Databases reconstruction from operating modes recognition in dynamic processes
dc.contributor.advisor | Alvarez Zapata, Hernán Dario | |
dc.contributor.author | Obando Montoya, Andrés Felipe | |
dc.contributor.cvlac | OBANDO MONTOYA, ANDRÉS FELIPE | spa |
dc.contributor.researchgroup | Grupo de investigación en Procesos Dinámicos KALMAN | spa |
dc.date.accessioned | 2024-08-15T15:44:12Z | |
dc.date.available | 2024-08-15T15:44:12Z | |
dc.date.issued | 2015-12 | |
dc.description.abstract | This work presents a methodology for data reconstruction based in operational modes recognition in dynamic processes, maintaining dynamic properties of registered variables in such database. To do this, an introduction of process and system is made, characterizing the source of databases. Also, a review of data imputation methodology is presented, highlighting the main features of their procedures. Despite of count with several imputation methodologies, any of them are focused into conserving dynamic properties of variables contained in databases, only proposing different identification models sketchers without considering of a previous data selection step to assure the accuracy of predictive models. Taking into account this fact, the proposed data imputation methodology is based into Dynamical Operational Mode (DOM) recognition of processes, grouping data in clusters with similar dynamic properties, allowing the usage of correct information for auxiliary identification models. Under this considerations, Artificial Resonance Theory (ART2) is introduced as the algorithm for DOM recognition. Additionally, the proposed methodology verifies that imputations do not add uncertainty to original data, conserving initial dynamic information. (Tomado de la fuente) | eng |
dc.description.abstract | En este trabajo se presenta una metodología para la reconstrucción de datos basados en el reconocimiento de los modos operacionales en procesos dinámicos, manteniendo las propiedades dinámicas de las variables contenidas en dichas bases de datos. Con este objetivo, se hace una introducción a los conceptos de proceso y sistema, caracterizando las fuentes de información de las bases de datos. También se realiza una revisión de las metodologías para la imputación de datos, resaltando las principales características de sus procedimientos. A pesar de contar con bastantes metodologías para la imputación, ninguna de ellas se especializa en la conservación de las propiedades dinámicas de las variables, y solo proponen diferentes esquemas para la identificación de modelos sin considerar pasos previos para la correcta selección de información para asegurar la precisión de sus predicciones. De este modo, la metodología propuesta se basa en el reconocimiento de los Modos de Operación Dinámicos (DOM) de los procesos, permitiendo el uso correcto de esta información para la identificación de modelos auxiliares. Con esto en mente, se propone el algoritmo ART2 para el reconocimiento de los DOM. Adicionalmente, la metodología propuesta verifica las imputaciones para no adicionar incertidumbre a los datos originales, conservando la información dinámica original. | spa |
dc.description.curriculararea | Ingeniería Química E Ingeniería De Petróleos.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.format.extent | 90 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86729 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Ibrahim Berkan Aydilek and Ahmet Arslan. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Information Sciences, 233:25–35, June 2013. | spa |
dc.relation.references | Petr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven Soft Sensors in the process industry. Computers & Chemical Engineering, 33(4):795–814, April 2009. | spa |
dc.relation.references | Jiu-sun Zeng and Chuan-hou Gao. Improvement of identification of blast furnace iron-making process by outlier detection and missing value imputation. Journal of Process Control, 19(9):1519–1528, October 2009. | spa |
dc.relation.references | B. Balasko and J. Abonyi. What happens to process data in chemical industry: From source to applications-An Overview. Hungarian Journal of Industrial Chemistry, 35: 75–84, 2007. | spa |
dc.relation.references | Will Bridewell, Pat Langley, Steve Racunas, and Stuart Borrett. Learning process models with missing data. Machine Learning: ECML, pages 557–565, 2006. | spa |
dc.relation.references | A.J. Isaksson. Identification of ARX-models subject to missing data. Automatic Control, IEEE Transactions on, 38(5):813–819, 1993. | spa |
dc.relation.references | Stavros Papadokonstantakis, Stephan Machefer, Klaus Schnitzlein, and Argyrios I. Lygeros. Variable selection and data pre-processing in NN modelling of complex chemical processes. Computers & Chemical Engineering, 29(7):1647–1659, June 2005. | spa |
dc.relation.references | B. Lamrini, El-K. Lakhal, M-V. Lann, and L. Wehenkel. Data validation and missing data reconstruction using self-organizing map for water treatment. Neural Computing and Applications, 20(4):575–588, February 2011. | spa |
dc.relation.references | R. Vijayabhanu and V. Radha. Recognition and elimination of missing values and outliers from an anaerobic wastewater treatment system using K-Means cluster. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pages V4–186–V4–190, August 2010. | spa |
dc.relation.references | Changkyu Lee, Sang Wook Choi, Jong-min Lee, and In-beum Lee. Reconstruction based sensor fault identification in chemical processes. Proceedings of the 2004 IEEE International Conference on Control Applications, 2004., 2:1096–1100, 2004. | spa |
dc.relation.references | Alan Olinsky, Shaw Chen, and Lisa Harlow. The comparative efficacy of imputation methods for missing data in structural equation modeling. European Journal of Operational Research, 151(1):53–79, November 2003. | spa |
dc.relation.references | Tiago J. Rato and Marco S. Reis. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemometrics and Intelligent Laboratory Systems, 125:101–108, June 2013. | spa |
dc.relation.references | Jean-Pierre Belaud, Stéphane Negny, Fabrice Dupros, David Michéa, and Benoît Vautrin. Collaborative simulation and scientific big data analysis: Illustration for sustainability in natural hazards management and chemical process engineering. Computers in Industry, 65(3):521–535, April 2014. | spa |
dc.relation.references | Markus Schladt and Bei Hu. Soft sensors based on nonlinear steady-state data reconciliation in the process industry. Chemical Engineering and Processing: Process Intensification, 46(11):1107–1115, November 2007. | spa |
dc.relation.references | S. A. Imtiaz and S. L. Shah. Treatment of missing values in process data analysis. The Canadian Journal of Chemical Engineering, 86(5):838–858, October 2008. | spa |
dc.relation.references | Lang Wu and Hulin Wu. Missing time-dependent covariates in human immunodeficiency virus dynamic models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(3):297–318, July 2002. | spa |
dc.relation.references | Hilda Marcela Moscoso-Vásquez. A design procedure for a supervisory control structure in plantwide control. Master thesis, Universidad Nacional de Colombia - Sede Medellín, 2013. | spa |
dc.relation.references | Michael A. Henson and Dale E. Seborg. Input-output linearization of general nonlinear processes. AIChE Journal, 36(11):1753–1757, 1990. | spa |
dc.relation.references | A. Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for visualizing multidimensional geometry. In Visualization, 1990. Visualization ’90., Proceedings of the First IEEE Conference on, pages 361–378, Oct 1990. | spa |
dc.relation.references | Olga Georgieva, Michael Wagenknecht, and Rainer Hampel. Takagi-Sugeno fuzzy model development of batch biotechnological processes. International Journal of Approximate Reasoning, 26(3):233–250, 2001. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.lemb | Bases de datos | |
dc.subject.lemb | Servicios de información en línea | |
dc.subject.lemb | Sistemas de reconocimiento de configuraciones | |
dc.subject.lemb | Reconocimiento de modelos | |
dc.subject.lemb | Algoritmos | |
dc.subject.proposal | Data imputation | eng |
dc.subject.proposal | Operational modes | eng |
dc.subject.proposal | Pattern recognition | eng |
dc.subject.proposal | Dynamic process | eng |
dc.subject.proposal | Database | eng |
dc.subject.proposal | Imputación de datos | spa |
dc.subject.proposal | Modos de operación | spa |
dc.subject.proposal | Reconocimiento de patrones | spa |
dc.subject.proposal | Procesos dinámicos | spa |
dc.subject.proposal | Bases de datos | spa |
dc.title | Databases reconstruction from operating modes recognition in dynamic processes | eng |
dc.title.translated | Recontrucción de bases de datos desde el reconocimiento de los modos de operación de procesos dinámicos | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017181858.2015.pdf
- Tamaño:
- 2.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: