Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano

dc.contributor.advisorBernal, César Augusto
dc.contributor.advisorMancera, Jose Ernesto
dc.contributor.authorBernal-Glen, Daniel Felipe
dc.contributor.orcidBernal Glen, Daniel Felipe [0009000097643819]spa
dc.contributor.researchgroupModelacion de Ecosistemas Costerosspa
dc.date.accessioned2024-07-12T20:17:35Z
dc.date.available2024-07-12T20:17:35Z
dc.date.issued2024-07
dc.description.abstractEntre los ecosistemas costeros considerados estratégicos en la mitigación del cambio climático se encuentran las praderas de pastos marinos, debido a su alta productividad primaria y altas tasas de captura de carbono. En el presente trabajo se analizó la relación entre la reserva de carbono orgánico en praderas de pastos marinos de la isla de San Andrés, reserva internacional de Biosfera Seaflower, y la dinámica del sistema de carbonatos, con el fin de evaluar cuantitativamente el efecto modulador que la captura de carbono en el pasto marino podría ejercer sobre el sistema de carbonatos en las masas de agua. Se tomaron mediciones de Alcalinidad Total y Carbono Inorgánico Disuelto sobre una pradera de pastos marinos y sobre un punto adyacente sin pasto durante varias épocas climáticas entre 2019 y 2021. Adicionalmente se evaluó la biomasa en pie, biomasa rizoidal y contenido de carbono orgánico en el sedimento de la pradera. Se encontró una fuerte influencia estacional caracterizada por valores de Carbono Inorgánico más bajos durante la época seca. Al mismo tiempo, en la época húmeda la pradera está sujeta a un fuerte fenómeno de remineralización que anula temporalmente el efecto de la captura de carbono sobre el sistema de carbonatos. Los flujos de carbono orgánico e inorgánico alóctono entre la pradera, el bosque de manglar y el arrecife coralino, así como el rol de los organismos calcificadores, surgen como puntos fundamentales a dilucidar para comprender cabalmente el ciclo de carbono inorgánico dentro de la pradera de pasto marino (Texto tomado de la fuente)spa
dc.description.abstractAmong the coastal ecosystems considered strategic in climate change mitigation are seagrass meadows, due to their high primary productivity and high carbon capture rates. In the present work, the relationship between the organic carbon reserve in seagrass meadows of San Andrés Island, an international Biosphere Reserve Seaflower, and the carbonate system dynamics was analyzed to quantitatively evaluate the modulatory effect that carbon capture in seagrass could exert on the carbonate system in water masses. Total Alkalinity and Dissolved Inorganic Carbon measurements were taken over a seagrass meadow and an adjacent point without seagrass during various climatic seasons between 2019 and 2021. Additionally, the standing biomass, rhizoidal biomass, and organic carbon content in the meadow sediment were evaluated. A strong seasonal influence was found, characterized by lower Inorganic Carbon values during the dry season. At the same time, during the wet season, the meadow is subject to a strong remineralization phenomenon that temporarily nullifies the effect of carbon capture on the carbonate system. The fluxes of allochthonous organic and inorganic carbon between the meadow, mangrove forest, and coral reef, as well as the role of calcifying organisms, emerge as fundamental points to elucidate to fully understand the inorganic carbon cycle within the seagrass meadow.eng
dc.description.curricularareaOtra. Sede Caribespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaModelación de Ecosistemasspa
dc.description.sponsorshipThe Ocean Foundation es una fundación comunitaria con sede en Washington, D.C. y establecida en 2002. Su misión es "apoyar, fortalecer y promover aquellas organizaciones dedicadas a revertir la tendencia de destrucción de los ambientes oceánicos en todo el mundo".spa
dc.format.extentXIV, 64 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86442
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribespa
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad Caribespa
dc.publisher.placeSan Andrés Islasspa
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAkhand, A., Watanabe, K., Chanda, A., Tokoro, T., Chakraborty, K., Moki, H., Tanaya, T., Ghosh, J., & Kuwae, T. (2021). Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.142190spa
dc.relation.referencesAlbis-Salas, M. R., & Gavio, B. (2015). NOTES ON THE MARINE ALGAE OF THE INTERNATIONAL BIOSPHERE RESERVE SEAFLOWER, CARIBBEAN COLOMBIA IV: NEW RECORDS OF MACROALGAL EPIPHYTES ON THE SEAGRASS THALASSIA TESTUDINUM. Bol. Invest. Mar. Cost, 44(1), 55–70.spa
dc.relation.referencesAndersson, A. J., & Gledhill, D. (2013). Ocean acidification and coral reefs: Effects on breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science, 5, 321–348. https://doi.org/10.1146/annurev-marine-121211-172241spa
dc.relation.referencesAnthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., & Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences, 10(7), 4897–4909. https://doi.org/10.5194/bg-10-4897-2013spa
dc.relation.referencesAPHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington DC: American Public Health Association.spa
dc.relation.referencesAstor, Y. M., Lorenzoni, L., Guzman, L., Fuentes, G., Muller-Karger, F., Varela, R., Scranton, M., Taylor, G. T., & Thunell, R. (2017). Distribution and variability of the dissolved inorganic carbon system in the Cariaco Basin, Venezuela. Marine Chemistry, 195(July), 15–26. https://doi.org/10.1016/j.marchem.2017.08.004spa
dc.relation.referencesBakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S. I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., … Xu, S. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383–413. https://doi.org/10.5194/essd-8-383-2016spa
dc.relation.referencesBasu, S., & Mackey, K. R. M. (2018). Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030869spa
dc.relation.referencesBates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., & Santana-Casiano, J. M. (2014). A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography, 27(1), 126–141. https://doi.org/10.5670/oceanog.2014.16spa
dc.relation.referencesBates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., & Johnson, R. J. (2012). Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9(7), 2509–2522. https://doi.org/10.5194/bg-9-2509-2012spa
dc.relation.referencesBauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., & Regnier, P. A. G. (2013a). The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70. https://doi.org/10.1038/nature12857spa
dc.relation.referencesBeaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & De Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80–83. https://doi.org/10.1038/nature10295spa
dc.relation.referencesBergstrom, E., Silva, J., Martins, C., & Horta, P. (2019). Seagrass can mitigate negative ocean acidification effects on calcifying algae. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-35670-3spa
dc.relation.referencesBernal, C. A., Gómez Batista, M., Sanchez Cabeza, J. A., Cartas Aguila, H., Herrera Merlo, J., Ruíz-Rodríguez, G., & Hernández-Ayón, M. (2021). Determinación de alcalinidad total en agua de mar utilizando dispensador manual. Método de titulación en celda abierta. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 9 pp.spa
dc.relation.referencesBernal, C. A., Sanchez-Cabeza, J. A., Martínez-Galarza, R. A., Gómez Batista, M., & Norzagaray-López, C. O. (2021). Determinación de carbono inorgánico disuelto en agua de mar utilizando analizador automático con detección infrarrojo- AIRICA. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 18 pp.spa
dc.relation.referencesBorges, A. V., Delille, B., & Frankignoulle, M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophysical Research Letters, 32(14), 1–4. https://doi.org/10.1029/2005GL023053spa
dc.relation.referencesBouillon, S., Dehairs, F., Velimirov, B., Abril, G., & Borges, A. V. (2007). Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). Journal of Geophysical Research: Biogeosciences, 112(2). https://doi.org/10.1029/2006JG000325spa
dc.relation.referencesBouillon, S., Moens, T., & Dehairs, F. (2004). Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya). In Biogeosciences (Vol. 1). www.biogeosciences.net/bg/1/71/spa
dc.relation.referencesCabré, A., Marinov, I., & Leung, S. (2015). Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Climate Dynamics, 45(5–6), 1253–1280. https://doi.org/10.1007/s00382-014-2374-3spa
dc.relation.referencesCao, R., Liu, Y., Wang, Q., Zhang, Q., Yang, D., Liu, H., Qu, Y., & Zhao, J. (2018). The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas. Fish and Shellfish Immunology, 81(July), 456–462. https://doi.org/10.1016/j.fsi.2018.07.055spa
dc.relation.referencesCao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., & Gan, J. (2011). Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. Journal of Geophysical Research: Biogeosciences, 116(2), 1–14. https://doi.org/10.1029/2010JG001596spa
dc.relation.referencesCarstensen, J., & Duarte, C. M. (2019). Drivers of pH Variability in Coastal Ecosystems [Review-article]. Environmental Science and Technology, 53(8), 4020–4029. https://doi.org/10.1021/acs.est.8b03655spa
dc.relation.referencesChauvin, A., Denis, V., & Cuet, P. (2011). Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs, 30(4), 911–923. https://doi.org/10.1007/s00338-011-0786-7spa
dc.relation.referencesChavez, F. P., Messié, M., & Pennington, J. T. (2011). Marine primary production in relation to climate variability and change. Annual Review of Marine Science, 3, 227–260. https://doi.org/10.1146/annurev.marine.010908.163917spa
dc.relation.referencesChen, G., Azkab, M. H., Chmura, G. L., Chen, S., Sastrosuwondo, P., Ma, Z., Dharmawan, I. W. E., Yin, X., & Chen, B. (2017). Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7. https://doi.org/10.1038/srep42406spa
dc.relation.referencesChurch, M. J., Lomas, M. W., & Muller-Karger, F. (2013). Sea change: Charting the course for biogeochemical ocean time-series research in a new millennium. Deep-Sea Research Part II: Topical Studies in Oceanography, 93, 2–15. https://doi.org/10.1016/j.dsr2.2013.01.035spa
dc.relation.referencesClargo, N. M., Salt, L. A., Thomas, H., & de Baar, H. J. W. (2015). Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes. Marine Chemistry, 177, 566–581. https://doi.org/10.1016/j.marchem.2015.08.010spa
dc.relation.referencesCORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28.spa
dc.relation.referencesDai, M., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Z., Xu, Y., Gan, J., Hu, J., & Du, C. (2013). Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10), 2154–2158. https://doi.org/10.1002/grl.50390spa
dc.relation.referencesDANE. (2019). San Andrés. Archipiélago de San Andrés. https://sitios.dane.gov.co/cnpv/app/views/informacion/perfiles/88001_infografia.pdfspa
dc.relation.referencesDe La Rocha, C. L., & Passow, U. (2007). Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(5–7), 639–658. https://doi.org/10.1016/j.dsr2.2007.01.004spa
dc.relation.referencesDe Marchi, L., Pretti, C., Chiellini, F., Morelli, A., Neto, V., Soares, A. M. V. M., Figueira, E., & Freitas, R. (2019). The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. Science of the Total Environment, 666, 1178–1187. https://doi.org/10.1016/j.scitotenv.2019.02.109spa
dc.relation.referencesDevries, T. (2014). The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles, 28(7), 631–647. https://doi.org/10.1002/2013GB004739spa
dc.relation.referencesDiaz, J. M., Gómez-López, D. I., Barrios, L. M., & Montoya, P. (2003). Composición y distribución de las praderas de pastos marinos en Colombia. In Las praderas de pastos marinos en Colombia: estructura y distribución de un ecosistema complejo. INVEMAR, Serie Publicaciones Especiales No. 10, Santa Marta. (pp. 25–80). https://doi.org/10.13140/2.1.4073.6322spa
dc.relation.referencesDickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics, 22(2), 113–127.spa
dc.relation.referencesDickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. In Deep-Sea Research (Vol. 34, Issue 111).spa
dc.relation.referencesDuarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., & McCulloch, M. (2013). Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts, 36(2), 221–236. https://doi.org/10.1007/s12237-013-9594-3spa
dc.relation.referencesElliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007spa
dc.relation.referencesFuentes-Lema, A., Sanleón-Bartolomé, H., Lubián, L. M., & Sobrino, C. (2018). Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters. Biogeosciences, 15(22), 6927–6940. https://doi.org/10.5194/bg-15-6927-2018spa
dc.relation.referencesGao, K., & Campbell, D. A. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Functional Plant Biology, 41(5), 449–459. https://doi.org/10.1071/FP13247spa
dc.relation.referencesGruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles, 10(4), 809–837. https://doi.org/10.1029/96GB01608spa
dc.relation.referencesGuerra-Vargas, L. A., Gillis, L. G., & Mancera-Pineda, J. E. (2020a). Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Frontiers in Marine Science, 7(July), 1–15. https://doi.org/10.3389/fmars.2020.00628spa
dc.relation.referencesHeck, K. L., Carruthers, T. J. B., Duarte, C. M., Randall Hughes, A., Kendrick, G., Orth, R. J., & Williams, S. W. (2008). Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. In Ecosystems (Vol. 11, Issue 7, pp. 1198–1210). https://doi.org/10.1007/s10021-008-9155-yspa
dc.relation.referencesHeinrich, L., & Krause, T. (2017). Fishing in acid waters: A vulnerability assessment of the norwegian fishing industry in the face of increasing ocean acidification. Integrated Environmental Assessment and Management, 13(4), 778–789. https://doi.org/10.1002/ieam.1843spa
dc.relation.referencesHendriks, I. E., Duarte, C. M., Olsen, Y. S., Steckbauer, A., Ramajo, L., Moore, T. S., Trotter, J. A., & McCulloch, M. (2015). Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science, 152, A1–A8. https://doi.org/10.1016/j.ecss.2014.07.019spa
dc.relation.referencesHendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., & Duarte, C. M. (2014a). Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences, 11(2), 333–346. https://doi.org/10.5194/bg-11-333-2014spa
dc.relation.referencesHerr, D., & Landis, E. (2014). Coastal blue carbon ecosystems. In National Wetlands Newsletter (Vol. 36, Issue 1).spa
dc.relation.referencesHofmann, M., & Schellnhuber, H. (2009). Oceanic acidification affects marine carbon pump. In Situ, 1–6.spa
dc.relation.referencesHolmberg, R. J., Wilcox-Freeburg, E., Rhyne, A. L., Tlusty, M. F., Stebbins, A., Nye, S. W., Honig, A., Johnston, A. E., San Antonio, C. M., Bourque, B., & Hannigan, R. E. (2019). Ocean acidification alters morphology of all otolith types in Clark’s anemonefish (Amphiprion clarkii). PeerJ, 2019(1), 1–24. https://doi.org/10.7717/peerj.6152spa
dc.relation.referencesHuang, H., Yuan, X. C., Cai, W. J., Zhang, C. L., Li, X., & Liu, S. (2014). Positive and negative responses of coral calcification to elevated pCO 2: Case studies of two coral species and the implications of their responses. Marine Ecology Progress Series, 502(May), 145–156. https://doi.org/10.3354/meps10720spa
dc.relation.referencesHurd, C. L. (2015). Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology, 51(4), 599–605. https://doi.org/10.1111/jpy.12307spa
dc.relation.referencesIbarra, Karen., Obando Paola., & Espinosa, L. (2023). Análisis: Departamento Archipiélago de San Andrés, Providencia y Santa Catalina. In J. Cusba, P. Obando, & L. Espinosa (Eds.), INVEMAR. 2023. Diagnóstico de calidad ambiental marina REDCAM. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia – REDCAM: INVEMAR, MinAmbiente, CORALINA... Informe técnico final 2022, Santa Marta. 233 p. (pp. 45–56).spa
dc.relation.referencesIGAC. (1986). San Andrés y Providencia: aspectos geográficos. Ministerio de Hacienda y Crédito Público, Instituto Geográfico" Agustín Codazzi," Subdirección de Investigación y Divulgación Geográfica.spa
dc.relation.referencesKawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi, A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura, T., & Suzuki, A. (2019). Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house.” In Progress in Earth and Planetary Science (Vol. 6, Issue 1). Progress in Earth and Planetary Science. https://doi.org/10.1186/s40645-018-0239-9spa
dc.relation.referencesKoch, F., Beszteri, S., Harms, L., & Trimborn, S. (2019). The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica. Limnology and Oceanography, 64(1), 357–375. https://doi.org/10.1002/lno.11045spa
dc.relation.referencesLaffoley, D., Baxter, J. M., Arias-Isaza, F. A., Sierra-Correa, P. C., Lagos, N., Graco, M., Jewett, E. B., & Isensee, K. (2019). Regional action plan on ocean acidification for Latin America and the Caribbean – encouraging collaboration and inspiring action. In Serie de Publicaciones Generales (Vol. 99).spa
dc.relation.referencesLaruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P., Goossens, N., & Regnier, P. A. G. (2013). Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17(5), 2029–2051. https://doi.org/10.5194/hess-17-2029-2013spa
dc.relation.referencesLe Quéré, C., Barbero, L., Hauck, J., Andrew, R. M., Canadell, J. G., Sitch, S., & Korsbakken, J. I. (2018). Global Carbon Budget 2016 Global Carbon Budget 2016. Earth System Science Data, 0(April 2017), 2141–2194.spa
dc.relation.referencesLee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H., Wanninkhof, R., Feely, R. A., & Key, R. M. (2006). Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters, 33(19), 1–5. https://doi.org/10.1029/2006GL027207spa
dc.relation.referencesLemasson, A. J., Fletcher, S., Hall-Spencer, J. M., & Knights, A. M. (2017). Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: A review. Journal of Experimental Marine Biology and Ecology, 492, 49–62. https://doi.org/10.1016/j.jembe.2017.01.019spa
dc.relation.referencesLiu, J., Weinbauer, M. G., Maier, C., Dai, M., & Gattuso, J. P. (2010). Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology, 61(3), 291–305. https://doi.org/10.3354/ame01446spa
dc.relation.referencesLovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., & Long, M. C. (2016). Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles, 30(9), 1276–1287. https://doi.org/10.1002/2016GB005426spa
dc.relation.referencesMarinov, I., Follows, M. J., Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2008). How does ocean biology affect atmospheric pCO2? Theory and models. Journal of Geophysical Research: Oceans, 113(7), 1–20. https://doi.org/10.1029/2007JC004598spa
dc.relation.referencesMazarrasa, I., Marbà, N., Krause-Jensen, D., Kennedy, H., Santos, R., Lovelock, C. E., & Duarte, C. M. (2019). Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 159(July 2018), 103147. https://doi.org/10.1016/j.aquabot.2019.103147spa
dc.relation.referencesMazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., & Duarte, C. M. (2015). Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 12(16), 4993–5003. https://doi.org/10.5194/bg-12-4993-2015spa
dc.relation.referencesMcLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004spa
dc.relation.referencesMehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE. Limnology and Oceanography, 18(6), 897–907. https://doi.org/10.4319/lo.1973.18.6.0897spa
dc.relation.referencesMeyer, K. M., Ridgwell, A., & Payne, J. L. (2016). The influence of the biological pump on ocean chemistry: Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology, 14(3), 207–219. https://doi.org/10.1111/gbi.12176spa
dc.relation.referencesMiddelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019RG000681spa
dc.relation.referencesMuller-Karger, F. E., Astor, Y. M., Benitez-Nelson, C. R., Buck, K. N., Fanning, K. A., Lorenzoni, L., Montes, E., Rueda-Roa, D. T., Scranton, M. I., Tappa, E., Taylor, G. T., Thunell, R. C., Troccoli, L., & Varela, R. (2019). The scientific legacy of the CARIACO ocean time-series program. Annual Review of Marine Science, 11(November 1995), 413–437. https://doi.org/10.1146/annurev-marine-010318-095150spa
dc.relation.referencesPan, T. C. F., Applebaum, S. L., & Manahan, D. T. (2015). Experimental ocean acidification alters the allocation of metabolic energy. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4696–4701. https://doi.org/10.1073/pnas.1416967112spa
dc.relation.referencesPierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a.spa
dc.relation.referencesPonce Oliva, R. D., Vasquez-Lavín, F., San Martin, V. A., Hernández, J. I., Vargas, C. A., Gonzalez, P. S., & Gelcich, S. (2019). Ocean Acidification, Consumers’ Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry. Ecological Economics, 158(October 2018), 42–50. https://doi.org/10.1016/j.ecolecon.2018.12.011spa
dc.relation.referencesRamajo, L., Lagos, N. A., & Duarte, C. M. (2019). Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Marine Pollution Bulletin, 146(December 2018), 247–254. https://doi.org/10.1016/j.marpolbul.2019.06.011spa
dc.relation.referencesRheuban, J. E., Doney, S. C., Cooley, S. R., & Hart, D. R. (2018). Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE, 13(9), 1–21. https://doi.org/10.1371/journal.pone.0203536spa
dc.relation.referencesRiebesell, U., Rtzinger, A. K., & Oschlies, A. (2009). Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20602–20609. https://doi.org/10.1073/pnas.0813291106spa
dc.relation.referencesSaderne, V., Baldry, K., Anton, A., Agustí, S., & Duarte, C. M. (2019). Characterization of the CO2 System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. Journal of Geophysical Research: Oceans, 124(11), 7513–7528. https://doi.org/10.1029/2019JC015266spa
dc.relation.referencesSaderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W., Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery, P. S., Lovelock, C. E., Marba, N., Masqué, P., Mateo, M. A., … Duarte, C. M. (2019). Role of carbonate burial in Blue Carbon budgets. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08842-6spa
dc.relation.referencesSemesi, I. S., Beer, S., & Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382, 41–47. https://doi.org/10.3354/meps07973spa
dc.relation.referencesSeroy, S. K., & Grünbaum, D. (2018). Individual and population level effects of ocean acidification on a predator−prey system with inducible defenses: Bryozoan−nudibranch interactions in the Salish Sea. Marine Ecology Progress Series, 607, 1–18. https://doi.org/10.3354/meps12793spa
dc.relation.referencesSerrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021a). Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90544-5spa
dc.relation.referencesSimeone, S., Molinaroli, E., Conforti, A., & De Falco, G. (2018). Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach. Climatic Change, 150(3–4), 227–242. https://doi.org/10.1007/s10584-018-2282-3spa
dc.relation.referencesSippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles, 30(Dic), 753–766. https://doi.org/10.1111/1462-2920.13280spa
dc.relation.referencesSoetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., & Greenwood, J. (2007). The effect of biogeochemical processes on pH. Marine Chemistry, 105(1–2), 30–51. https://doi.org/10.1016/j.marchem.2006.12.012spa
dc.relation.referencesSpeers, A. E., Besedin, E. Y., Palardy, J. E., & Moore, C. (2016). Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological-economic model. Ecological Economics, 128, 33–43. https://doi.org/10.1016/j.ecolecon.2016.04.012spa
dc.relation.referencesStrickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis (2nd ed.). Fisheries Research Board of Canada.spa
dc.relation.referencesSutton, A. J., Sabine, C. L., Feely, R. A., Cai, W. J., Cronin, M. F., McPhaden, M. J., Morell, J. M., Newton, J. A., Noh, J. H., Ólafsdóttir, S. R., Salisbury, J. E., Send, U., Vandemark, D. C., & Weller, R. A. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13(17), 5065–5083. https://doi.org/10.5194/bg-13-5065-2016spa
dc.relation.referencesTakahashi, T., & Azevedo, A. E. G. (2008). The oceans as a CO2 reservoir. AIP Conference Proceedings, 83, 83–110. https://doi.org/10.1063/1.33473spa
dc.relation.referencesTakahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., & Nojiri, Y. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(9–10), 1601–1622. https://doi.org/10.1016/S0967-0645(02)00003-6spa
dc.relation.referencesTakahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., … de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8–10), 554–577. https://doi.org/10.1016/j.dsr2.2008.12.009spa
dc.relation.referencesTaylor, G. T., Muller-Karger, F. E., Thunell, R. C., Scranton, M. I., Astor, Y., Varela, R., Ghinaglia, L. T., Lorenzoni, L., Fanning, K. A., Hameed, S., & Doherty, O. (2012). Ecosystem responses in the southern Caribbean Sea to global climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19315–19320. https://doi.org/10.1073/pnas.1207514109spa
dc.relation.referencesTong, S., Hutchins, D. A., & Gao, K. (2019). Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation. Biogeosciences, 16(2), 561–572. https://doi.org/10.5194/bg-16-561-2019spa
dc.relation.referencesTouratier, F., Azouzi, L., & Goyet, C. (2007). CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus, Series B: Chemical and Physical Meteorology, 59(2), 318–325. https://doi.org/10.1111/j.1600-0889.2006.00247.xspa
dc.relation.referencesTouratier, F., & Goyet, C. (2004). Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean. Journal of Marine Systems, 46(1–4), 181–197. https://doi.org/10.1016/j.jmarsys.2003.11.020spa
dc.relation.referencesTribollet, A., Chauvin, A., & Cuet, P. (2019). Carbonate dissolution by reef microbial borers: a biogeological process producing alkalinity under different pCO 2 conditions. Facies, 65(2), 1–10. https://doi.org/10.1007/s10347-018-0548-xspa
dc.relation.referencesUNESCO. (1983). CHEMICAL METHODS FOR USE IN MARINE ENVIRONMENTAL MONITORING. Intergovernmental Oceanographic Commission. Manuals and Guides, 12.spa
dc.relation.referencesUppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Research, 21, 161–162.spa
dc.relation.referencesVan Dam, B. R., Zeller, M. A., Lopes, C., Smyth, A. R., Böttcher, M. E., Osburn, C. L., Zimmerman, T., Pröfrock, D., Fourqurean, J. W., & Thomas, H. (2021). Calcification-driven CO2emissions exceed “blue Carbon” sequestration in a carbonate seagrass meadow. Science Advances, 7(51), 1–12. https://doi.org/10.1126/sciadv.abj1372spa
dc.relation.referencesVargas-Rojas, J. S. (2020). Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental [Master Thesis]. Universidad Nacional de Colombia.spa
dc.relation.referencesVázquez-Rodríguez, M., Padin, X. A., Ríos, A. F., Bellerby, R. G. J., & Pérez, F. F. (2009). An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO<sub>2</sub> in the Atlantic Ocean. Biogeosciences Discussions, 6(2), 4527–4571.spa
dc.relation.referencesVázquez-Rodríguez, M., Touratier, F., Monaco, C. Lo, Waugh, D. W., Padin, X. A., Bellerby, R. G. J., Goyet, C., Metzl, N., Ríos, A. F., & Pérez, F. F. (2009). Anthropogenic carbon distributions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic. Biogeosciences, 6(3), 439–451. https://doi.org/10.5194/bg-6-439-2009spa
dc.relation.referencesWang, Z. A., Wanninkhof, R., Cai, W. J., Byrne, R. H., Hu, X., Peng, T. H., & Huang, W. J. (2013). The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography, 58(1), 325–342. https://doi.org/10.4319/lo.2013.58.1.0325spa
dc.relation.referencesWanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12(JUN), 351–362. https://doi.org/10.4319/lom.2014.12.351spa
dc.relation.referencesWare, J. R., Smith, S. V, & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11, 127–130.spa
dc.relation.referencesWebb, A. E., Pomponi, S. A., van Duyl, F. C., Reichart, G. J., & de Nooijer, L. J. (2019). pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-36702-8spa
dc.relation.referencesYu, T., & Chen, Y. (2019). Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment, 655, 865–879. https://doi.org/10.1016/j.scitotenv.2018.11.301spa
dc.relation.referencesZeebe, R. E., & Wolf-Gradow, D. (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes (D. Halpern, Ed.). Elsiever Ocenaographic Series. https://doi.org/10.1016/s0924-7963(02)00179-3spa
dc.relation.referencesZunino, S., Canu, D. M., Zupo, V., & Solidoro, C. (2019). Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecology and Conservation, 18, e00625. https://doi.org/10.1016/j.gecco.2019.e00625spa
dc.relation.referencesGavio, B., Palmer-Cantillo, S., & Mancera, J. E. (2010). Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFlower Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin, 60(7), 1018–1030. https://doi.org/10.1016/j.marpolbul.2010.01.025spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.proposalThalassia testudinumspa
dc.subject.proposalThalassia testudinumeng
dc.subject.proposalCalcificaciónspa
dc.subject.proposalProductividad primariaspa
dc.subject.proposalCarbono azulspa
dc.subject.proposalBiomasaspa
dc.subject.proposalBlue carboneng
dc.subject.proposalPrimary productioneng
dc.subject.proposalBiomasseng
dc.titleVariación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombianospa
dc.title.translatedVariation of the carbonate system and accumulation of organic carbon in water masses adjacent to seagrass meadows in the Colombian insular Caribbeaneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSeagrass Restoration as Mitigation of Ocean Acidification in the Caribbean Region: Blue Carbon Restoration - Código Hermes 46559spa
oaire.fundernameThe Ocean Foundationspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias Biología
Tamaño:
1 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: