New characteristic dependent linear rank inequalities

dc.contributor.advisorSarria Zapata, Humbertospa
dc.contributor.authorPeña Macias, Victor Bryallanspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupTeoría de Matricesspa
dc.date.accessioned2020-07-24T05:11:36Zspa
dc.date.available2020-07-24T05:11:36Zspa
dc.date.issued2020-02-18spa
dc.description.abstractEn este trabajo estudiamos como construir desigualdades rango lineales dependientes de la característica y sus aplicaciones a la Teoría de Codificación de Redes y a la Teoría de Repartición de Secretos en protocolos criptográficos. Proponemos dos métodos que aprovechan la existencia de ciertas matrices binarias. El primer método está basado en la construcción de ciertos espacios vectoriales complementarios y tiene aplicaciones directas a la Teoría de Codificación de Redes. Presentando así, entre las aplicaciones y usando problemas de programación lineal, que para cada conjunto finito o cofinito de números primos P, existe una sucesión de redes (N(t)), en la cual cada miembro es soluble linealmente sobre un cuerpo finito si, y sólo si, la característica del cuerpo está en P; además, la capacidad lineal sobre cuerpos cuya característica no está en P, tiende a 0, cuando t tiende a infinito. El segundo método está basado en la construcción de ciertos espacios que se comportan en cierta forma como un esquema de repartición de secretos y tiene aplicaciones directas en la Teoría de Repartición de Secretos; calculamos cotas inferiores de radios de información lineal de algunas estructuras. Adicionalmente, proponemos una extensión del problema de solubilidad de un operador de clausura. Estudiamos la capacidad de un operador de clausura y una serie de problemas de programación lineal cuyas soluciones son cotas superiores sobre esta capacidad; este problema está relacionado al cálculo de capacidades de redes de uniemisión múltiple.spa
dc.description.abstractIn this work, we develop some methods for producing characteristic-dependent linear rank inequalities and show some applications to Network Coding and Secrets Sharing. We propose two methods that take advantage of the existence of certain binary matrices. The first method is based on the construction of certain complementary vector spaces and has direct applications to Network Coding. Using linear programming problems, for each finite or co-finite set of primes P, we show as application that there exists a sequence of networks (N(t)) in which each member is linearly solvable over a finite field if and only if the characteristic of the field is in P; and the linear capacity over fields whose characteristic is not in P, tends to 0 as t tends to infinity. The second method is based on the construction of certain spaces that behave in a certain way as a linear secret sharing scheme and has direct applications in Secret Sharing; we calculate lower bounds on the linear information ratios of some access structures. Additionally, we propose an extension of the solubility problem of a closure operator. We study the capacity of a closure operator and a class of linear programming problems whose optimal solutions are upper bounds on this capacity; this problem is related to the calculation of capacities of multiple-unicast networks.spa
dc.description.additionalDoctor in Mathematics. Research Topic: Information Theory .spa
dc.description.degreelevelDoctoradospa
dc.description.projectConvocatoria 727spa
dc.description.sponsorshipCOLCIENCIASspa
dc.format.extent110spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationV. Peña-Macias. New Characteristic Dependent Linear Rank Inequalities, Dissertation for the Doctoral Degree, Universidad Nacional de Colombia, Bogotá, 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77841
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesR. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung. Network Information Flow. IEEE Transactions on Information Theory, 46(4): 1204-1216, 2000.spa
dc.relation.referencesN. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim. Broadcasting with Side Information. IEEE Symposium on Foundations of Computer Science, pp. 823-832, 2008.spa
dc.relation.referencesM. Bamiloshin, A. Ben-Efraim, O. Farràs and C. Padró. Common Information, Matroid Representation, and Secret Sharing for Matroid Ports, 2019.spa
dc.relation.referencesZ. Bar-Yossef, Y. Birk, T. S. Jayram & T. Kol. Index Coding with Side Information. IEEE Symposium on Foundations of Computer Science, pp. 197–206, 2006. Also in IEEE Transactions on Information Theory, 57(3): 1479-1494, 2011.spa
dc.relation.referencesA. Blasiak, R. Kleinberg and E. Lubetzky. Lexicographic Products and the Power of non-Linear Network Coding. IEEE Symposium on Foundations of Computer Science, pp. 609-618, 2011.spa
dc.relation.referencesE. F. Brickell and D. M. Davenport. On the Classification of Ideal Secret Sharing, J. of Cryptology, 4:123-134, 1991.spa
dc.relation.referencesS. Burris and H. P. Sankappanavar. A Course in Universal Algebra, Springer-Verlag, 1981.spa
dc.relation.referencesJ. Cannons, R. Dougherty, C. Freiling and K. Zeger. Network Routing Capacity. IEEE Transactions on Information Theory, 52(3): 7877-7888, 2006.spa
dc.relation.referencesT. H. Chan. Balanced Information Inequalities. IEEE Transactions of Information Theory, 49(12): 3261-3267, 2003.spa
dc.relation.referencesN. Das and B. K. Rai. On the Dependence of Linear Coding Rates on the Characteristic of the Finite Field, 2017.spa
dc.relation.referencesR. Dougherty, C. Freiling and K. Zeger. Insufficiency of Linear Coding in Network Information Flow. IEEE Transactions on Information Theory, 51(8): 2745-2759, 2005.spa
dc.relation.referencesR. Dougherty, C. Freiling and K. Zeger. Networks, Matroids, and non-Shannon Information Inequalities. IEEE Transactions on Information Theory, 53(6): 1949-1969, 2007.spa
dc.relation.referencesR. Dougherty, C. Freiling and K. Zeger. Linear Rank Inequalities on Five or More Variables. ArXiv 0910.0284, 2010.spa
dc.relation.referencesR. Dougherty, C. Freiling and K. Zeger. Achievable Rate Regions for Network Coding. IEEE Transactions on Information Theory, 61(5): 2488–2509, 2015. Also in ArXiv 1311.4601, 2013.spa
dc.relation.referencesR. Dougherty and K. Zeger. Non-Reversibility and Equivalent Constructions of Multiple-Unicast Networks, IEEE Transactions on Information Theory, 52(11):5067-5077, 2006.spa
dc.relation.referencesR. Dougherty. Computations of Linear Rank Inequalities on Six Variables. IEEE International Symposium on Information Theory, pp. 2819–2823, Hawaii, 2014.spa
dc.relation.referencesO. Farràs, T. Kaced, S. Martín and C. Padró. Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing, 2018.spa
dc.relation.referencesE. F. Freiling. Characteristic Dependent Linear Rank Inequalities and Applications to Network Coding. Dissertation for the Doctoral Degree. University of California, San Diego, 2014.spa
dc.relation.referencesM. Gadouleau, Closure solvability for Network Coding and Secret Sharing, IEEE Trans. Inform. Theory, UK , 59(12): 7858-7869, 2013.spa
dc.relation.referencesM. Gadouleau. Entropy of Closure Operators and Network Coding Solvability. Entropy, 16(9): 5122-5143, 2014.spa
dc.relation.referencesA. Gomez, C. Mejia, and J. A. Montoya. Linear Network Coding and the Model Theory of Linear Rank Inequalities. IEEE International Symposium on Network Coding, pp. 1-6, Aalborg, Denmark, 2014.spa
dc.relation.referencesA. W. Ingleton. Representation of Matroids. Combinatorial Mathematics and its Applications, pp. 149-167, Oxford, 1969.spa
dc.relation.referencesA. Jafari and S. Khazaei. On Abelian Secret Sharing: duality and separation, Cryptology ePrint Archive: Report 2019/575, 2019.spa
dc.relation.referencesR. Kinser. New Inequalities for Subspace Arrangements. Journal Combinatorial Theory Serie A, 118(1): 152-161, 2011.spa
dc.relation.referencesB. Lindström. On The Algebraic Characteristic Set for a Class of Matroids. Transactions of the American Mathematical Society, 95(1): 147–151, 1985.spa
dc.relation.referencesJ. Martí-Farre, C. Padró. On Secret Sharing Schemes, Matroids and Polymatroids. J. Math. Cryptol. 4: 95-120, 2010.spa
dc.relation.referencesS. Martín, C. Padró and A. Yang. Secret Sharing, Rank Inequalities, and Information Inequalities, 2015.spa
dc.relation.referencesF. Matús. Matroid Representations by Partitions, Discrete Math., 203: 169-194, 1999.spa
dc.relation.referencesF. Matús. Two Constructions on Limits of Entropy Functions. IEEE Transactions on Information Theory, 53(1): 320-330, 2007.spa
dc.relation.referencesC. Mejia, Linear Secret Sharing and the Automatic Search of Linear Rank Inequalities. Applied Mathematical Science, 107(9): 5305-5324, DOI: 10.12988/ams.2015.57478, 2015.spa
dc.relation.referencesC. Mejia. On the Theory of Linear Rank Inequalities, Dissertation for the Doctoral Degree, Universidad Nacional de Colombia, Bogotá, 2016.spa
dc.relation.referencesC. Mejia and J. A. Montoya. On the Information Rates of Homomorphic Secret Sharing Schemes, Journal of Information and Optimization Sciences, 39(7): 1463-1482, DOI: 10.1080/02522667.2017.1367513, 2018.spa
dc.relation.referencesC. Ngai and R. Yeung. Network Coding Gain of Combination Networks. IEEE Information Theory Workshop, pp. 283–287, 2004.spa
dc.relation.referencesJ. G. Oxley. Matroid Theory. Oxford University Press, New York, 1992.spa
dc.relation.referencesC. Padró. Lecture Notes in Secret Sharing. Cryptology ePrint Archive: Report 674, 2012.spa
dc.relation.referencesV. B. Peña Macias. Conexiones entre Codificación en Red, Operadores de Clausura y Matroides de Secreto Compartido, Dissertation for the Master Degree, Universidad Nacional de Colombia, Bogotá, 2015.spa
dc.relation.referencesV. Peña-Macias and H. Sarria. Characteristic-Dependent Linear Rank Inequalities via Complementary Vector Spaces, Journal of Information and Optimization Sciences, DOI: 10.1080/02522667.2019.1668157, 2020.spa
dc.relation.referencesV. Peña-Macias and H. Sarria. How to Find New Characteristic-Dependent Linear Rank Inequalities using Binary Matrices as a Guide, arXiv:1905.00003, 2019.spa
dc.relation.referencesV. Peña-Macias and H. Sarria. Characteristic-Dependent Linear Rank Inequalities in 21 variables, Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(169): 765-770, 2019.spa
dc.relation.referencesV. Peña-Macias and H. Sarria. Linear Programming Problems in Network Coding and Closure Operators via Partitions, Revista Selecciones Matemáticas, Universidad Nacional de trujillo, 6(2): 269-274, 2019.spa
dc.relation.referencesV. Peña-Macias. How to Find New Characteristic-Dependent Linear Rank Inequalities using Secret Sharing, Pre-print, 2019.spa
dc.relation.referencesS. Riis and M. Gadouleau. Graph-Theoretical Constructions for Graph Entropy and Network Coding based Communications. IEEE Transactions on Information Theory, 57(10): 6703–6717, 2011.spa
dc.relation.referencesP. D. Seymour. On Secret-Sharing Matroids, Journal of Combinatorial Theory, Series B, 56: 69-73, 1992.spa
dc.relation.referencesA. Shamir. How to Share a Secret, Communications of the ACM, 22(11): 612-613, 1979.spa
dc.relation.referencesA. Shen, D. Hammer, A. E. Romashchenko and N.K. Vereshchagin. Inequalities for Shannon Entropy and Kolmogorov Complexity. Journal of Computer and Systems Sciences, 60: 442-464, 2000.spa
dc.relation.referencesJ. Simonis and A. Ashikhmin. Almost Affine Codes. Designs, Codes Cryptography, 14: 179-197, 1998.spa
dc.relation.referencesD. R. Stinson. Decomposition Constructions for Secret-Sharing Schemes. IEEE Transactions on Information Theory, 40(1): 118-125, 1994.spa
dc.relation.referencesM. Van-Dijk, W. A. Jackson, and K. M. Martin. A General Decomposition Construction for Incomplete Secret Sharing Schemes. Designs, Codes and Cryptography, 15(3): 301-321, 1998.spa
dc.relation.referencesR. Yeung. A First Course in Information Theory, Springer, Berlin, 2002.spa
dc.relation.referencesC. Yuan, H. Kan, W. Xin and I. Hideki. A Construction Method of Matroidal Networks, 2012.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddcTeoría de la Informaciónspa
dc.subject.proposaldesigualdad rango linealspa
dc.subject.proposalmatroideng
dc.subject.proposalnetwork codingeng
dc.subject.proposalrepartición de secretosspa
dc.subject.proposalcodificación de índicesspa
dc.subject.proposalcomplementary vector spaceeng
dc.subject.proposalmatriz binariaspa
dc.titleNew characteristic dependent linear rank inequalitiesspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis version final 2020 victor peña.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: