Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster

dc.contributor.advisorOscar Yesid, Suárez Palaciosspa
dc.contributor.authorCortés Conde, Felix Fabiánspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2022-03-01T16:40:11Z
dc.date.available2022-03-01T16:40:11Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLas materias primas derivadas biológicamente son una fuente altamente deseable de combustibles renovables para la producción de combustibles. Se pueden cultivar de forma renovable y pueden producir combustibles similares en composición a los combustibles fósiles convencionales. Los aceites vegetales al utilizar el hidrotratamiento catalítico reducen el contenido de oxígeno aumentando su viabilidad para su uso a nivel industrial. El proceso de hidrotratamiento de aceites vegetales es un proceso el cual depende en gran medida de la composición de la materia prima y de los parámetros de operación, especialmente de la temperatura, tipo de catalizador, propiedades de transporte. Para el aceite utilizado en el hidrotratamiento, las vías de reacción asociadas se han explorado a través de estudios experimentales proporcionando modelos aplicables para determinar la tasa de producción de los hidrocarburos. Se investiga el modelo de la triestearina-hidrógeno soportado sobre un catalizador, en un reactor no isotérmico, donde se calcula las velocidades de transferencia de masa gas-líquido y sólido-liquido por medio de las correlaciones de Fillion, Forghani y Treybal. Asimismo, para el cálculo de las velocidades de transferencia de masa se tomó como base teórica la teoría de la doble película, cuyas ecuaciones con los balances de masa y energía se resuelven simultáneamente utilizando técnicas numéricas cuya fiabilidad se evaluó mediante la comparación con resultados reportados en la literatura. El presente trabajo utiliza un reactor Trickle bed para representar el comportamiento en la producción de alcanos C17 y C18 para poder determinar las composiciones de la triestearina, acido esteárico, octadecano y heptadecano utilizando el modelo propuesto por Zhang y ajustar las constantes del modelo para obtener una mayor predicción del mecanismo de reacción. También, se investigó la distribución de la concentración y la temperatura a lo largo del reactor variando variables como la presión de hidrógeno y las velocidades de transferencia de masa de cada reacción involucrada en el modelamiento. (Texto tomado de la fuente).spa
dc.description.abstractBiologically derived raw materials are a highly desirable source of renewable fuels for fuel production. They can be grown renewablely and can be used to produce fuels with similar composition compared to conventional fossil fuels. Vegetable oils raw material for this purpose have increased their viability for industrial use. The process of hydrotreatment of vegetable oils is a process which depends largely on the composition of the raw material and the operating parameters, especially the temperature, type of catalyst and transport properties. For the oil used in hydrotreatment, the associated reaction pathways have been explored through experimental studies providing applicable models to determine the rate of hydrocarbons production. The model of the reaction of triestearin with hydrogen with supported catalyst, in a non-isothermal reactor, is investigated. The gas-liquid and solid-liquid mass transfer rates are calculated with several correlations proposed by Forghani and Trybal correlations. Likewise, for the calculation of mass transfer velocities, the double film theory was taken as theoretical basis, whose equations with mass and energy balances are solved simultaneously using numerical techniques whose reliability was evaluated by comparison with results reported in the literature. The present work models a Trickle bed reactor to represent the production of alkanes C17 and C18 to determine the compositions of triestearine, stearic acid, octadecan and heptadecan using a chemical kinetic model proposed in other study and adjusting the constants of the model to obtain a better prediction of the concentrations. Also, the distribution of concentration and temperature throughout the reactor was calculated using variables such as hydrogen pressure and mass transfer rates of each reaction involved in modeling.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBiorrefinería y biorrefinaciónspa
dc.format.extentxx, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81095
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAli, M. E. (2005). Handbook of Industrial Chemistry. McGraw-Hill.spa
dc.relation.referencesAlvarez, A. A. (2008). Modeling residue hydroprocessing in a multi-fixed-bed reactor system. Applied Catalysis A: General, 148-158.spa
dc.relation.referencesAncheyta, J. (2011). Modeling and Simulation Catalytic Reactor for Petroleum Refining. Canada: John Wiley & Sons.spa
dc.relation.referencesBenkrid, K. R. (1997). Prediction of pressure drop and liquid saturation in trickle-bed reactors operated high interaction regimes. Chemical Engineering Science, 4021-4032.spa
dc.relation.referencesBezergianni, S. K. (2009). Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresource Technology , 3036-3042.spa
dc.relation.referencesBianchi, C. (2011). Non Edible Oils: Raw Materials for Sustainable Biodiésel. En M. M. Stoytcheva, Biodiésel. Feedstocks and Processing Technologies (págs. 3-22). Rijeka: InTech.spa
dc.relation.referencesCeriani, R. G. (2009). Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods. Fluid Phase Equilibria, 49-55.spa
dc.relation.referencesChoudhary, T. (2011). Renewable Fuels Via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 1-12.spa
dc.relation.referencesCoumans, E. H. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. pplied Catalysis B: Environmental, 290-301.spa
dc.relation.referencesDong-Sun, L. B.-S.-Y. (1998). Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta, 163-175.spa
dc.relation.referencesFangrui, M. M. (1999). Biodiésel Production: a review. Bioresource Technology, 1-15.spa
dc.relation.referencesFurimsky, E. (2013). Hydroprocessing challenges in biofuels production. Catalysis Today, 13-56.spa
dc.relation.referencesHilbers, T. S. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 1-8.spa
dc.relation.referencesKnothe, G. (2010). Biodiésel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science, 364-373.spa
dc.relation.referencesM. Snare, I. K.-A. (2007). Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation. Chemical Engineering Journal, 29-34.spa
dc.relation.referencesMederos, F. A. (2009). Review on criteria to ensure ideal behaviors in trickle bed reactors. Applied Catalysis A: General, 1-19.spa
dc.relation.referencesMohammad, M. H. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and sustainable Energy Review, 121-132.spa
dc.relation.referencesPoling, B. P. (2001). The Properties of gases nad liquids. New York: The McGraw-Hill.spa
dc.relation.referencesSebos, I. M. (2009). Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable diesel. Fuel, 145-149.spa
dc.relation.referencesSoo-Young, N. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 88-96.spa
dc.relation.referencesVonortas, A. P. (2014). Comparative Analysis of Biodiésel versus Green Diesel. WIRE's Energy and Environment, 3-23.spa
dc.relation.referencesWang, S. G. (2012). Catalytic Conversion of Carboxylic acids in bio-oil for Liquid Hydrocarbons Production. BIOMASS AND BIOENERGY, 138-143.spa
dc.relation.referencesYuwei Bie Juha, L. J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General , 1-23.spa
dc.relation.referencesZhang, H. L. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 238-248.spa
dc.relation.referencesAnand, M. S. (2012). Temperature Dependent reaction pathway for the anomalous hydrocracking of triglycerides in the presence of sulfided Co-Mo Catalyst. Bioresource Technol, 148-155.spa
dc.relation.referencesAncheyta, J. (2011). Modeling and Simulation Catalytic Reactor for Petroleum Refining. Canada: John Wiley & Sons.spa
dc.relation.referencesAnsys. (2010). Help, Ansys Release. Ansys Inc, 1-130.spa
dc.relation.referencesArun, N. S. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 240-255.spa
dc.relation.referencesAzizi, N. A.-A. (2013). Hydrotreating of Light Cycle Oil over NiMo and CoMo Catalysts with Different Supports. Fuel Processing Technology, 172-178.spa
dc.relation.referencesBenkrid, K. R. (1997). Prediction of pressure drop and liquid saturation in trickle-bed reactors operated high interaction regimes. Chemical Engineering Science, 4021-4032.spa
dc.relation.referencesBernard, E. (2014). Biodiésel: Los aspectos mecánicos en los vehículos. Costa Rica: Centro Nacional de la Producción más Limpia.spa
dc.relation.referencesBezergianni, S. D. (2010). Hydrotreating of waste cooking oil for biodiésel production. Part II: Effect of temperature on hydrocarbon composition. Bioresource Technology, 7658-7660.spa
dc.relation.referencesBezergianni, S. D. (2013). Comparison Between Different Type of Renewable Diesel. Renewable and Sustainable Energy Reviews, 110-116.spa
dc.relation.referencesBezergianni, S. K. (2009). Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresource Technology , 3036-3042.spa
dc.relation.referencesBhaskar, G. V. (2004). Three-Phase Reactor Model to Simulate the Performance of pilot-plant and industrial trickle bed reactors sustaining hydrotreating reactions. Ind. Eng. Chem. Res, 6654-6689.spa
dc.relation.referencesBoles, Y. A. (2012). Termodinamica. Mexico: McGRaw.spa
dc.relation.referencesBritish Petroleum. (20 de Marzo de 2018). british petroleum. Recuperado el 14 de Noviembre de 2015, de british petroleum: http://www.bp.comspa
dc.relation.referencesC.-Y. Yang, Z. F.-f. (2012). Review and prospects of Jatropha biodiésel industry in China. Renewable and Sustainable Energy Reviews, 2178-2190.spa
dc.relation.referencesChianelli, R. B. (2009). Unsupported transition metal sulfide catalysts: 100 years of science and application. Catalysis Today, 275-286.spa
dc.relation.referencesChoudhary, T. (2011). Renewable Fuels Via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 1-12.spa
dc.relation.referencesChu, C. N. (1985). Effective Thermal conductivity in trickle bed reactors application of effective medium theory and random walk analysis. Chemical Engineering Communications, 127-140.spa
dc.relation.referencesConstantinou, L. G. (1995). Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilibria , 11-22.spa
dc.relation.referencesCoumans, E. H. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. pplied Catalysis B: Environmental, 290-301.spa
dc.relation.referencesCzernik, S. B. (2004). Overview of Applications of Biomass fast Pyrolysis Oil. Energy & Fuels, 590-598.spa
dc.relation.referencesDemirbas, A. (2000). Mechanisms of Liquefaction and Pyrolisis Reactions of Biomass. Energy Convrsion & Management, 633-646.spa
dc.relation.referencesDiya'uddeen, B. H. (2012). Performance Evaluation of Biodiésel from Used Domestic Waste Oils: A Review. Process Safety and Environmental Protection, 164-179.spa
dc.relation.referencesDong-Sun, L. B.-S.-Y. (1998). Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta, 163-175.spa
dc.relation.referencesDudukovic, M. L. (2002). Multiphase catalytic Reactors: A Perspective on Current Knowledge and Future Trends. Catalysis Reviews, 123-246.spa
dc.relation.referencesEjisbouts, S. A. (2013). Economic and technical impacts of replacing Co and Ni promotion in hydrotreating catalysts. Applied Catalysis A: General, 169-182.spa
dc.relation.referencesEllman, M. M. (1990). A new improved liquid hold-up correlation for trickle bed reactors. . Chemical Engineering Science, 1677-1684.spa
dc.relation.referencesFillion, B. M. (2002). Kinetics, Gas-Liquid Mass Transfer, and Modeling of the Soybean Oil hydrogenation process. Ind. Eng. Chem. Res , 697-709.spa
dc.relation.referencesFonteix, C. B. (1995). Haploid and diploid algorithms, a new approach for global optimization: compared performances. INT. J. SYSTEMS SCI, 1919-1933.spa
dc.relation.referencesGirgis, M. G. (1991). Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind. Eng. Chem. Res, 2021-2058.spa
dc.relation.referencesGosselink, R. H.-W.-H.-J.-E. (2013). Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. CHEMSUSCHEM REVIEWS, 1-20.spa
dc.relation.referencesGosselink, R. H.-W.-H.-J.-E. (2013). Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. CHEMSUSCHEM REVIEWS, 1-20.spa
dc.relation.referencesHilbers, T. S. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 1-8.spa
dc.relation.referencesIIuta, I. T. (1997). Gas-liquid mass transfer in fixed beds with two-phase cocurrent downflow: gas Newtonian and non-Newtonian liquid systems. . Chemical Engineering and Technology , 538-549.spa
dc.relation.referencesJeczmionek, L. P.-S. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-procesing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal Effect-Theorical Considerations. Fuel, 1-5.spa
dc.relation.referencesJo-Han Ng, H. K. (2009). Advances in Biodiésel fuel for Application in Compression Ignition Engines. Clean Techn Environ Policy, 459-493.spa
dc.relation.referencesKalnes, T. M. (2008). Green diesel production by hydrorefining renewable feedstocks. Life cicle analysis of green diesel produced from renewable feedstocks. Biofuels, 1-10.spa
dc.relation.referencesKan, K. G. (1979). Pressure drop and holdup in two-phase cocurrent trickle flows through beds of small particles. Industrial and Engineering Chemistry Process Design and Development, 760-.spa
dc.relation.referencesKikhtyanin, O. R. (2010). Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst. Fuel, 3085-3092.spa
dc.relation.referencesKnothe, G. (2010). Biodiésel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science, 364-373.spa
dc.relation.referencesKorsten, H. H. (1996). Three-Phase Reactor model for hydrotreating in pilot trickle-bed reactors. AIChE Journal , 1350-1360.spa
dc.relation.referencesKubáta, A. S. (2011). Triacylglyceride thermal cracking: Pathways to Cyclic Hydrocarbons. energy & Fuels, 672-685.spa
dc.relation.referencesLarachi, F. L. (1991). Experimental study of a trickle bed reactor operating at hight pressure: two phase pressure drop and liquid saturation. Chemical Engineering Science, 1233-1246.spa
dc.relation.referencesLeung, D. W. (2010). A Review on Biodiésel Production Using Catalyzed Transesterification. Applied Energy, 1083-1095.spa
dc.relation.referencesLiuta, L. L. (1999). The generalized slit model: Pressure gradient, liquid holdup and wetting efficiency in gas-lquid trickle flow. Chemical Engineering Science, 5039-5045.spa
dc.relation.referencesMapiour, M. (2009). Kinetics and Effects of H2 Partial Pressure on Hydrotreating of Heavy Gas Oil. Saskatoon: University of Saskatchewan .spa
dc.relation.referencesMills, P. D. (1981). Evaluation of liquid-solid contacting in Trickle bed reactors by tracer method. AIChE Journal, 893-904.spa
dc.relation.referencesMohammad, M. H. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and sustainable Energy Review, 121-132.spa
dc.relation.referencesMorel, F. K. (1997). Processes and Catalysts for Hydrocracking of Heavy Oil and Residues. En G. D. Forment, Hydrotreatment and hydrocracking of oil fractions (págs. 1-15). Francia: Elsevier Science B.V.spa
dc.relation.referencesMyung, I. (2003). Tutorial on Maximum Likelihood Estimation. Journal of Mathematical Psychology, 90-100.spa
dc.relation.referencesNannoola, Y. R. (2007). Estimation of pure component properties part 2. Estimation of critical property data by group contribution. Fluid Phase Equilibria, 1-27.spa
dc.relation.referencesNasikin, M. B.-H. (2009). Biogasoline from Palm Oil by Simultaneous Cracking and Hydrogenation Reaction over NiMo/Zeolite Catalyst. World Applied Science Journal 5, 74-79.spa
dc.relation.referencesNiagan, S. S. (2011). Production of Liquid biofuels from Renewable Resources. Progress in Energy and Combustion Science, 52-68.spa
dc.relation.referencesO.B. Ayodelea, d. H. (2014). Hydrodeoxygenation of oleic acid into n- and iso-paraffin biofuel using zeolite supported fluoro-oxalate modified molybdenum catalyst: Kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 1-11.spa
dc.relation.referencesPa¨ivi Ma¨ki-Arvela, I. K. (2007). Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy & Fuels, 30-41.spa
dc.relation.referencesPankaj Kumar, }. S. (2014). Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General, 28-38.spa
dc.relation.referencesPrausnitz, J. L. (2000). Termodinámica molecular de los equilibrios de fases. Madrid: Prentice Hall Iberia.spa
dc.relation.referencesQuintero, J. R. (2012). Social and techno-economical analysis of biodiésel production in Peru. Energy Policy, 427-435.spa
dc.relation.referencesRanade, V. C. (2011). Hydrodynamics and Flow Regimes. En V. C. Ranade, Trickle Bed Reactors (págs. 25-29). España: Elsevier.spa
dc.relation.referencesRandy L. Haupt, .. S. (2004). Practical genetic algorithms. New Jersey: WILEY-INTERSCIENCE.spa
dc.relation.referencesRincón, P. C. (2012). A Propósito del Año Internacional de la Energía Sostenible para Todos. Innovación y Ciencia, 18-27.spa
dc.relation.referencesRoy, M. M. (2014). Performance and emissions of a diesel engine fueled by biodiésel–diesel, biodiésel–diesel-additive and kerosene–biodiésel blends. Energy Conversion and Management, 164-173.spa
dc.relation.referencesSahu, R. B.-P. (2015). A review of recent advance in catalytic hydrocracking of heavy residues. Journal of industrial and engineering chemistry, 1-12.spa
dc.relation.referencesSari, E. (2013). Green Diesel production via Catalytic hidrogenation/decarboxylation of triglycerides and fatty acids of vegestable oil and brown grase. Wayne State University, 1-146.spa
dc.relation.referencesSarin, A. (2012). Biodiésel. Production and Properties. RCSPublishing.spa
dc.relation.referencesSatterfield, C. (1975). Trickle-Bed Reactor. AIChE Journal, 209-228.spa
dc.relation.referencesSebos, I. M. (2009). Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable diesel. Fuel, 145-149.spa
dc.relation.referencesSenol, O. R. (2007). Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts. Journal of Molecular Catalysis A: Chemical, 1-8.spa
dc.relation.referencesShen, Z. M. (2015). Reaction mechanisms of thioetherification for mercaptans and olefins over sulfided Mo-Ni/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 120-127.spa
dc.relation.referencesShuangning Xiu, A. S. (2012). Bio-Oil Production and Upgrading Research: A Review. Renewable and Sustainable Energy Reviews, 4406-4414.spa
dc.relation.referencesSingh, .. P. (2011). Production of liquid biofuels from renewable resources, . Progress in Energy and Combustion Science , 52-68.spa
dc.relation.referencesSjoberg, J. Z. (1995). Nonlinear Black-Box Modeling in System Identification: a Unfied Overview. Automatica, 1691-1724.spa
dc.relation.referencesSmith, J. (1981). External Transport Process in Heterogeneous Reactions. En J. Smith, Chemical Engineering Kinetics (págs. 434-437). Mc-GRAW-HILL.spa
dc.relation.referencesSmith, J. (1981). External Transport Process in Heterogeneous Reactions. En J. Smith, Chemical Engineering Kinetics (págs. 434-437). Mc-GRAW-HILL.spa
dc.relation.referencesSoo-Young, N. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 88-96.spa
dc.relation.referencesSotelo, R. T.-Z.-L. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. En I. Karamé, Hidrogenation (págs. 188-216). Beirut: INTECH.spa
dc.relation.referencesSpeight, J. A. (2007). Hydroprocessing of Heavy Oils and Residua. New York: Taylor & Francis Group.spa
dc.relation.referencesStartsev, A. (1995). The Mechanism of HDS Catalysis. Catalysis Reviews: Science and Engineering , 353-423.spa
dc.relation.referencesSuarez-Palacios, O. (2011). Producción y Modelamiento de Gliceril-Esteres como Plastificantes para PVC. Bogota: Universidad Nacional de Colombia.spa
dc.relation.referencesSudhakara Reddy., Y. S. (2016). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac Kinet Mech Cat, 1-50.spa
dc.relation.referencesThomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (First ed.). New York: VCH.spa
dc.relation.referencesTreybal, R. (2000). Operaciones de transferencia de masa. Rhode Island: McGRAW-HILL.spa
dc.relation.referencesWammes, W. W. (1991). Hydrodynamics is a pressurized cocurrent gas-liquid trickle bed reactor. . Chemical Engineering Technology, 406.spa
dc.relation.referencesWang, C. T. (2012). One-Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel-Range Alkanes. ChemSUSChem, 1-11.spa
dc.relation.referencesWang, X. (2013). Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engne fueled with diesel and biodiésel at high altitude. Fuel, 852-858.spa
dc.relation.referencesWater, E. P. (1997). Identification of Parametric Models. Birmingham: Springer.spa
dc.relation.referencesWhitley, D. (2016). A Genetic Algorithm Tutorial. Computer Science Department, 1-20.spa
dc.relation.referencesYenumala, S. M. (2016). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac. Kinet. Mech.Cat, 1-15.spa
dc.relation.referencesYuwei Bie Juha, L. J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General , 1-23.spa
dc.relation.referencesYuwei Bie, J. K. (2015). Hydrodeoxygenation of methyl heptanoate over Rh/ZrO2 catalyst as a model reaction for biofuel production: kinetic modeling based on reaction mechanism. Industrial & Engineering Chemistry Research, 1-37.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembVegetable oils as fueleng
dc.subject.lembAceites vegetales como combustiblesspa
dc.subject.lembPalm-oileng
dc.subject.lembAceites de palmaspa
dc.subject.lembChemical engineeringeng
dc.subject.lembIngeniería químicaspa
dc.subject.proposalBiodieselspa
dc.subject.proposalModelamientospa
dc.subject.proposalReactor trickle bedspa
dc.subject.proposalBiodieseleng
dc.subject.proposalAceite de palmaspa
dc.subject.proposalPalm oileng
dc.subject.proposalTrickle bed reactoreng
dc.subject.proposalHydrotreatmenteng
dc.titleModelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-ésterspa
dc.title.translatedModeling and simulation of a hydrotreatment reactor for the production of non-ester biodieseleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022345193.2022.pdf
Tamaño:
1.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: