | The Ocean Foundation | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ciencias Biología
- Tamaño:
- 1 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: