Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences

dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorJaramillo González, María
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001598592spa
dc.contributor.researcherGómez Zuleta, Martín Alonso
dc.contributor.researchgatehttps://www.researchgate.net/profile/Maria-Gonzalez-468spa
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2023-01-26T14:06:30Z
dc.date.available2023-01-26T14:06:30Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractPancreatic Cancer (PC) is one of the most aggressive cancers, constituting the seventh leading cause of cancer-related death globally in 2020. Usually, the asymptomatic response of PC causes the delayed diagnosis of the disease. Diagnosis of PC usually includes ultrasonography (US), computed tomography (CT), magnetic resonance (MRI), and endoscopic ultrasound (EUS). Although EUS is the diagnostic method with the highest sensitivity reported, the procedure is highly operator-dependent. A gastroenterologist requires more than 150 supervised procedures to interpret the anatomy blurred by several noise sources. Therefore, a second reader may be desirable to support the procedure and assist the training process in a gastroenterology service. Some computational strategies have been developed to detect PC in EUS images, but those methods are semi-automatic in practice and very susceptible to noise. Hence, the main contribution of this work is an automatic strategy to detect PC in complete video sequences of EUS procedures. The proposed methodology describes the mixture of echo patterns using the Speeded-Up Robust Features (SURF) method. A set of interest points are defined and described correlating the echo patterns in a multiscale analysis, and filtering the noise sources, usually uncorrelated among different scales. Then, images with PC are differentiated by a binary classification method, evaluating Support Vector Machines and Adaboost models. Additionally, the proposed method is assessed using a public EUS database constructed and released in this work, with 55 cases. Finally, the proposed method was compared with typical Deep Learning approaches, reaching an accuracy of 92.1\% and 90.0\%, respectively. In addition, the method herein proposed is also stable in experiments with added noise, while the nets fail to maintain a similar performance.eng
dc.description.abstractEl Cáncer de Páncreas (CP) fue la séptima causa de muerte por cáncer en el mundo en 2020. Es uno de los más agresivos y en la mayoría de los casos se diagnostica en etapas avanzadas por su respuesta asintomática. El diagnóstico del CP se realiza mediante técnicas de imágen como ultrasonido (US), tomografía computarizada(TAC), resonancia magnética(RMN) y Ecoendoscopia(EE). Aunque la EE tiene la más alta sensibilidad, el proceso de entrenamiento de los especialistas requiere más de 150 procedimientos supervisados, convirtiendose en un procedimiento altamente dependiente de la experticia del gastroenterólogo y del manejo de las múltiples fuentes de ruido durante el procedimiento. Por lo tanto, es deseable un segundo lector para apoyar el procedimiento y asistir el proceso de entrenamiento. Se han desarrollado estrategias computacionales para apoyar la detección del CP, pero son semi-automáticos en la práctica y altamente suceptibles a las fuentes de ruido. La principal contribución de este trabajo es el desarrollo de una estrategia automática para detectar CP en secuencias de video completas de procedimientos de EE. El método describe los eco-patrones en imágenes de EE utilizando el algoritmo “SURF” por sus siglas en inglés. Se definen y describen un conjunto de puntos de interés correlacionados en un análisis multiecala y se filtran las fuentes de ruido que usualmente no se correlacionan entre escalas. Luego, las imágenes con CP se diferencian mediante una clasificación binaria utilizando métodos de soporte vectorial y árboles de decisión. Adicionalmente, el método se evalúa utilizando una base de datos pública construida en este trabajo con 55 casos en total. Finalmente, el rendimiento se compara con los enfoques típicos de aprendizaje profundo, obteniendo un rendimiento de 92.1\% y 90.0\%, respectivamente. Adicionalmente, el metodo propuesto es estable en experimentos al adicionar ruido, en los que las redes fallan en mantener un rendimiento similar. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.notesFurther author information: (Send correspondence to María Jaramillo) Diego Bravo: E-mail: marjaramillogon@unal.edu.co, Telephone: +57 3137214469eng
dc.description.researchareaDigital Anatomy by Images Researchspa
dc.description.researchareaApplied Computing - Image Processingspa
dc.format.extentxvi, 77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83139
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.references[1] Akiba, Takuya ; Sano, Shotaro ; Yanase, Toshihiko ; Ohta, Takeru ; Koyama, Masanori: Optuna: A Next-generation Hyperparameter Optimization Framework, 2019. ISBN 978-1-4503-6201-6, p. 2623-2631spa
dc.relation.references[2] Amin, Sunil ; DiMaio, Christopher J. ; Kim, Michelle K.: Advanced EUS Imaging for Early Detection of Pancreatic Cancer. En: Gastrointestinal Endoscopy Clinics of North America 23 (2013), Nr. 3, p. 607 - 623. ISSN 1052-5157spa
dc.relation.references[3] Bafaraj, Ahmed S.: Performance Analysis of Best Speckle Filter for Noise Reduction in Ultrasound Medical Images. En: International Journal of Applied Engineering Research 14 (2019), p. 1340-1351. - ISSN 0973-4562spa
dc.relation.references[4] Bay, Herbert ; Ess, Andreas ; Tuytelaars, Tinne ; Gool, Luc V.: Speeded-Up Robust Features (SURF). En: Computer Vision and Image Understanding 110 (2008), Nr. 3, p. 346 - 359. - Similarity Matching in Computer Vision and Multimedia. - ISSN 1077-3142spa
dc.relation.references[5] Brand, B ; Pfaff, T ; Binmoeller, KF ; Sriram, PVJ ; Fritscher-Ravens, A ; Kn ofel, WT ; J ackle, S ; Soehendra, N: Endoscopic ultrasound for di_erential diagnosis of focal pancreatic lesions, con_rmed by surgery. En: Scandinavian journal of gastroenterology 35 (2000), Nr. 11, p. 1221-1228 [6] Bray, Freddie ; Ferlay, Jacques ; Soerjomataram, Isabelle; Siegel, Rebecca L.; Torre, Lindsey A. ; Jemal, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: A Cancer Journal for Clinicians 68 (2018), Nr. 6, p. 394-424spa
dc.relation.references[6] Bray, Freddie ; Ferlay, Jacques ; Soerjomataram, Isabelle ; Siegel, Rebecca L.; Torre, Lindsey A. ; Jemal, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: A Cancer Journal for Clinicians 68 (2018), Nr. 6, p. 394-424spa
dc.relation.references[7] Instituto Nacional de Cancerología, Instituto Geográfico Agustín C.: Atlas de mortalidad por cáncer en Colombia. Fourth. 2017spa
dc.relation.references[8] Chen, Chien-Hua: EUS in Diagnosis and Treatment of GI Tract. En: Ultrasound in Medicine & Biology 43 (2017), p. S147. - ISSN 0301-5629spa
dc.relation.references[9] Chen, Wei-Ming ; Chang, Ruey-Feng ; Kuo, Shou-Jen ; Chang, Cheng-Shyong ; Moon, Woo K. ; Chen, Shou-Tung ; Chen, Dar-Ren: 3-D ultrasound texture classification using run difference matrix. En: Ultrasound in Medicine Biology 31 (2005), Nr. 6, p. 763 - 770. - ISSN 0301-5629spa
dc.relation.references[10] Chen, Xu ; Hu, Yiqun ; Zhang, Zhihong ; Wang, Beizhan ; Zhang, Lichi ; Shi, Fei ; Chen, Xinjian ; Jiang, Xiaoyi: A graph-based approach to automated EUS image layer segmentation and abnormal region detection. En: Neurocomputing 336 (2019), p. 79 - 91. - Advances in Graph Algorithm and Applications. - ISSN 0925-2312spa
dc.relation.references[11] Costache, M-I ; S Aƒftoiu, A ; Gheonea, D-I: Detection and Characterization of Solid Pancreatic Lesions (Contrast-Enhancement, Elastography, EUS-Guided Fine Needle Aspiration). En: Video Journal and Encyclopedia of GI Endoscopy 1 (2013), Nr. 2, p. 545-547. - Special Issue: Expert Encyclopedia - Lower GI Tract, Bile Duct and Ampullary Region. - ISSN 2212-0971spa
dc.relation.references[12] Cui, Xin-Wu ; Chang, Jian-Min ; Kan, Quan-Cheng ; Chiorean, Liliana ; Ignee, Andre ; Dietrich, Christoph F.: Endoscopic ultrasound elastography: Current status and future perspectives. En: World journal of gastroenterology 21 (2015), Nr. 47, p.13212spa
dc.relation.references[13] Dallongeville, Axel ; Corno, Lucie ; Silvera, St~ A©phane ; Boulay-Coletta, Isabelle ; Zins, Marc: Initial Diagnosis and Staging of Pancreatic Cancer Including Main Di_erentials. En: Seminars in Ultrasound, CT and MRI 40 (2019), Nr. 6, p. 436 - 468. - ISSN 0887-2171spa
dc.relation.references[14] Das, Ananya ; Nguyen, Cuong C. ; Li, Feng ; Li, Baoxin: Digital image analysis of EUS images accurately di_erentiates pancreatic cancer from chronic pancreatitis and normal tissue. En: Gastrointestinal Endoscopy 67 (2008), Nr. 6, p. 861 - 867. – ISSN 0016-5107spa
dc.relation.references[15] Deng, J. ; Dong, W. ; Socher, R. ; Li, L.-J. ; Li, K. ; Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. En: CVPR09, 2009spa
dc.relation.references[16] DeWitt, John ; Devereaux, Benedict M. ; Lehman, Glen A. ; Sherman, Stuart ; Imperiale, Thomas F.: Comparison of Endoscopic Ultrasound and Computed Tomography for the Preoperative Evaluation of Pancreatic Cancer: A Systematic Review. En: Clinical Gastroenterology and Hepatology 4 (2006), p. 717 – 725spa
dc.relation.references[17] Giovannini, M. ; Hookey, L. ; Bories, E. ; Pesenti, C. ; Monges, G. ; Delpero, J.: Endoscopic Ultrasound Elastography: the First Step towards Virtual Biopsy: Preliminary Results in 49 Patients. En: Endoscopy 38 (2006), Nr. 4, p. 344-348spa
dc.relation.references[18] Giovannini, Marc ; Botelberge, Thomas ; Bories, Erwan ; Pesenti, Christian ; Caillol, Fabrice ; Esterni, Benjamin ; Monges, Genevi_eve ; Arcidiacono, Paolo ; Deprez, Pierre ; Yeung, Robert ; Schimdt, Walter ; Schrader, Hanz ; Szymanski, Carl ; Dietrich, Christoph ; Eisendrath, Pierre ; Laethem, Jean-Luc V. ; Devi_ere, Jacques ; Vilmann, Peter ; Saftoiu, Adrian: Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: A multicenter study. En: World Journal of Gastroenterology 15 (2009), Nr. 13, p. 1587spa
dc.relation.references[19] Goggins, Michael ; Overbeek, Kasper A. ; Brand, Randall ; Syngal, Sapna ; Chiaro, Marco D. ; Bartsch, Detlef K. ; Bassi, Claudio ; Carrato, Alfredo ; Farrell, James ; Fishman, Elliot K. ; Fockens, Paul ; Gress, Thomas M. ; van Hooft, Jeanin E. ; Hruban, R H. ; Kastrinos, Fay ; Klein, Allison ; Lennon, Anne M. ; Lucas, Aimee ; Park, Walter ; Rustgi, Anil ; Simeone, Diane ; Stoffel, Elena ; Vasen, Hans F A. ; Cahen, Djuna L. ; Canto, Marcia I. ; Bruno, Marco: Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. En: Gut 69 (2019), Oktober, Nr. 1, p. 7-17spa
dc.relation.references[20] Guo, J. ; Sun, Siyu: Endoscopic Ultrasound for the Diagnosis of Chronic Pancreatitis, Pancreapedia: Exocrine Pancreas Knowledge Base, 2015spa
dc.relation.references[21] Han, Seokmin ; Kang, Ho-Kyung ; Jeong, Ja-Yeon ; Park, Moon-Ho ; Kim, Wonsik ; Bang, Won-Chul ; Seong, Yeong-Kyeong: A deep learning framework for supporting the classification of breast lesions in ultrasound images. En: Physics in Medicine &amp Biology 62 (2017), sep, Nr. 19, p. 7714-7728spa
dc.relation.references[22] Harinck, F ; Konings, I C A W. ; Kluijt, I ; Poley, J W. ; van Hooft, J E. ; van Dullemen, H M. ; Nio, C Y. ; Krak, N C. ; Hermans, J J. ; Aalfs, C M. ;Wagner, A ; Sijmons, R H. ; Biermann, K ; van Eijck, C H. ; Gouma, D J. ; Dijkgraaf, M G W. ; Fockens, P ; Bruno, M J.: A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. En: Gut 65 (2015), Mai, Nr. 9, p. 1505-1513spa
dc.relation.references[23] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Residual Learning for Image Recognition. En: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p. 770-778spa
dc.relation.references[24] In: Hermanek, P. ; Hutter, R. V. P. ; Sobin, L. H. ; Wagner, G. ; Wittekind, Ch.: Digestive System Tumours. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997, p. 71-152. - ISBN 978-3-662-03432-3spa
dc.relation.references[25] Hidalgo, Manuel: Pancreatic Cancer. En: New England Journal of Medicine 362 (2010), Nr. 17, p. 1605-1617spa
dc.relation.references[26] Hirche, T. ; Ignee, A. ; Barreiros, A. ; Schreiber-Dietrich, D. ; Jungblut, S. ; Ott, M. ; Hirche, H. ; Dietrich, C.: Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. En: Endoscopy 40 (2008), November, Nr. 11, p. 910-917spa
dc.relation.references[27] Iglesias-Garcia, Julio ; Larino-Noia, Jose ; Abdulkader, Ihab ; Forteza, Jeronimo ; Dominguez-Munoz, J. E.: EUS elastography for the characterization of solid pancreatic masses. En: Gastrointestinal Endoscopy 70 (2009), Dezember, Nr. 6, p. 1101-1108spa
dc.relation.references[28] Iglesias-Garc__a, Julio ; no Noia, Jose L. ; noz, Juan Enrique Dom__nguez-Mu New Imaging Techniques: Endoscopic Ultrasound-Guided Elastography. En: Gastrointestinal Endoscopy Clinics of North America 27 (2017), p. 551 - 567spa
dc.relation.references[29] Iglesias-Garcia, Julio ; Larino-Noia, Jose ; Abdulkader, Ihab ; Forteza, Jeronimo ; Dominguez-Munoz, J. E.: Quantitative Endoscopic Ultrasound Elastography: An Accurate Method for the Di_erentiation of Solid Pancreatic Masses. En: Gastroenterology 139 (2010), Oktober, Nr. 4, p. 1172-1180spa
dc.relation.references[30] Ihnatsenka, Barys ; Boezaart, Andre: Ultrasound: Basic understanding and learning the language. En: International journal of shoulder surgery 4 (2010), 07, p. 55-62spa
dc.relation.references[31] Jain, Akriti G. ; Saleem, Tabinda ; Kumar, Ranjeet ; Khetpal, Neelam ; Zafar, Hammad ; Rashid, Mamoon U. ; Ali, Saeed ; Majeed, Umair ; Ahmad, Sarfraz: En: Breaking Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy Vol. 5. 2019, p. 1 – 11spa
dc.relation.references[32] Janssen, Jan ; Schlorer, Eva ; Greiner, Lucas: EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. En: Gastrointestinal Endoscopy 65 (2007), Juni, Nr. 7, p. 971-978spa
dc.relation.references[33] Jaramillo, María ; Ruano, Josué ; Gómez, Martín ; Romero, Eduardo: Endoscopic ultrasound database of the pancreas. En: 16th International Symposium on Medical Information Processing and Analysis Vol. 11583 International Society for Optics and Photonics, 2020, p. 115830Gspa
dc.relation.references[34] Jaramillo, María ; Ruano, Josué ; M.D., Martín G. ; Romero, Eduardo: Automatic detection of pancreatic tumors in endoscopic ultrasound videos using deep learning techniques. En: Bottenus, Nick (Ed.) ; Ruiter, Nicole V. (Ed.): Medical Imaging 2022: Ultrasonic Imaging and Tomography Vol. 12038 International Society for Optics and Photonics, SPIE, 2022, p. 106 – 115spa
dc.relation.references[35] Kawada, Natsuko ; Tanaka, Sachiko: Elastography for the pancreas: Current status and future perspective. En: World J Gastroenterol 22 (2016), p. 3712-3724spa
dc.relation.references[36] Kitano, Masayuki ; Yamashita, Yasunobu: New Imaging Techniques for Endoscopic Ultrasonography: Contrast-Enhanced Endoscopic Ultrasonography. En: Gastrointestinal Endoscopy Clinics of North America 27 (2017), Nr. 4, p. 569-583. - Progress in Endoscopic Ultrasonography. - ISSN 1052-5157spa
dc.relation.references[37] Kitano, Masayuki ; Yoshida, Takeichi ; Itonaga, Masahiro ; Tamura, Takashi ; Hatamaru, Keiichi ; Yamashita, Yasunobu: Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. En: Journal of gastroenterology 54 (2019), Nr. 1, p. 19-32spa
dc.relation.references[38] Kuwahara, Takamichi ; Hara, Kazuo ; Mizuno, Nobumasa ; Haba, Shin ; Okuno, Nozomi ; Koda, Hiroki ; Miyano, Akira ; Fumihara, Daiki: Current status of artificial intelligence analysis for endoscopic ultrasonography. En: Digestive Endoscopy (2020)spa
dc.relation.references[39] Kuwahara, Takamichi ; Hara, Kazuo ; Mizuno, Nobumasa ; Okuno, Nozomi ; Matsumoto, Shimpei ; Obata, Masahiro ; Kurita, Yusuke ; Koda, Hiroki ; Toriyama, Kazuhiro ; Onishi, Sachiyo [u. a.]: Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. En: Clinical and translational gastroenterology 10 (2019), Nr. 5spa
dc.relation.references[40] Lee, Je_rey H. ; Ahmed, Osman: Endoscopic Management of Pancreatic Cancer. En: Surgical Oncology Clinics of North America 28 (2019), p. 147 - 159spa
dc.relation.references[41] Lee, Linda S. ; Andersen, Dana K. ; Ashida, Reiko ; Brugge, William R. ; Canto, Mimi I. ; Chang, Kenneth J. ; Chari, Suresh T. ; DeWitt, John ; Hwang, Joo H. ; Khashab, Mouen A. [u. a.]: EUS and related technologies for the diagnosis and treatment of pancreatic disease: research gaps and opportunities^a€"Summary of a National Institute of Diabetes and Digestive and Kidney Diseases workshop. En: Gastrointestinal endoscopy 86 (2017), Nr. 5, p. 768-778spa
dc.relation.references[42] Liu, Mengchen ; Liu, Shixia ; Su, Hang ; Cao, Kelei ; Zhu, Jun. Analyzing the Noise Robustness of Deep Neural Networks. 2018spa
dc.relation.references[43] Liu, Shengfeng ; Wang, Yi ; Yang, Xin ; Lei, Baiying ; Liu, Li ; Li, Shawn X. ; Ni, Dong ; Wang, Tianfu: Deep Learning in Medical Ultrasound Analysis: A Review. En: Engineering 5 (2019), Nr. 2, p. 261 - 275. - ISSN 2095-8099spa
dc.relation.references[44] Llop, Esther ; Guerrero, Pedro ; Duran, AdriA ; Barrabes, SAlvia ; Massaguer, Anna ; Iglesias, MarAa ; Quer, M.T. ; De Llorens, Rafael ; Peracaula, Rosa: Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. En: World Journal of Gastroenterology 24 (2018), 06spa
dc.relation.references[45] Mahadevan, Vishy: Anatomy of the pancreas and spleen. En: Surgery (Oxford) 37 (2019), Nr. 6, p. 297-301. - ISSN 0263-9319spa
dc.relation.references[46] Maisonneuve, Patrick: Epidemiology and burden of pancreatic cancer. En: La Presse Medicale 48 (2019), p. e113 - e123spa
dc.relation.references[47] Mateo, Juan L. ; Fernández-Caballero, Antonio: Finding out general tendencias in speckle noise reduction in ultrasound images. En: Expert Systems with Applications 36 (2009), Nr. 4, p. 7786 - 7797. - ISSN 0957-4174spa
dc.relation.references[48] McGuckin, Ellen ; Cade, Jennifer E. ; Hanison, James: The pancreas. En: Anaesthesia Intensive Care Medicine 21 (2020), Nr. 11, p. 604-610. - ISSN 1472-0299spa
dc.relation.references[49] Mei, Mei ; Ni, Jingmei ; Liu, Dan ; Jin, Piaopiao ; Sun, Leimin: EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. En: Gastrointestinal endoscopy 77 (2013), Nr. 4, p. 578-589spa
dc.relation.references[50] Miura, Fumihiko ; Takada, Tadahiro ; Amano, Hodaka ; Yoshida, Masahiro ; Furui, Shigeru ; Takeshita, Koji: Diagnosis of pancreatic cancer. En: HPB 8 (2006), p. 337 - 342spa
dc.relation.references[51] Moutinho-Ribeiro, Pedro ; Iglesias-Garcia, Julio ; Gaspar, Rui ; Macedo, Guilherme: Early pancreatic cancer: The role of endoscopic ultrasound with or without tissue acquisition in diagnosis and staging. En: Digestive and Liver Disease 51 (2019), p. 4 - 9spa
dc.relation.references[52] Moutinho-Ribeiro, Pedro ; Liberal, Rodrigo ; Macedo, Guilherme: Endoscopic ultrasound in pancreatic cancer treatment: Facts and hopes. En: Clinics and Research in Hepatology and Gastroenterology 43 (2019), Nr. 5, p. 513 - 521. - ISSN 2210-7401 [53] Norton, Ian D. ; Zheng, Yi ; Wiersema, Maurits S. ; Greenleaf, James ; Clain, Jonathan E. ; DiMagno, Eugene P.: Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis. En: Gastrointestinal Endoscopy 54 (2001), Nr. 5, p. 625 - 629. - ISSN 0016-5107spa
dc.relation.references[54] Omary, M. B. ; Lugea, Aurelia ; Lowe, Anson W. ; Pandol, Stephen J.: The pancreatic stellate cell: a star on the rise in pancreatic diseases. En: The Journal of Clinical Investigation 117 (2007), 1, Nr. 1, p. 50-59spa
dc.relation.references[55] Owens, David J. ; Savides, Thomas J.: Endoscopic Ultrasound Staging and Novel Therapeutics for Pancreatic Cancer. En: Surgical Oncology Clinics of North America 19 (2010), Nr. 2, p. 255 - 266. - ISSN 1055-3207spa
dc.relation.references[56] Park, RichardD. ; Nyland, ThomasG. ; Lattimer, JimmyC. ; Miller, CharlesW. ; Lebel, JackL.: B-MODE GRAY-SCALE ULTRASOUND: IMAGING ARTIFACTS AND INTERPRETATION PRINCIPLES. En: Veterinary Radiology 22 (1981), Nr. 5, p. 204-210spa
dc.relation.references[57] Patey, Susannah J. ; Corcoran, James P.: Physics of ultrasound. En: Anaesthesia Intensive Care Medicine 22 (2021), Nr. 1, p. 58-63. - ISSN 1472-0299spa
dc.relation.references[58] Peng, Hanchuan ; Long, Fuhui ; Ding, Chris: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. En: IEEE Transactions on pattern analysis and machine intelligence 27 (2005), Nr. 8, p. 1226- 1238spa
dc.relation.references[59] Rosenthal, Michael H. ; Lee, Alexander ; Jajoo, Kunal: Imaging and Endoscopic Approaches to Pancreatic Cancer. En: Hematology/Oncology Clinics of North America 29 (2015), Nr. 4, p. 675 - 699. - ISSN 0889-8588spa
dc.relation.references[60] Ruano, Josué ; Jaramillo, María ; Gómez;Martín;Romero;Eduardo : Robust Descriptor of Pancreatic Tissue for Automatic Detection of Pancreatic Cancer in Endoscopic Ultrasonography: En ISSN - 0301 -5629spa
dc.relation.references[61] Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. En: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, p. 211-252spa
dc.relation.references[62] S_aftoiu, A. ; Vilmann, P. ; Gorunescu, F. ; Janssen, J. ; Hocke, M. ; Larsen, M. ; Iglesias-Garcia, J. ; Arcidiacono, P. ; Will, U. ; Giovannini, M. ; Dietrich, C. ; Havre, R. ; Gheorghe, C. ; McKay, C. ; Gheonea, D. ; Ciurea, T.: Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. En: Endoscopy 43 (2011), M arz, Nr. 07, p. 596-603spa
dc.relation.references[63] S_aftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Janssen, Jan ; Hocke, Michael ; Larsen, Michael ; Iglesias-Garcia, Julio ; Arcidiacono, Paolo ; Will, Uwe ; Giovannini, Marc ; Dietrich, Cristoph F. ; Havre, Roald ; Gheorghe, Cristian ; McKay, Colin ; Gheonea, Dan I. ; Ciurea, Tudorel: Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. En: Clinical Gastroenterology and Hepatology 10 (2012), Januar, Nr. 1, p. 84-90.e1spa
dc.relation.references[64] Sakamoto, Hiroki ; Kitano, Masayuki ; Suetomi, Yoichiro ; Maekawa, Kiyoshi ; Takeyama, Yoshifumi ; Kudo, Masatoshi: Utility of Contrast- Enhanced Endoscopic Ultrasonography for Diagnosis of Small Pancreatic Carcinomas. En: Ultrasound in Medicine & Biology 34 (2008), April, Nr. 4, p. 525-532spa
dc.relation.references[65] Singh, Ajaypal ; Faulx, Ashley L.: Endoscopic Evaluation in the Workup of Pancreatic Cancer. En: Surgical Clinics of North America 96 (2016), Nr. 6, p. 1257 - 1270. - ISSN 0039-6109spa
dc.relation.references[66] Singh, Karamjeet ; Ranade, Sukhjeet K. ; Singh, Chandan: A hybrid algorithm for speckle noise reduction of ultrasound images. En: Computer Methods and Programs in Biomedicine 148 (2017), p. 55-69. - ISSN 0169-2607spa
dc.relation.references[67] Slack, J.M.: Developmental biology of the pancreas. En: Development 121 (1995), 06, Nr. 6, p. 1569-1580. - ISSN 0950-1991spa
dc.relation.references[68] Stevens, Tyler ; Parsi, Mansour A.: Endoscopic ultrasound for the diagnosis of chronic pancreatitis. En: World journal of gastroenterology 16 (2010), Jun, Nr. 23, p. 2841-2850. - 20556829[pmid]. - ISSN 2219-2840spa
dc.relation.references[69] Stevens, Tyler ; Parsi, Mansour A.: Endoscopic ultrasound for the diagnosis of chronic pancreatitis. En: World journal of gastroenterology 16 (2010), 06, p. 2841-50spa
dc.relation.references[70] Stolzenberg-Solomon, Rachael Z. ; Amundadottir, Laufey T.: Epidemiology and Inherited Predisposition for Sporadic Pancreatic Adenocarcinoma. En: Hematology/Oncology Clinics of North America 29 (2015), Nr. 4, p. 619 - 640spa
dc.relation.references[71] Sung, Hyuna ; Ferlay, Jacques ; Siegel, Rebecca L. ; Laversanne, Mathieu ; Soerjomataram, Isabelle ; Jemal, Ahmedin ; Bray, Freddie: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. En: CA: A Cancer Journal for Clinicians 71 (2021), Nr. 3, p. 209-249spa
dc.relation.references[72] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ; Reed, Scott ; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke, Vincent ; Rabinovich, Andrew: Going Deeper with Convolutions. En: Computer Vision and Pattern Recognition (CVPR), 2015spa
dc.relation.references[73] Saƒftoiu, Adrian ; Vilmann, Peter ; Dietrich, Christoph F. ; Iglesias-Garcia, Julio ; Hocke, Michael ; Seicean, Andrada ; Ignee, Andre ; Hassan, Hazem ; Streba, Costin T. ; IoncicAƒ, Ana M. ; Gheonea, Dan I. ; Ciurea, Tudorel: Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). En: Gastrointestinal Endoscopy 82 (2015), Nr. 1, p. 59 - 69. - ISSN 0016-5107spa
dc.relation.references[74] SAƒftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Gheonea, Dan I. ; Gorunescu, Marina ; Ciurea, Tudorel ; Popescu, Gabriel L. ; Iordache, Alexandru ; Hassan, Hazem ; Iordache, Sevasti_A£a: Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. En: Gastrointestinal Endoscopy 68 (2008), Nr. 6, p. 1086 - 1094. - ISSN 0016-5107spa
dc.relation.references[75] SAƒftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Janssen, Jan ; Hocke, Michael ; Larsen, Michael ; Iglesias-Garcia, Julio ; Arcidiacono, Paolo ; Will, Uwe ; Giovannini, Marc ; Dietrich, Cristoph F. ; Havre, Roald ; Gheorghe, Cristian ; McKay, Colin ; Gheonea, Dan I. ; Ciurea, Tudorel: Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. En: Clinical Gastroenterology and Hepatology 10 (2012), Nr. 1, p. 84 - 90.e1. - ISSN 1542-3565spa
dc.relation.references[76] Takhar, Arjun S. ; Palaniappan, Ponni ; Dhingsa, Rajpal ; Lobo, Dileep N.: Recent developments in diagnosis of pancreatic cancer. En: BMJ 329 (2004), Nr. 7467, p. 668-673. - ISSN 0959-8138spa
dc.relation.references[77] Tonozuka, Ryosuke ; Itoi, Takao ; Nagata, Naoyoshi ; Kojima, Hiroyuki ; Sofuni, Atsushi ; Tsuchiya, Takayoshi ; Ishii, Kentaro ; Tanaka, Reina ; Nagakawa, Yuichi ; Mukai, Shuntaro: Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study. En: Journal of Hepato-Biliary-Pancreatic Sciences (2020)spa
dc.relation.references[78] Walling, Anne ; Freelove, Robert: Pancreatitis and Pancreatic Cancer. En: Primary Care: Clinics in O_ce Practice 44 (2017), Nr. 4, p. 609 - 620. - ISSN 0095-4543spa
dc.relation.references[79] Wani, Sachin ; Hall, Matthew ; Keswani, Rajesh N. ; Aslanian, Harry R. ; Casey, Brenna ; Burbridge, Rebecca ; Chak, Amitabh ; Chen, Ann M. ; Cote, Gregory ; Edmundowicz, Steven A. ; Faulx, Ashley L. ; Hollander, Thomas G. ; Lee, Linda S. ; Mullady, Daniel ; Murad, Faris ; Muthusamy, V. R. ; Pfau, Patrick R. ; Scheiman, James M. ; Tokar, Jeffrey ; Wagh, Mihir S. ; Watson, Rabindra ; Early, Dayna: Variation in Aptitude of Trainees in Endoscopic Ultrasonography, Based on Cumulative Sum Analysis. En: Clinical Gastroenterology and Hepatology 13 (2015), Nr. 7, p. 1318 - 1325.e2. - ISSN 1542-3565spa
dc.relation.references[80] Wani, Sachin ; Han, Samuel ; Simon, Violette ; et al.: Setting minimum standards for training in EUS and ERCP: results^A from a prospective multicenter study evaluating learning curves and competence among advanced endoscopy trainees. En: Gastrointestinal Endoscopy 89 (2019), Nr. 6, p. 1160 - 1168.e9. - ISSN 0016-5107spa
dc.relation.references[81] Wani, Sachin ; Muthusamy, V. R. ; Komanduri, Srinadh: EUS-guided tissue acquisition: an evidence-based approach (with videos). En: Gastrointestinal Endoscopy 80 (2014), p. 939 - 959.e7spa
dc.relation.references[82] Wen-Li Lee ; Yung-Chang Chen ; Kai-Sheng Hsieh: Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. En: IEEE Transactions on Medical Imaging 22 (2003), March, Nr. 3, p. 382-392. - ISSN 1558-254Xspa
dc.relation.references[83] Yasuda, Kenjiro ; Mukai, Hidekazu ; Nakajima, Masatsugu: Endoscopic Ultrasonography Diagnosis of Pancreatic Cancer. En: Gastrointestinal Endoscopy Clinics of North America 5 (1995), Nr. 4, p. 699 - 712. - ISSN 1052-5157spa
dc.relation.references[84] Younan, George: Pancreas Solid Tumors. En: Surgical Clinics of North America 100 (2020), Nr. 3, p. 565-580. - Surgical Oncology for the General Surgeon. - ISSN 0039-6109spa
dc.relation.references[85] Zhang, Jun ; Zhu, Liangru ; Yao, Liwen ; Ding, Xiangwu ; Chen, Di ; Wu, Huiling ; Lu, Zihua ; Zhou, Wei ; Zhang, Lihui ; An, Ping ; Xu, Bo ; Tan, Wei ; Hu, Shan ; Cheng, Fan ; Yu, Honggang: Deep-learning based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video). En: Gastrointestinal Endoscopy (2020). - ISSN 0016-5107spa
dc.relation.references[86] Zhang, Min-Min ; Yang, Hua ; Jin, Zhen-Dong ; Yu, Jian-Guo ; Cai, Zhe- Yuan ; Li, Zhao-Shen: Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. En: Gastrointestinal Endoscopy 72 (2010), Nr. 5, p. 978 - 985. - ISSN 0016-5107spa
dc.relation.references[87] Zhu, Maoling ; Xu, Can ; Yu, Jianguo ; Wu, Yijun ; Li, Chunguang ; Zhang, Minmin ; Jin, Zhendong ; Li, Zhaoshen: Differentiation of Pancreatic Cancer and Chronic Pancreatitis Using Computer-Aided Diagnosis of Endoscopic Ultrasound (EUS) Images: A Diagnostic Test. En: PLOS ONE 8 (2013), 05, Nr. 5, p. 1-6spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.otherNeoplasias Pancreáticasspa
dc.subject.otherPancreatic Neoplasmseng
dc.subject.otherDiagnóstico por Imagenspa
dc.subject.otherDiagnostic Imagingeng
dc.subject.proposalPancreatic cancereng
dc.subject.proposalAdenocarcinomaeng
dc.subject.proposalDetectioneng
dc.subject.proposalDifferentiationeng
dc.subject.proposalEndoscopic ultrasoundeng
dc.subject.proposalEchoendoscopyeng
dc.subject.proposalImage classificationeng
dc.subject.proposalCáncer de páncreasspa
dc.subject.proposalAdenocarcinomaspa
dc.subject.proposalDetecciónspa
dc.subject.proposalDiferenciaciónspa
dc.subject.proposalEcoendoscopiaspa
dc.subject.proposalClasificación de imágenesspa
dc.titleDetection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequenceseng
dc.title.translatedDetección de tumores pancreáticos malignos basado en la caracterización de textura durante secuencias de video de ultrasonido endoscópicospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053835990.2022.pdf
Tamaño:
15.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: