Modelamiento y simulación de esfuerzos en simetrías cilíndricas con asimetría radial aplicada a estructuras de Guadua Angustifolia

dc.contributor.advisorVargas Hernández, Carlos
dc.contributor.authorMoreno Ortiz, Juan Carlos
dc.date.accessioned2021-07-01T16:30:49Z
dc.date.available2021-07-01T16:30:49Z
dc.date.issued2020
dc.descriptionanexos, figuras, tablasspa
dc.description.abstractEn este trabajo se establecen las tensiones de Von Mises para cargas de tracción paralela y perpendicular a la fibra , compresión paralela y perpendicular, corte paralelo y torsión para el bambú guadua Angustifolia, mediante el uso de herramientas de simulación por elementos finitos, como el Software SolidWorks; explicándose el comportamiento del material frente a dichas cargas y relacionándolo con los resultados experimentales de campo. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, the Von Mises stresses are established for tensile loads parallel and perpendicular to the fiber, parallel and perpendicular compression, parallel cutting and torsion for guadua Angustifolia bamboo, through the use of finite element simulation tools, such as Software SolidWorks; explaining the behavior of the material against said loads and relating it to the experimental results in the field.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent151 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79750
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesCésar Leonardo Ardila Pinilla, “Determinación de los valores de esfuerzos admisibles del bambú,” Universidad Nacional De Colombia, 2013.spa
dc.relation.referencesP. Luna, C. P. Takeuchi, G. Granados, F. Lamus, and J. Lozano, “METODOLOGÍA DE DISEÑO DE ESTRUCTURAS EN GUADUA ANGUSTIFOLIA COMO MATERIAL ESTRUCTURAL POR EL MÉTODO DE ESFUERZOS ADMISIBLES,” Rev. Educ. en Ing., vol. 11, no. June 2011, pp. 66–75, 2011.spa
dc.relation.referencesE. T. Akinlabi, K. Anane-fenin, D. R. Akwada, and T. M. Plant, Bamboo. The Multiporpuse Plant. Springer International Publishing AG 2017, 2017.spa
dc.relation.referencesW. Liese and M. Köhl, Bamboo: The Plant and its Uses. Hamburg, Germany: Springer, 2015.spa
dc.relation.referencesW. Padilla, “Comportamiento a tracción del bambú Guadua angustifolia teniendo en cuenta el deslizamiento en la interfaz fibra - matriz,” Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesC. A. P. PUENTES, “RESISTENCIA A LA TRACCIÓN PERPENDICULAR A LA FIBRE DE LA GUADUA ANGUSTIFOLIA,” UNIVERSIDAD NACIONAL DE COLOMBIA, 2006.spa
dc.relation.referencesE. Sapuyes, C. Takeuchi, M. Duarte, and W. Erazo, “Resistencia y elasticidad a la flexión de la Guadua Angustifolia Kunth de Pitalito, Huila,” vol. 11, pp. 97–111, 2018.spa
dc.relation.referencesM. J. Richard and K. A. Harries, “On inherent bending in tension tests of bamboo,” Wood Sci. Technol., vol. 49, no. 1, pp. 99–119, 2014.spa
dc.relation.referencesA. Huang, Puxi, Chang, Wen-Shao, Ansell, Martin P., Chew, Y.M. John, Shea, “Density distribution profile for internodes and nodes of Phyllostachys edulis (Moso bamboo) by computer tomography scanning,” Constr. Build. Mater., vol. 93, no. 9, 2015.spa
dc.relation.referencesE. C. N. Silva, M. C. Walters, and G. H. Paulino, “Modeling bamboo as a functionally graded material: Lessons for the analysis of affordable materials,” J. Mater. Sci., vol. 41, no. 21, pp. 6991–7004, 2006.spa
dc.relation.referencesL. Xin, G. Dui, S. Yang, and Y. Liu, “Elastic-plastic analysis for functionally graded thick-walled tube subjected to internal pressure,” Adv. Appl. Math. Mech., vol. 8, no. 2, pp. 331–352, 2016.spa
dc.relation.referencesN. Y. Fukui Yasuyoshi, “Elastic Analysis for Thick-Walled Tubes of Functionally Gradient Material Subject to Internal Pressure,” JSME Int. J., vol. 35, no. 4, 1991.spa
dc.relation.referencesA. Chakraborty, S. Gopalakrishnan, and J. N. Reddy, “A new beam finite element for the analysis of functionally graded materials,” Int. J. Mech. Sci., vol. 45, no. 3, pp. 519–539, 2003.spa
dc.relation.referencesS. García, “Bambú Como Material Estructural : Generalidades, aplicaciones y modernización de una estructura tipo.,” Bambú Como Mater. Estructural Gen. Apl. Y Model. Una Estruct. Tipo, vol. 12, no. dificultad de transporte, p. 52, 2015.spa
dc.relation.referencesMINISTERIO DE PROTECCIÓN SOCIAL; SERVICIO NACIONAL DE APRENDIZAJE (SENA), LA GUADUA. CARACTERIZACIÓN OCUPACIONAL. 2006.spa
dc.relation.referencesM. Gutiérrez-González and C. P. Takeuchi-Tam, “Efecto del contenido de humedad en la resistencia a tensión paralela a la fibra del bambú Guadua Angustifolia Kunth Moisture content’s effect on the fiber parallel tensile strength of bamboo Guadua angustifolia kunth,” Sci. Tech. Año XIX, vol. 19, no. 3, 2014.spa
dc.relation.referencesE. Delgado, “Actualidad y futuro de la arquitectura de bambú en Colombia.,” UNIVERSIDAD POLITECNICA DE CATALUÑA, 2006.spa
dc.relation.referencesC. P. TAKEUCHI, “CARACTERIZACIÓN MECÁNICA DEL BAMBÚ GUADUA LAMINADO PARA USO ESTRUCTURAL,” UNIVERSIDAD NACIOANL DE COLOMBIA, 2014.spa
dc.relation.referencesJ. Cui, “Multiscale Structural Investigation of Bamboo Under CompressiveLoading,” MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2017.spa
dc.relation.referencesP. Luna, J. Lozano, and C. Takeuchi, “Determinación experimental de valores característicos de resistencia para Guadua angustifolia,” Maderas. Cienc. y Tecnol., vol. 16, no. ahead, pp. 0–0, 2014.spa
dc.relation.referencesJ. A. O. Saraz, A. E. Bedoya, and E. A. G. Galeano, “Evaluation of Mechanical Properties of the Internal Structure of the Guadua With Matematical Modelling,” Dyna-Colombia, vol. 76, no. 160, pp. 169–178, 2009.spa
dc.relation.referencesP. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, “Extraction and preparation of bamboo fibre-reinforced composites,” Mater. Des., vol. 63, no. November, pp. 820–828, 2014.spa
dc.relation.referencesB. Harries, Kent Alexander, Sharma, Nonconventional and Vernacular Construction Materials. Elsevier, 2016.spa
dc.relation.referencesM. A. dos Reis Pereira and T. Q. F. Barata, “Bamboo as Sustainable Material Used in Design and Civil Construction: Species, Management, Characterization and Applications,” Key Eng. Mater., vol. 634, pp. 339–350, 2014.spa
dc.relation.referencesM. Estrada, “Modelo numérico micromecánico del proceso de fractura de estructuras fabricadas con bambú Guadua angustifolia,” Universidad Nacional de Colombia, 2016. [26] M. Godina and R. Lorenzo, “Calibrating a composite material model for analysis and design of bamboo structures,” 10th World Bamboo Congr., 2015.spa
dc.relation.referencesI. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, SECOND. Oxford University Press, 2006.spa
dc.relation.referencesE. T. Mahamood, Rasheedat Modupe, Akinlabi, Functionally Graded Materials. Springer International Publishing AG 2017, 2017.spa
dc.relation.referencesR. G. (Eds. . Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, FUNCTIONALLY GRADED MATERIALS Design, Processing and Applications, vol. 56, no. 10. 1999.spa
dc.relation.referencesS. G. Chung, S.W., Hong, “A Shell Theory of Hybrid Anisotropic Materials,” Int. J. Compos. Mater., vol. 6, no. 1, pp. 15–25, 2016.spa
dc.relation.referencesG. C. S. P. Chen, Cracks in composite materials, First. Springer Netherlands, 1981.spa
dc.relation.referencesB. G. Muravskii, Foundations of Engineering Mechanics-Mechanics of Non- Homogeneous and Anisotropic Foundations, 1st ed. Springer-Verlag Berlin Heidelberg, 2001.spa
dc.relation.referencesM. A. Pérez and M. Sánchez, “Fundamentos de la mecánica de los materiales compuestos,” Apl. Av. los Mater. compuestos en la obra Civ. y la Edif., pp. 19–50, 2014.spa
dc.relation.referencesK. K. Chawla, Composite Materials, Third., vol. 2–5. Birminghan: Springer, 2012.spa
dc.relation.referencesA. links open overlay panelL. N. T.-M. Ian, “Some problems in the theory of elasticity of nonhomogeneous elastic media,” J. Appl. Math. Mech., vol. 25, no. 6, pp. 1120–1125, 1961.spa
dc.relation.referencesL. P. Kollár and S. George S, Mechanics of Composite Structures, no. 1. 2003.spa
dc.relation.referencesI. Héctor, U. Pineda, and L. H. H. G, “Análisis de esfuerzos en materiales compuestos,” Instituto Politécnico Nacional, 2001.spa
dc.relation.referencesO. C. Zienkiewicz and H. L. Taylor, El método de los elementos finitos, 4th ed. 1994.spa
dc.relation.referencesTirupathi Chandrupatla and Ashok D. Belegundu, Introduction to finite elements in engineering. 2002.spa
dc.relation.referencesM. A. Pérez, Aplicaciones avanzadas de los materiales compuestos en la obra civil y la edificación. 2014.spa
dc.relation.referencesR. M. Jones, Mechanics of Composite Materials, 2nd ed., vol. 44, no. 3. New York, 1999.spa
dc.relation.referencesN. J. Pagano, Mechanics of Composite Materials: selected works of Nicholas J Pagano. 2015.spa
dc.relation.referencesG. Dvorak, Micromechanics of Composite Materials, 1st ed. Waterloo, Ontario, Canada: Springer Netherlands, 2013.spa
dc.relation.referencesA. K. Kaw, Mechanics of Composite Materials, 2nd Ed. New York: Taylor & Francis Group, 2006.spa
dc.relation.referencesE. Barbero, Introduction to Composite Materials Design, Third Edition. 2017.spa
dc.relation.referencesX. Zhao, G. Wang, and Y. Wang, “Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo,” J. Mater. Sci., vol. 53, no. 4, pp. 2553–2565, 2018.spa
dc.relation.referencesM. A. Pérez, Aplicaciones avanzadas de los materiales compuestos en la obra civil y la edificación. Barcelona: Omnia, 2014.spa
dc.relation.referencesV. V. Vasiliev and E. V. Morozov, Advanced Mechanics of Composite Materials, Second. 2007.spa
dc.relation.referencesA. T. Nettles, Basic Mechanics of Laminated Composite Plates. Alabama: NASA Reference Publication 1351, 1994.spa
dc.relation.referencesJ. M. Gere and B. J. Goodno, Mecánica de Materiales, Séptima. MÉXICO D.F.: CENGAGE LEARNING, 2009.spa
dc.relation.referencesF. Beer, Mecanica de materiales - Beer, Ferdinand P Johnston.pdf.pdf, 5th ed. Mexico: Mc Graw Hill, 2010.spa
dc.relation.referencesRobert W. Fitzgerald, Mecanica de Materiales, Alfaomega. Mexico, 2007.spa
dc.relation.referencesR. C. Hibbeler, Analisis Estructural, Octava edi. Mexico: PEARSON EDUCACION, 2012.spa
dc.relation.referencesS. TIMOSHENKO and J. N. GOODIER, Teoria de la elasticidad, 2 ed. España: URMO S.A., 1975.spa
dc.relation.referencesB. M. LEMPRIERE, “Poisson’s ratio in orthotropic materials,” AIAA J., vol. 6, no. 11, pp. 2226–2227, 1968.spa
dc.relation.referencesI. C. F. Ipsen, Numerical Matrix Analysis. North Carolina: Society for Industrial and Applied Mathematics, 2009.spa
dc.relation.referencesC. D. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM: Society for Industrial and Applied Mathematics, 2000.spa
dc.relation.referencesJ. Olmedo, “Diseño de estructuras tipo cáscara basadas en materiales compuestos laminares, utilizando el método de elementos finitos,”ESCUELA POLITÉCNICA NACIONAL, 2008.spa
dc.relation.referencesM. W. White, Scott R., Hyer, Stress analysis of fiber-reinforced composite materials. McGraw-Hill, 2009.spa
dc.relation.referencesJ. Robert C. Reuter, “Concise Property Transformation Relations for an Anisotropic Lamina,” J. Compos. Mater., vol. 5, no. 2, pp. 270–272.spa
dc.relation.referencesS. G. Lekhnitskii, Theory of elasticity of an anisotropic body, First. Moscow: Mir Publishers, 1981. [62] N. Tutuncu and M. Ozturk, “Exact solutions for stresses in functionally graded pressure vessels,” Compos. Part BEngineering, vol. 32, no. 8, pp. 683–686, 2001.spa
dc.relation.referencesH. M. Yin, L. Z. Sun, and G. H. Paulino, “Micromechanics-based elastic model for functionally graded materials with particle interactions,” Acta Mater., vol. 52, no. 12, pp. 3535–3543, 2004.spa
dc.relation.referencesV. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., vol. 60, no. 1–6, pp. 195–216, 2007.spa
dc.relation.referencesR. S. Salzar, “FUNCTIONALLY GRADED METAL MATRIX COMPOSITE TUBES,” Compos. Eng., vol. 5, no. 7, pp. 891–900, 1995.spa
dc.relation.referencesA. Horgan, C., Chan, “The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials,” J. Elast., vol. 55, pp. 43–59, 1999.spa
dc.relation.referencesD. G. Zill, Ecuaciones diferenciales con aplicaciones de modelado, Novena Edi. Mexico, D.F.: CENGAGE LEARNING, 2009.spa
dc.relation.referencesE. E. Ramos, Ecuaciones Diferenciales y sus Aplicaciones para Estudiantes de Ciencias e Ingenierias, Sexta Edic. Lima, 2004.spa
dc.relation.referencesM. F. Kassir, M. K., Chuaprasert, “A Rigid Punch in Contact With a Nonhomogeneous Elastic Solid,” J. Appl. Mech., vol. 41, no. 4, pp. 1019– 1024, 1974.spa
dc.relation.referencesS. W. T. Hong T. Hahn, Introduction to composite materials. 1980.spa
dc.relation.referencesA. Castro, “Modelización micromecánica de materiales compuestos:comparativa entre modelos analíticos y numéricos (MEF),” Universidad de Sevilla, 2018.spa
dc.relation.referencesE. Salvati, L. R. Brandt, F. Uzun, H. Zhang, C. Papadaki, and A. M. Korsunsky, “Multiscale analysis of bamboo deformation mechanisms following NaOH treatment using X-ray and correlative microscopy,” Acta Biomater., vol. 72, pp. 329–341, 2018.spa
dc.relation.referencesJ. M. R. Misa, “Estudio de Materiales Reforzados con Fibras en Problemas de Contacto,” UNIVERSIDAD DE SEVILLA, 2013.spa
dc.relation.referencesX. Zhao, G. Wang, and Y. Wang, “Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo,” J. Mater. Sci., vol. 53, no. 4, pp. 2553–2565, 2018.spa
dc.relation.referencesC. P. Takeuchi, M. Estrada, and D. L. Linero, “Experimental and numerical modeling of shear behavior of laminated Guadua bamboo for different fiber directions,” Constr. Build. Mater., vol. 177, pp. 23–32, 2018.spa
dc.relation.referencesJ. J. Garcia, C. Rangel, and K. Ghavami, “Experiments with rings to determine the anisotropic elastic constants of bamboo,” Constr. Build. Mater., vol. 31, pp. 52–57, 2012.spa
dc.relation.referencesR. Khatry and D. P. Mishra, “Finite element analysis of bamboo column along with steel socket joint under loading condition,” Int. J. Appl. Eng. Res., vol. 7, no. 11 SUPPL., pp. 1247–1251, 2012.spa
dc.relation.referencesL. Osorio, E. Trujillo, F. Lens, J. Ivens, I. Verpoest, and A. W. Van Vuure, “Indepth study of the microstructure of bamboo fibres and their relation to the mechanical properties,” no. July 2019, 2018.spa
dc.relation.referencesH. Li, G. Wu, Q. Zhang, A. J. Deeks, and J. Su, “Ultimate bending capacity evaluation of laminated bamboo lumber beams,” Constr. Build. Mater., vol. 160, pp. 365–375, 2018.spa
dc.relation.referencesK. Sarath, “Torsion Behaviour of Beam with Bamboo as Reinforcement and Coconut Shell as Aggregate,” Int. J. Innov. Res. Eng. Manag., no. 1, pp. 217–220, 2015.spa
dc.relation.referencesD. R. Mitch, “Splitting Capacity Characterization of Bamboo Culms,”University of Pittsburgh, 2009.spa
dc.relation.referencesJ. F. Scherer and R. P. Bom, “Determination of shear modulus in bamboo fibers composite in torsion tests,” Mater. Res. Express, vol. 6, no. 3, 2019.spa
dc.relation.referencesY. N. Shigeyasu Amada, Tamotsu Munekata and Y. Z. Yoshinobu Ichikawa, Atsushi Kirigai, “The Mechanical Structures of Bamboos in Viewpoint of Functionally Gradient and Composite Materials,” J. Compos. Mater., vol. 30, no. 7, pp. 800–819, 1996.spa
dc.relation.referencesJ. Oliver, “ASSESSING THE PERFORMANCE OF BAMBOO STRUCTURAL COMPONENTS,” University of Pittsburgh, 2013.spa
dc.relation.referencesM. and R. Sharma, Gatoo, Bock, “Engineered bamboo: state of the art,” Proc. Inst. Civ. Eng., vol. 168, no. 2, pp. 57–67, 2014.spa
dc.relation.referencesK. F. Chung and W. K. Yu, “Mechanical properties of structural bamboo for bamboo scaffoldings,” vol. 24, pp. 429–442, 2002.spa
dc.relation.referencesC. E. G. QUEVEDO, “RESISTENCIA A LA COMPRESIÓN PARALELA A LA FIBRA DE LA GUADUA ANGUSTIFOLIA Y DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD,” Universidad Nacional de Colombia, 2006.spa
dc.relation.referencesOkhio C.B., J. E. Waning, and Y. T. Mekonnen, “An experimental investigation of the effects of moisture content on the mechanical properties of bamboo and cane,” Cyber Journals Multidiscip. Journals Sci. Technol. J. Sel. Areas Bioeng., vol. November, pp. 7–14, 2011.spa
dc.relation.referencesD. Mitch, K. A. Harries, and B. Sharma, “Characterization of splitting behavior of bamboo culms,” J. Mater. Civ. Eng., vol. 22, no. 11, pp. 1195– 1199, 2010.spa
dc.relation.referencesK. A. Harries, B. Sharma, and M. Richard, “Structural Use of Full Culm Bamboo: The Path to Standardization,” Int. J. Archit. Eng. Constr., vol. 1, no. 2, pp. 66–75, 2012.spa
dc.relation.referencesM. L. S. Cruz, “Caracterização física e mecânica de colmos inteiros do bambu da espécie Phyllostachys aurea : Comportamento à flambagem,” Pontifícia Universidade Católica do Rio de Janeiro, 2002.spa
dc.relation.referencesG. L. Cantos, L. F. Lopez, R. M. de Jesus, C. Salzer, and L. E. O. Garciano, “Investigation of an alternative testing protocol to determine the shear strength of bamboo parallel to the grain,” Maderas Cienc. y Tecnol., vol. 21, no. 4, 2019.spa
dc.relation.referencesH. Á. G. B., J. A. M. ARANGO, and J. R. B. SÁNCHEZ, “RESULTADOS DEL ENSAYO A FLEXIÓN EN MUESTRAS DE BAMBÚ DE LA ESPECIE Guadua angustifolia Kunth,” Sci. Tech., vol. 1, no. 35, pp. 503–508, 2007.spa
dc.relation.referencesD. T. J. M. S. J. Gibson;, “Flexural properties as a basis for bamboo strength grading,” Struct. Build., pp. 1–12, 2016.spa
dc.relation.referencesS. Askarinejad, P. Kotowski, F. Shalchy, and N. Rahbar, “Effects of humidity on shear behavior of bamboo,” Theor. Appl. Mech. Lett., vol. 5, no. 6, pp. 236–243, 2015.spa
dc.relation.referencesC. Rodriguez and E. Morales, El bambú como material estructural. Análisis de un caso práctico. 2007.spa
dc.relation.referencesJ. A. G. APOLINAR, “PRUEBAS DE ANILLOS PARA DETERMINAR LAS CONSTANTES ELÁSTICAS DE LOS NUDOS DE LA GUADUA ANGUSTIFOLIA,” Universidad del Valle, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lcshGuadua angustifolia--Utilization--Colombia
dc.subject.lembPropiedades mecánicas de la guadua
dc.subject.lembGuadua angustifolia
dc.subject.proposalBambú guaduaspa
dc.subject.proposalHeterogéneospa
dc.subject.proposalPropiedades mecánicasspa
dc.subject.proposalSimulaciónspa
dc.subject.proposalBamboo guaduaeng
dc.subject.proposalHeterogeneityeng
dc.subject.proposalMechanical propertieseng
dc.subject.proposalSimulationeng
dc.subject.unescoMateriales de construcción
dc.subject.unescoBuilding materials
dc.titleModelamiento y simulación de esfuerzos en simetrías cilíndricas con asimetría radial aplicada a estructuras de Guadua Angustifoliaspa
dc.title.translatedModeling and simulation of forces in cylindrical symmetries with radial asymmetry applied to guadua angustifolia structureseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
11810540.2020.pdf
Tamaño:
3.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: