Modelamiento y simulación de esfuerzos en simetrías cilíndricas con asimetría radial aplicada a estructuras de Guadua Angustifolia
dc.contributor.advisor | Vargas Hernández, Carlos | |
dc.contributor.author | Moreno Ortiz, Juan Carlos | |
dc.date.accessioned | 2021-07-01T16:30:49Z | |
dc.date.available | 2021-07-01T16:30:49Z | |
dc.date.issued | 2020 | |
dc.description | anexos, figuras, tablas | spa |
dc.description.abstract | En este trabajo se establecen las tensiones de Von Mises para cargas de tracción paralela y perpendicular a la fibra , compresión paralela y perpendicular, corte paralelo y torsión para el bambú guadua Angustifolia, mediante el uso de herramientas de simulación por elementos finitos, como el Software SolidWorks; explicándose el comportamiento del material frente a dichas cargas y relacionándolo con los resultados experimentales de campo. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this work, the Von Mises stresses are established for tensile loads parallel and perpendicular to the fiber, parallel and perpendicular compression, parallel cutting and torsion for guadua Angustifolia bamboo, through the use of finite element simulation tools, such as Software SolidWorks; explaining the behavior of the material against said loads and relating it to the experimental results in the field. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.format.extent | 151 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79750 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Física y Química | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | César Leonardo Ardila Pinilla, “Determinación de los valores de esfuerzos admisibles del bambú,” Universidad Nacional De Colombia, 2013. | spa |
dc.relation.references | P. Luna, C. P. Takeuchi, G. Granados, F. Lamus, and J. Lozano, “METODOLOGÍA DE DISEÑO DE ESTRUCTURAS EN GUADUA ANGUSTIFOLIA COMO MATERIAL ESTRUCTURAL POR EL MÉTODO DE ESFUERZOS ADMISIBLES,” Rev. Educ. en Ing., vol. 11, no. June 2011, pp. 66–75, 2011. | spa |
dc.relation.references | E. T. Akinlabi, K. Anane-fenin, D. R. Akwada, and T. M. Plant, Bamboo. The Multiporpuse Plant. Springer International Publishing AG 2017, 2017. | spa |
dc.relation.references | W. Liese and M. Köhl, Bamboo: The Plant and its Uses. Hamburg, Germany: Springer, 2015. | spa |
dc.relation.references | W. Padilla, “Comportamiento a tracción del bambú Guadua angustifolia teniendo en cuenta el deslizamiento en la interfaz fibra - matriz,” Universidad Nacional de Colombia, 2018. | spa |
dc.relation.references | C. A. P. PUENTES, “RESISTENCIA A LA TRACCIÓN PERPENDICULAR A LA FIBRE DE LA GUADUA ANGUSTIFOLIA,” UNIVERSIDAD NACIONAL DE COLOMBIA, 2006. | spa |
dc.relation.references | E. Sapuyes, C. Takeuchi, M. Duarte, and W. Erazo, “Resistencia y elasticidad a la flexión de la Guadua Angustifolia Kunth de Pitalito, Huila,” vol. 11, pp. 97–111, 2018. | spa |
dc.relation.references | M. J. Richard and K. A. Harries, “On inherent bending in tension tests of bamboo,” Wood Sci. Technol., vol. 49, no. 1, pp. 99–119, 2014. | spa |
dc.relation.references | A. Huang, Puxi, Chang, Wen-Shao, Ansell, Martin P., Chew, Y.M. John, Shea, “Density distribution profile for internodes and nodes of Phyllostachys edulis (Moso bamboo) by computer tomography scanning,” Constr. Build. Mater., vol. 93, no. 9, 2015. | spa |
dc.relation.references | E. C. N. Silva, M. C. Walters, and G. H. Paulino, “Modeling bamboo as a functionally graded material: Lessons for the analysis of affordable materials,” J. Mater. Sci., vol. 41, no. 21, pp. 6991–7004, 2006. | spa |
dc.relation.references | L. Xin, G. Dui, S. Yang, and Y. Liu, “Elastic-plastic analysis for functionally graded thick-walled tube subjected to internal pressure,” Adv. Appl. Math. Mech., vol. 8, no. 2, pp. 331–352, 2016. | spa |
dc.relation.references | N. Y. Fukui Yasuyoshi, “Elastic Analysis for Thick-Walled Tubes of Functionally Gradient Material Subject to Internal Pressure,” JSME Int. J., vol. 35, no. 4, 1991. | spa |
dc.relation.references | A. Chakraborty, S. Gopalakrishnan, and J. N. Reddy, “A new beam finite element for the analysis of functionally graded materials,” Int. J. Mech. Sci., vol. 45, no. 3, pp. 519–539, 2003. | spa |
dc.relation.references | S. García, “Bambú Como Material Estructural : Generalidades, aplicaciones y modernización de una estructura tipo.,” Bambú Como Mater. Estructural Gen. Apl. Y Model. Una Estruct. Tipo, vol. 12, no. dificultad de transporte, p. 52, 2015. | spa |
dc.relation.references | MINISTERIO DE PROTECCIÓN SOCIAL; SERVICIO NACIONAL DE APRENDIZAJE (SENA), LA GUADUA. CARACTERIZACIÓN OCUPACIONAL. 2006. | spa |
dc.relation.references | M. Gutiérrez-González and C. P. Takeuchi-Tam, “Efecto del contenido de humedad en la resistencia a tensión paralela a la fibra del bambú Guadua Angustifolia Kunth Moisture content’s effect on the fiber parallel tensile strength of bamboo Guadua angustifolia kunth,” Sci. Tech. Año XIX, vol. 19, no. 3, 2014. | spa |
dc.relation.references | E. Delgado, “Actualidad y futuro de la arquitectura de bambú en Colombia.,” UNIVERSIDAD POLITECNICA DE CATALUÑA, 2006. | spa |
dc.relation.references | C. P. TAKEUCHI, “CARACTERIZACIÓN MECÁNICA DEL BAMBÚ GUADUA LAMINADO PARA USO ESTRUCTURAL,” UNIVERSIDAD NACIOANL DE COLOMBIA, 2014. | spa |
dc.relation.references | J. Cui, “Multiscale Structural Investigation of Bamboo Under CompressiveLoading,” MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2017. | spa |
dc.relation.references | P. Luna, J. Lozano, and C. Takeuchi, “Determinación experimental de valores característicos de resistencia para Guadua angustifolia,” Maderas. Cienc. y Tecnol., vol. 16, no. ahead, pp. 0–0, 2014. | spa |
dc.relation.references | J. A. O. Saraz, A. E. Bedoya, and E. A. G. Galeano, “Evaluation of Mechanical Properties of the Internal Structure of the Guadua With Matematical Modelling,” Dyna-Colombia, vol. 76, no. 160, pp. 169–178, 2009. | spa |
dc.relation.references | P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, “Extraction and preparation of bamboo fibre-reinforced composites,” Mater. Des., vol. 63, no. November, pp. 820–828, 2014. | spa |
dc.relation.references | B. Harries, Kent Alexander, Sharma, Nonconventional and Vernacular Construction Materials. Elsevier, 2016. | spa |
dc.relation.references | M. A. dos Reis Pereira and T. Q. F. Barata, “Bamboo as Sustainable Material Used in Design and Civil Construction: Species, Management, Characterization and Applications,” Key Eng. Mater., vol. 634, pp. 339–350, 2014. | spa |
dc.relation.references | M. Estrada, “Modelo numérico micromecánico del proceso de fractura de estructuras fabricadas con bambú Guadua angustifolia,” Universidad Nacional de Colombia, 2016. [26] M. Godina and R. Lorenzo, “Calibrating a composite material model for analysis and design of bamboo structures,” 10th World Bamboo Congr., 2015. | spa |
dc.relation.references | I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, SECOND. Oxford University Press, 2006. | spa |
dc.relation.references | E. T. Mahamood, Rasheedat Modupe, Akinlabi, Functionally Graded Materials. Springer International Publishing AG 2017, 2017. | spa |
dc.relation.references | R. G. (Eds. . Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, FUNCTIONALLY GRADED MATERIALS Design, Processing and Applications, vol. 56, no. 10. 1999. | spa |
dc.relation.references | S. G. Chung, S.W., Hong, “A Shell Theory of Hybrid Anisotropic Materials,” Int. J. Compos. Mater., vol. 6, no. 1, pp. 15–25, 2016. | spa |
dc.relation.references | G. C. S. P. Chen, Cracks in composite materials, First. Springer Netherlands, 1981. | spa |
dc.relation.references | B. G. Muravskii, Foundations of Engineering Mechanics-Mechanics of Non- Homogeneous and Anisotropic Foundations, 1st ed. Springer-Verlag Berlin Heidelberg, 2001. | spa |
dc.relation.references | M. A. Pérez and M. Sánchez, “Fundamentos de la mecánica de los materiales compuestos,” Apl. Av. los Mater. compuestos en la obra Civ. y la Edif., pp. 19–50, 2014. | spa |
dc.relation.references | K. K. Chawla, Composite Materials, Third., vol. 2–5. Birminghan: Springer, 2012. | spa |
dc.relation.references | A. links open overlay panelL. N. T.-M. Ian, “Some problems in the theory of elasticity of nonhomogeneous elastic media,” J. Appl. Math. Mech., vol. 25, no. 6, pp. 1120–1125, 1961. | spa |
dc.relation.references | L. P. Kollár and S. George S, Mechanics of Composite Structures, no. 1. 2003. | spa |
dc.relation.references | I. Héctor, U. Pineda, and L. H. H. G, “Análisis de esfuerzos en materiales compuestos,” Instituto Politécnico Nacional, 2001. | spa |
dc.relation.references | O. C. Zienkiewicz and H. L. Taylor, El método de los elementos finitos, 4th ed. 1994. | spa |
dc.relation.references | Tirupathi Chandrupatla and Ashok D. Belegundu, Introduction to finite elements in engineering. 2002. | spa |
dc.relation.references | M. A. Pérez, Aplicaciones avanzadas de los materiales compuestos en la obra civil y la edificación. 2014. | spa |
dc.relation.references | R. M. Jones, Mechanics of Composite Materials, 2nd ed., vol. 44, no. 3. New York, 1999. | spa |
dc.relation.references | N. J. Pagano, Mechanics of Composite Materials: selected works of Nicholas J Pagano. 2015. | spa |
dc.relation.references | G. Dvorak, Micromechanics of Composite Materials, 1st ed. Waterloo, Ontario, Canada: Springer Netherlands, 2013. | spa |
dc.relation.references | A. K. Kaw, Mechanics of Composite Materials, 2nd Ed. New York: Taylor & Francis Group, 2006. | spa |
dc.relation.references | E. Barbero, Introduction to Composite Materials Design, Third Edition. 2017. | spa |
dc.relation.references | X. Zhao, G. Wang, and Y. Wang, “Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo,” J. Mater. Sci., vol. 53, no. 4, pp. 2553–2565, 2018. | spa |
dc.relation.references | M. A. Pérez, Aplicaciones avanzadas de los materiales compuestos en la obra civil y la edificación. Barcelona: Omnia, 2014. | spa |
dc.relation.references | V. V. Vasiliev and E. V. Morozov, Advanced Mechanics of Composite Materials, Second. 2007. | spa |
dc.relation.references | A. T. Nettles, Basic Mechanics of Laminated Composite Plates. Alabama: NASA Reference Publication 1351, 1994. | spa |
dc.relation.references | J. M. Gere and B. J. Goodno, Mecánica de Materiales, Séptima. MÉXICO D.F.: CENGAGE LEARNING, 2009. | spa |
dc.relation.references | F. Beer, Mecanica de materiales - Beer, Ferdinand P Johnston.pdf.pdf, 5th ed. Mexico: Mc Graw Hill, 2010. | spa |
dc.relation.references | Robert W. Fitzgerald, Mecanica de Materiales, Alfaomega. Mexico, 2007. | spa |
dc.relation.references | R. C. Hibbeler, Analisis Estructural, Octava edi. Mexico: PEARSON EDUCACION, 2012. | spa |
dc.relation.references | S. TIMOSHENKO and J. N. GOODIER, Teoria de la elasticidad, 2 ed. España: URMO S.A., 1975. | spa |
dc.relation.references | B. M. LEMPRIERE, “Poisson’s ratio in orthotropic materials,” AIAA J., vol. 6, no. 11, pp. 2226–2227, 1968. | spa |
dc.relation.references | I. C. F. Ipsen, Numerical Matrix Analysis. North Carolina: Society for Industrial and Applied Mathematics, 2009. | spa |
dc.relation.references | C. D. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM: Society for Industrial and Applied Mathematics, 2000. | spa |
dc.relation.references | J. Olmedo, “Diseño de estructuras tipo cáscara basadas en materiales compuestos laminares, utilizando el método de elementos finitos,”ESCUELA POLITÉCNICA NACIONAL, 2008. | spa |
dc.relation.references | M. W. White, Scott R., Hyer, Stress analysis of fiber-reinforced composite materials. McGraw-Hill, 2009. | spa |
dc.relation.references | J. Robert C. Reuter, “Concise Property Transformation Relations for an Anisotropic Lamina,” J. Compos. Mater., vol. 5, no. 2, pp. 270–272. | spa |
dc.relation.references | S. G. Lekhnitskii, Theory of elasticity of an anisotropic body, First. Moscow: Mir Publishers, 1981. [62] N. Tutuncu and M. Ozturk, “Exact solutions for stresses in functionally graded pressure vessels,” Compos. Part BEngineering, vol. 32, no. 8, pp. 683–686, 2001. | spa |
dc.relation.references | H. M. Yin, L. Z. Sun, and G. H. Paulino, “Micromechanics-based elastic model for functionally graded materials with particle interactions,” Acta Mater., vol. 52, no. 12, pp. 3535–3543, 2004. | spa |
dc.relation.references | V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., vol. 60, no. 1–6, pp. 195–216, 2007. | spa |
dc.relation.references | R. S. Salzar, “FUNCTIONALLY GRADED METAL MATRIX COMPOSITE TUBES,” Compos. Eng., vol. 5, no. 7, pp. 891–900, 1995. | spa |
dc.relation.references | A. Horgan, C., Chan, “The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials,” J. Elast., vol. 55, pp. 43–59, 1999. | spa |
dc.relation.references | D. G. Zill, Ecuaciones diferenciales con aplicaciones de modelado, Novena Edi. Mexico, D.F.: CENGAGE LEARNING, 2009. | spa |
dc.relation.references | E. E. Ramos, Ecuaciones Diferenciales y sus Aplicaciones para Estudiantes de Ciencias e Ingenierias, Sexta Edic. Lima, 2004. | spa |
dc.relation.references | M. F. Kassir, M. K., Chuaprasert, “A Rigid Punch in Contact With a Nonhomogeneous Elastic Solid,” J. Appl. Mech., vol. 41, no. 4, pp. 1019– 1024, 1974. | spa |
dc.relation.references | S. W. T. Hong T. Hahn, Introduction to composite materials. 1980. | spa |
dc.relation.references | A. Castro, “Modelización micromecánica de materiales compuestos:comparativa entre modelos analíticos y numéricos (MEF),” Universidad de Sevilla, 2018. | spa |
dc.relation.references | E. Salvati, L. R. Brandt, F. Uzun, H. Zhang, C. Papadaki, and A. M. Korsunsky, “Multiscale analysis of bamboo deformation mechanisms following NaOH treatment using X-ray and correlative microscopy,” Acta Biomater., vol. 72, pp. 329–341, 2018. | spa |
dc.relation.references | J. M. R. Misa, “Estudio de Materiales Reforzados con Fibras en Problemas de Contacto,” UNIVERSIDAD DE SEVILLA, 2013. | spa |
dc.relation.references | X. Zhao, G. Wang, and Y. Wang, “Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo,” J. Mater. Sci., vol. 53, no. 4, pp. 2553–2565, 2018. | spa |
dc.relation.references | C. P. Takeuchi, M. Estrada, and D. L. Linero, “Experimental and numerical modeling of shear behavior of laminated Guadua bamboo for different fiber directions,” Constr. Build. Mater., vol. 177, pp. 23–32, 2018. | spa |
dc.relation.references | J. J. Garcia, C. Rangel, and K. Ghavami, “Experiments with rings to determine the anisotropic elastic constants of bamboo,” Constr. Build. Mater., vol. 31, pp. 52–57, 2012. | spa |
dc.relation.references | R. Khatry and D. P. Mishra, “Finite element analysis of bamboo column along with steel socket joint under loading condition,” Int. J. Appl. Eng. Res., vol. 7, no. 11 SUPPL., pp. 1247–1251, 2012. | spa |
dc.relation.references | L. Osorio, E. Trujillo, F. Lens, J. Ivens, I. Verpoest, and A. W. Van Vuure, “Indepth study of the microstructure of bamboo fibres and their relation to the mechanical properties,” no. July 2019, 2018. | spa |
dc.relation.references | H. Li, G. Wu, Q. Zhang, A. J. Deeks, and J. Su, “Ultimate bending capacity evaluation of laminated bamboo lumber beams,” Constr. Build. Mater., vol. 160, pp. 365–375, 2018. | spa |
dc.relation.references | K. Sarath, “Torsion Behaviour of Beam with Bamboo as Reinforcement and Coconut Shell as Aggregate,” Int. J. Innov. Res. Eng. Manag., no. 1, pp. 217–220, 2015. | spa |
dc.relation.references | D. R. Mitch, “Splitting Capacity Characterization of Bamboo Culms,”University of Pittsburgh, 2009. | spa |
dc.relation.references | J. F. Scherer and R. P. Bom, “Determination of shear modulus in bamboo fibers composite in torsion tests,” Mater. Res. Express, vol. 6, no. 3, 2019. | spa |
dc.relation.references | Y. N. Shigeyasu Amada, Tamotsu Munekata and Y. Z. Yoshinobu Ichikawa, Atsushi Kirigai, “The Mechanical Structures of Bamboos in Viewpoint of Functionally Gradient and Composite Materials,” J. Compos. Mater., vol. 30, no. 7, pp. 800–819, 1996. | spa |
dc.relation.references | J. Oliver, “ASSESSING THE PERFORMANCE OF BAMBOO STRUCTURAL COMPONENTS,” University of Pittsburgh, 2013. | spa |
dc.relation.references | M. and R. Sharma, Gatoo, Bock, “Engineered bamboo: state of the art,” Proc. Inst. Civ. Eng., vol. 168, no. 2, pp. 57–67, 2014. | spa |
dc.relation.references | K. F. Chung and W. K. Yu, “Mechanical properties of structural bamboo for bamboo scaffoldings,” vol. 24, pp. 429–442, 2002. | spa |
dc.relation.references | C. E. G. QUEVEDO, “RESISTENCIA A LA COMPRESIÓN PARALELA A LA FIBRA DE LA GUADUA ANGUSTIFOLIA Y DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD,” Universidad Nacional de Colombia, 2006. | spa |
dc.relation.references | Okhio C.B., J. E. Waning, and Y. T. Mekonnen, “An experimental investigation of the effects of moisture content on the mechanical properties of bamboo and cane,” Cyber Journals Multidiscip. Journals Sci. Technol. J. Sel. Areas Bioeng., vol. November, pp. 7–14, 2011. | spa |
dc.relation.references | D. Mitch, K. A. Harries, and B. Sharma, “Characterization of splitting behavior of bamboo culms,” J. Mater. Civ. Eng., vol. 22, no. 11, pp. 1195– 1199, 2010. | spa |
dc.relation.references | K. A. Harries, B. Sharma, and M. Richard, “Structural Use of Full Culm Bamboo: The Path to Standardization,” Int. J. Archit. Eng. Constr., vol. 1, no. 2, pp. 66–75, 2012. | spa |
dc.relation.references | M. L. S. Cruz, “Caracterização física e mecânica de colmos inteiros do bambu da espécie Phyllostachys aurea : Comportamento à flambagem,” Pontifícia Universidade Católica do Rio de Janeiro, 2002. | spa |
dc.relation.references | G. L. Cantos, L. F. Lopez, R. M. de Jesus, C. Salzer, and L. E. O. Garciano, “Investigation of an alternative testing protocol to determine the shear strength of bamboo parallel to the grain,” Maderas Cienc. y Tecnol., vol. 21, no. 4, 2019. | spa |
dc.relation.references | H. Á. G. B., J. A. M. ARANGO, and J. R. B. SÁNCHEZ, “RESULTADOS DEL ENSAYO A FLEXIÓN EN MUESTRAS DE BAMBÚ DE LA ESPECIE Guadua angustifolia Kunth,” Sci. Tech., vol. 1, no. 35, pp. 503–508, 2007. | spa |
dc.relation.references | D. T. J. M. S. J. Gibson;, “Flexural properties as a basis for bamboo strength grading,” Struct. Build., pp. 1–12, 2016. | spa |
dc.relation.references | S. Askarinejad, P. Kotowski, F. Shalchy, and N. Rahbar, “Effects of humidity on shear behavior of bamboo,” Theor. Appl. Mech. Lett., vol. 5, no. 6, pp. 236–243, 2015. | spa |
dc.relation.references | C. Rodriguez and E. Morales, El bambú como material estructural. Análisis de un caso práctico. 2007. | spa |
dc.relation.references | J. A. G. APOLINAR, “PRUEBAS DE ANILLOS PARA DETERMINAR LAS CONSTANTES ELÁSTICAS DE LOS NUDOS DE LA GUADUA ANGUSTIFOLIA,” Universidad del Valle, 2011. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lcsh | Guadua angustifolia--Utilization--Colombia | |
dc.subject.lemb | Propiedades mecánicas de la guadua | |
dc.subject.lemb | Guadua angustifolia | |
dc.subject.proposal | Bambú guadua | spa |
dc.subject.proposal | Heterogéneo | spa |
dc.subject.proposal | Propiedades mecánicas | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Bamboo guadua | eng |
dc.subject.proposal | Heterogeneity | eng |
dc.subject.proposal | Mechanical properties | eng |
dc.subject.proposal | Simulation | eng |
dc.subject.unesco | Materiales de construcción | |
dc.subject.unesco | Building materials | |
dc.title | Modelamiento y simulación de esfuerzos en simetrías cilíndricas con asimetría radial aplicada a estructuras de Guadua Angustifolia | spa |
dc.title.translated | Modeling and simulation of forces in cylindrical symmetries with radial asymmetry applied to guadua angustifolia structures | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 11810540.2020.pdf
- Tamaño:
- 3.35 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: