Databases reconstruction from operating modes recognition in dynamic processes

dc.contributor.advisorAlvarez Zapata, Hernán Dario
dc.contributor.authorObando Montoya, Andrés Felipe
dc.contributor.cvlacOBANDO MONTOYA, ANDRÉS FELIPEspa
dc.contributor.researchgroupGrupo de investigación en Procesos Dinámicos KALMANspa
dc.date.accessioned2024-08-15T15:44:12Z
dc.date.available2024-08-15T15:44:12Z
dc.date.issued2015-12
dc.description.abstractThis work presents a methodology for data reconstruction based in operational modes recognition in dynamic processes, maintaining dynamic properties of registered variables in such database. To do this, an introduction of process and system is made, characterizing the source of databases. Also, a review of data imputation methodology is presented, highlighting the main features of their procedures. Despite of count with several imputation methodologies, any of them are focused into conserving dynamic properties of variables contained in databases, only proposing different identification models sketchers without considering of a previous data selection step to assure the accuracy of predictive models. Taking into account this fact, the proposed data imputation methodology is based into Dynamical Operational Mode (DOM) recognition of processes, grouping data in clusters with similar dynamic properties, allowing the usage of correct information for auxiliary identification models. Under this considerations, Artificial Resonance Theory (ART2) is introduced as the algorithm for DOM recognition. Additionally, the proposed methodology verifies that imputations do not add uncertainty to original data, conserving initial dynamic information. (Tomado de la fuente)eng
dc.description.abstractEn este trabajo se presenta una metodología para la reconstrucción de datos basados en el reconocimiento de los modos operacionales en procesos dinámicos, manteniendo las propiedades dinámicas de las variables contenidas en dichas bases de datos. Con este objetivo, se hace una introducción a los conceptos de proceso y sistema, caracterizando las fuentes de información de las bases de datos. También se realiza una revisión de las metodologías para la imputación de datos, resaltando las principales características de sus procedimientos. A pesar de contar con bastantes metodologías para la imputación, ninguna de ellas se especializa en la conservación de las propiedades dinámicas de las variables, y solo proponen diferentes esquemas para la identificación de modelos sin considerar pasos previos para la correcta selección de información para asegurar la precisión de sus predicciones. De este modo, la metodología propuesta se basa en el reconocimiento de los Modos de Operación Dinámicos (DOM) de los procesos, permitiendo el uso correcto de esta información para la identificación de modelos auxiliares. Con esto en mente, se propone el algoritmo ART2 para el reconocimiento de los DOM. Adicionalmente, la metodología propuesta verifica las imputaciones para no adicionar incertidumbre a los datos originales, conservando la información dinámica original.spa
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extent90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86729
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesIbrahim Berkan Aydilek and Ahmet Arslan. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Information Sciences, 233:25–35, June 2013.spa
dc.relation.referencesPetr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven Soft Sensors in the process industry. Computers & Chemical Engineering, 33(4):795–814, April 2009.spa
dc.relation.referencesJiu-sun Zeng and Chuan-hou Gao. Improvement of identification of blast furnace iron-making process by outlier detection and missing value imputation. Journal of Process Control, 19(9):1519–1528, October 2009.spa
dc.relation.referencesB. Balasko and J. Abonyi. What happens to process data in chemical industry: From source to applications-An Overview. Hungarian Journal of Industrial Chemistry, 35: 75–84, 2007.spa
dc.relation.referencesWill Bridewell, Pat Langley, Steve Racunas, and Stuart Borrett. Learning process models with missing data. Machine Learning: ECML, pages 557–565, 2006.spa
dc.relation.referencesA.J. Isaksson. Identification of ARX-models subject to missing data. Automatic Control, IEEE Transactions on, 38(5):813–819, 1993.spa
dc.relation.referencesStavros Papadokonstantakis, Stephan Machefer, Klaus Schnitzlein, and Argyrios I. Lygeros. Variable selection and data pre-processing in NN modelling of complex chemical processes. Computers & Chemical Engineering, 29(7):1647–1659, June 2005.spa
dc.relation.referencesB. Lamrini, El-K. Lakhal, M-V. Lann, and L. Wehenkel. Data validation and missing data reconstruction using self-organizing map for water treatment. Neural Computing and Applications, 20(4):575–588, February 2011.spa
dc.relation.referencesR. Vijayabhanu and V. Radha. Recognition and elimination of missing values and outliers from an anaerobic wastewater treatment system using K-Means cluster. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pages V4–186–V4–190, August 2010.spa
dc.relation.referencesChangkyu Lee, Sang Wook Choi, Jong-min Lee, and In-beum Lee. Reconstruction based sensor fault identification in chemical processes. Proceedings of the 2004 IEEE International Conference on Control Applications, 2004., 2:1096–1100, 2004.spa
dc.relation.referencesAlan Olinsky, Shaw Chen, and Lisa Harlow. The comparative efficacy of imputation methods for missing data in structural equation modeling. European Journal of Operational Research, 151(1):53–79, November 2003.spa
dc.relation.referencesTiago J. Rato and Marco S. Reis. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemometrics and Intelligent Laboratory Systems, 125:101–108, June 2013.spa
dc.relation.referencesJean-Pierre Belaud, Stéphane Negny, Fabrice Dupros, David Michéa, and Benoît Vautrin. Collaborative simulation and scientific big data analysis: Illustration for sustainability in natural hazards management and chemical process engineering. Computers in Industry, 65(3):521–535, April 2014.spa
dc.relation.referencesMarkus Schladt and Bei Hu. Soft sensors based on nonlinear steady-state data reconciliation in the process industry. Chemical Engineering and Processing: Process Intensification, 46(11):1107–1115, November 2007.spa
dc.relation.referencesS. A. Imtiaz and S. L. Shah. Treatment of missing values in process data analysis. The Canadian Journal of Chemical Engineering, 86(5):838–858, October 2008.spa
dc.relation.referencesLang Wu and Hulin Wu. Missing time-dependent covariates in human immunodeficiency virus dynamic models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(3):297–318, July 2002.spa
dc.relation.referencesHilda Marcela Moscoso-Vásquez. A design procedure for a supervisory control structure in plantwide control. Master thesis, Universidad Nacional de Colombia - Sede Medellín, 2013.spa
dc.relation.referencesMichael A. Henson and Dale E. Seborg. Input-output linearization of general nonlinear processes. AIChE Journal, 36(11):1753–1757, 1990.spa
dc.relation.referencesA. Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for visualizing multidimensional geometry. In Visualization, 1990. Visualization ’90., Proceedings of the First IEEE Conference on, pages 361–378, Oct 1990.spa
dc.relation.referencesOlga Georgieva, Michael Wagenknecht, and Rainer Hampel. Takagi-Sugeno fuzzy model development of batch biotechnological processes. International Journal of Approximate Reasoning, 26(3):233–250, 2001.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembBases de datos
dc.subject.lembServicios de información en línea
dc.subject.lembSistemas de reconocimiento de configuraciones
dc.subject.lembReconocimiento de modelos
dc.subject.lembAlgoritmos
dc.subject.proposalData imputationeng
dc.subject.proposalOperational modeseng
dc.subject.proposalPattern recognitioneng
dc.subject.proposalDynamic processeng
dc.subject.proposalDatabaseeng
dc.subject.proposalImputación de datosspa
dc.subject.proposalModos de operaciónspa
dc.subject.proposalReconocimiento de patronesspa
dc.subject.proposalProcesos dinámicosspa
dc.subject.proposalBases de datosspa
dc.titleDatabases reconstruction from operating modes recognition in dynamic processeseng
dc.title.translatedRecontrucción de bases de datos desde el reconocimiento de los modos de operación de procesos dinámicosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017181858.2015.pdf
Tamaño:
2.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: