Cuantificación de la progresión de glándulas de control a lesiones precancerosas en el estómago a partir del análisis histopatológico de imágenes
dc.contributor.advisor | Romero, Eduardo | spa |
dc.contributor.advisor | Cruz-Roa, Ángel | spa |
dc.contributor.author | Caviedes Rojas, Jerson Mauricio | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001710930 | |
dc.contributor.referee | Niño, Luis Fernando | spa |
dc.contributor.referee | Villareal, Jesús Alberto | spa |
dc.contributor.researchgroup | Cim@Lab | |
dc.date.accessioned | 2025-09-08T19:46:11Z | |
dc.date.available | 2025-09-08T19:46:11Z | |
dc.date.issued | 2025-07-15 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | In Colombia, gastric cancer poses a significant challenge to the healthcare system, particularly in regions like Nariño, where the incidence reaches 150 cases per 100,000 inhabitants. This high rate is associated with a 90% prevalence of Helicobacter pylori infection, a key risk factor in the development of precancerous lesions such as intestinal metaplasia. Early detection of these lesions is crucial but faces obstacles due to a shortage of pathologists and the subjectivity involved in evaluating biopsies using systems like OLGA and OLGIM. To address this issue, the use of artificial intelligence tools, specifically convolutional neural networks, has been explored to analyze histopathological images. In a recent study, various neural network architectures were evaluated for classifying intestinal metaplasia in gastric biopsy images. The VGG16 architecture stood out with an accuracy of 76% and an AUC of 0.922, outperforming models like InceptionV3 and ResNet50. Additionally, it showed high concordance with expert annotations, evidenced by a Dice Score of 0.93 and a Jaccard Index of 0.87. These results suggest that implementing deep learning models like VGG16 can enhance the detection and quantification of gastric precancerous lesions, optimizing early diagnosis and potentially reducing the burden of gastric cancer in high-incidence regions such as Nariño. | eng |
dc.description.abstract | En Colombia, el cáncer gástrico representa un desafío significativo para el sistema de salud, especialmente en regiones como Nariño, donde la incidencia alcanza 150 casos por cada 100,000 habitantes . Esta alta tasa se asocia con una prevalencia del 90% de infección por Helicobacter pylori, un factor de riesgo clave en el desarrollo de lesiones precancerosas como la metaplasia intestinal. La detección temprana de estas lesiones es crucial, pero enfrenta obstáculos debido a la escasez de patólogos y la subjetividad en la evaluación de biopsias mediante sistemas como OLGA y OLGIM. Para abordar esta problemática, se ha explorado el uso de herramientas de inteligencia artificial, específicamente redes neuronales convolucionales, para analizar imágenes histopatológicas. En un estudio reciente, se evaluaron diferentes arquitecturas de redes neuronales para clasificar metaplasia intestinal en imágenes de biopsias gástricas. La arquitectura VGG16 destacó con una precisión del 76% y un AUC de 0.922, superando a modelos como InceptionV3 y ResNet50. Además, mostró una alta concordancia con las anotaciones de expertos, evidenciada por un Dice Score de 0.93 y un Índice de Jaccard de 0.87. Estos resultados sugieren que la implementación de modelos de aprendizaje profundo, como VGG16, puede mejorar la detección y cuantificación de lesiones precancerosas gástricas, optimizando el diagnóstico temprano y potencialmente reduciendo la carga del cáncer gástrico en regiones de alta incidencia como Nariño. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Ingeniería de Sistemas y Computación | spa |
dc.description.notes | Texto en inglés | spa |
dc.description.researcharea | Computación aplicada | spa |
dc.description.sponsorship | To the CIEDYN Foundation and the project BPIN 20150000100064 Urkunina5000, from which the data for the development of this work was recovered. This work was funded by project BPIN 2019000100060 ”Implementation of a Network for Research, Technological Development and Innovation in Digital Pathology (RedPat) sup- ported by Industry 4.0 technologies” from FCTeI of SGR resources, which was approved by OCAD of FCTeI and MinCiencias. This work was partially supported by the project with code 110192092345 ”Program for the Early Detection of Premalignant Lesions and Gastric Cancer in urban, rural and dispersed areas in the Department of Nari˜no” of call No. 920 of 2022 of MinCiencias. This work was partly supported by project 52895, titled ”Proposal for the strategic plan for the establishment of the Center of Excellence (Inter-Sites) in Medicine and Artificial Intelligence (SemAI),” from the National Call for Proposals Bank for the Consolidation of Centers of Excellence 2020-2021 at Universidad Nacional de Colombia. | eng |
dc.format.extent | xiii, 55 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88648 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | C. Grávalos and A. Montes, “C´ancer g´astrico - SEOM: Sociedad espa˜nola de oncolog´ıa m´edica © 2019.” | |
dc.relation.references | “Endoscopia digestiva alta,” Revista Espa˜nola de Enfermedades Digestivas. | |
dc.relation.references | P. Correa, “Gastric cancer: overview,” vol. 42, no. 2, pp. 211–217. | |
dc.relation.references | M. F. Dixon, R. M. Genta, J. H. Yardley, and P. Correa, “Classification and grading of gastritis. the updated sydney system. international workshop on the histopathology of gastritis, houston 1994,” vol. 20, no. 10, pp. 1161–1181. | |
dc.relation.references | “Técnicas histológicas. 3. inclusión. atlas de histología vegetal y animal.” | |
dc.relation.references | B. A. Beckwith, “Standards for digital pathology and whole slide imaging,” in Digital Pathology: Historical Perspectives, Current Concepts & Future Applications (K. J. Kaplan and L. K. Rao, eds.), pp. 87–97, Springer International Publishing. | |
dc.relation.references | M. Vakalopoulou, S. Christodoulidis, N. Burgos, O. Colliot, and V. Lepetit, “Fig. 18, [a basic CNN architecture. classically,...]..” Publisher: Humana. | |
dc.relation.references | S. Tammina, “Transfer learning using VGG-16 with deep convolutional neural network for classifying images,” vol. 9, no. 10, p. p9420. | |
dc.relation.references | S. Molcan, M. Smiesková, H. Bachrat´y, K. Bachratá, and P. Novotný, “Classification of red blood cells using time-distributed convolutional neural networks from simulated videos,” vol. 13, no. 13, p. 7967. Number: 13 Publisher: Multidisciplinary Digital Publishing Institute. | |
dc.relation.references | O. Iparraguirre-Villanueva, V. Guevara-Ponce, O. Paredes, F. Sierra-Liñan, J. Zapata- Paulini, and M. Cabanillas-Carbonell, “Convolutional neural networks with transfer learning for pneumonia detection,” vol. 13. | |
dc.relation.references | B. Title, A. Islam, and L. Das, BlossomNet: A Deep Learning Framework for Accurate Flower Identification. 11 2024. | |
dc.relation.references | A. Tragoudaras, P. Stoikos, K. Fanaras, A. Tziouvaras, G. Floros, G. Dimitriou, K. Kolomvatsos, and G. Stamoulis, “Design space exploration of a sparse mobilenetv2 using high-level synthesis and sparse matrix techniques on fpgas,” Sensors, vol. 22, p. 4318, 06 2022. | |
dc.relation.references | O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds.), pp. 234–241, Springer International Publishing. | |
dc.relation.references | A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale.” version: 2. | |
dc.relation.references | P. D. Khanh, “Khoa hoc du lieu.” | |
dc.relation.references | J. A. Hernández Vargas, P. X. Ram´ırez Barbosa, A. M. Valbuena-Garcia, L. A. Acu˜na- Merchán, J. A. González-Diaz, and G. Lopes, “National cancer information system within the framework of health insurance in colombia: A real-world data approach to evaluate access to cancer care,” vol. 7, pp. 1329–1340. | |
dc.relation.references | K. A. Guzman, A. P. Daza, R. V. Gomez, L. M. Montenegro, and A. Pazos, “Wholegenome sequences of helicobacter pylori isolated from patients with high risk of gastric cancer in the andes of nari˜no, colombia,” vol. 13, no. 8, pp. e01232–23. Publisher: American Society for Microbiology. | |
dc.relation.references | J. K. Y. Hooi, W. Y. Lai, W. K. Ng, M. M. Y. Suen, F. E. Underwood, D. Tanyingoh, P. Malfertheiner, D. Y. Graham, V. W. S. Wong, J. C. Y. Wu, F. K. L. Chan, J. J. Y. Sung, G. G. Kaplan, and S. C. Ng, “Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis,” vol. 153, no. 2, pp. 420–429. | |
dc.relation.references | A. B. U, F. S. G, Y. Y. F. V, C. S. M, Y. C. C, D. C. P, and A. B. G, “Prevalencia y severidad de las lesiones precursoras de malignidad en una ´area de alto riesgo de c´ancer g´astrico. pasto 2012,” vol. 27, no. 4, pp. 275–281. Publisher: Asociaci´on Colombiana de Gastroenterologia. | |
dc.relation.references | Y. Yamaoka, M. Kato, and M. Asaka, “Geographic differences in gastric cancer incidence can be explained by differences between helicobacter pylori strains,” vol. 47, no. 12, pp. 1077–1083. | |
dc.relation.references | I. W. G. o. t. E. o. C. R. t. Humans, “Schistosomes, liver flukes and helicobacter pylori,” vol. 61, pp. 1–241. Publisher: International Agency for Research on Cancer. | |
dc.relation.references | J. H. Kim, J. Lee, I. J. Choi, Y.-I. Kim, and J. Kim, “Dietary patterns and gastric cancer risk in a korean population: a case-control study,” vol. 60, no. 1, pp. 389–397. | |
dc.relation.references | Z. Ravindran and S. Palanikumar, “Gastric cancer detection using islic and SRM model.,” vol. 43, no. 4. | |
dc.relation.references | M. Dinis-Ribeiro, M. Areia, A. C. de Vries, R. Marcos-Pinto, M. Monteiro-Soares, A. O’Connor, C. Pereira, P. Pimentel-Nunes, R. Correia, A. Ensari, J. M. Dumonceau, J. C. Machado, G. Macedo, P. Malfertheiner, T. Matysiak-Budnik, F. Megraud, K. Miki, C. O’Morain, R. M. Peek, T. Ponchon, A. Ristimaki, B. Rembacken, F. Carneiro, E. J. Kuipers, European Society of Gastrointestinal Endoscopy, European Helicobacter Study Group, European Society of Pathology, and Sociedade Portuguesa de Endoscopia Digestiva, “Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the european society of gastrointestinal endoscopy (ESGE), european helicobacter study group (EHSG), european society of pathology (ESP), and the sociedade portuguesa de endoscopia digestiva (SPED),” vol. 44, no. 1, pp. 74–94. | |
dc.relation.references | M. Wang, E. Lou, and Z. Xue, “The role of bile acid in intestinal metaplasia,” vol. 14. Publisher: Front Physiol. | |
dc.relation.references | R. A. C. Garrido, “How are we addressing gastric intestinal metaplasia?,” vol. 27, no. 4, pp. 259–262. Publisher: Asociacion Colombiana de Gastroenterologia. | |
dc.relation.references | A. Madabhushi and G. Lee, “Image analysis and machine learning in digital pathology: Challenges and opportunities,” vol. 33, pp. 170–175. | |
dc.relation.references | P. Barmpoutis, W. Waddingham, J. Yuan, C. Ross, H. Kayhanian, T. Stathaki, D. C. Alexander, and M. Jansen, “A digital pathology workflow for the segmentation and classification of gastric glands: Study of gastric atrophy and intestinal metaplasia cases,” vol. 17, no. 12, p. e0275232. | |
dc.relation.references | M. Iwaya, Y. Hayashi, Y. Sakai, A. Yoshizawa, Y. Iwaya, T. Uehara, M. Kitagawa, M. Fukayama, K. Mori, and H. Ota, “Artificial intelligence for evaluating the risk of gastric cancer: reliable detection and scoring of intestinal metaplasia with deep learning algorithms,” vol. 98, no. 6, pp. 925–933.e1. Publisher: Gastrointest Endosc. | |
dc.relation.references | S. Shafi and A. V. Parwani, “Artificial intelligence in diagnostic pathology,” vol. 18, no. 1, p. 109. | |
dc.relation.references | J. M. A. Bogaerts, J.-M. Bokhorst, M. Simons, M. H. D. van Bommel, M. P. Steenbeek, J. A. de Hullu, J. Linmans, J. Bart, J. L. Bentz, T. Bosse, J. Bulten, Y.-W. Chien, M. M. Desouki, R. R. Lastra, T. A. Numan, J. K. Schoolmeester, L. E. Schwartz, I.-M. Shih, T. R. Soong, G. Turashvili, R. Vang, M. Volchek, and J. A. W. M. van der Laak, “Deep learning detects premalignant lesions in the fallopian tube,” vol. 2, no. 1, pp. 1–9. Publisher: Nature Publishing Group. | |
dc.relation.references | S. Fang, Z. Liu, Q. Qiu, Z. Tang, Y. Yang, Z. Kuang, X. Du, S. Xiao, Y. Liu, Y. Luo, L. Gu, L. Tian, X. Liang, G. Fan, Y. Zhang, P. Zhang, W. Zhou, X. Liu, J. Tian, and W.Wei, “Diagnosing and grading gastric atrophy and intestinal metaplasia using semisupervised deep learning on pathological images: development and validation study,” vol. 27, no. 2, pp. 343–354. Publisher: Gastric Cancer | |
dc.relation.references | F. Su, J. Li, X. Zhao, B. Wang, Y. Hu, Y. Sun, and J. Ji, “Interpretable tumor differentiation grade and microsatellite instability recognition in gastric cancer using deep learning,” vol. 102, no. 6, pp. 641–649. Publisher: Nature Publishing Group. | |
dc.relation.references | M. N. Weck, L. Gao, and H. Brenner, “Helicobacter pylori infection and chronic atrophic gastritis: associations according to severity of disease,” vol. 20, no. 4, pp. 569– 574. | |
dc.relation.references | S. Xiao and L. Zhou, “Gastric stem cells: Physiological and pathological perspectives,” vol. 8. Publisher: Frontiers. | |
dc.relation.references | Q.-Y. Tong, M.-J. Pang, X.-H. Hu, X.-Z. Huang, J.-X. Sun, X.-Y. Wang, J. Burclaff, J. C. Mills, Z.-N. Wang, and Z.-F. Miao, “Gastric intestinal metaplasia: progress and remaining challenges,” vol. 59, no. 4, pp. 285–301. | |
dc.relation.references | X. Liu, Z. Ma, Z. Deng, Z. Yi, B. Tuo, T. Li, and X. Liu, “Role of spasmolytic polypeptide-expressing metaplasia in gastric mucosal diseases,” vol. 13, no. 5, pp. 1667– 1681. | |
dc.relation.references | M. Rugge, P. Correa, F. Di Mario, E. El-Omar, R. Fiocca, K. Geboes, R. M. Genta, D. Y. Graham, T. Hattori, P. Malfertheiner, S. Nakajima, P. Sipponen, J. Sung, W. Weinstein, and M. Vieth, “OLGA staging for gastritis: a tutorial,” vol. 40, no. 8, pp. 650–658. | |
dc.relation.references | F. Mansour-Ghanaei, F. Joukar, S. Yeganeh, M. Sadeghi, A. Daryakar, and M. Sepehrimanesh, “OLGA- and OLGIM-based staging in the patients with gastritis and endoscopy indications,” vol. 33, no. 2, pp. 95–102. | |
dc.relation.references | H. Yue, L. Shan, and L. Bin, “The significance of OLGA and OLGIM staging systems in the risk assessment of gastric cancer: a systematic review and meta-analysis,” vol. 21, no. 4, pp. 579–587. | |
dc.relation.references | M. Molaei, A. Ehtiati, R. Mashayekhi, M. Rafizadeh, H. Zojaji, D. Mirsattari, and R. Kishani Farahani, “Gastric atrophy: use of OLGA staging system in practice,” vol. 9, no. 1, pp. 25–29. | |
dc.relation.references | J. Shi, Z. Gao, H. Zhang, P. Puttapirat, C. Wang, X. Zhang, and C. Li, “Effects of annotation granularity in deep learning models for histopathological images,” in 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2702– 2708. | |
dc.relation.references | R. Baeza-Yates and Z. Liaghat, “Quality-efficiency trade-offs in machine learning for text processing,” in 2017 IEEE International Conference on Big Data (Big Data), pp. 897–904. | |
dc.relation.references | A. Echle, N. T. Rindtorff, T. J. Brinker, T. Luedde, A. T. Pearson, and J. N. Kather, “Deep learning in cancer pathology: a new generation of clinical biomarkers,” vol. 124, no. 4, pp. 686–696. Publisher: Nature Publishing Group. | |
dc.relation.references | Y. Deng, Y. Sun, Y. Zhu, Y. Xu, Q. Yang, S. Zhang, M. Zhu, J. Sun, W. Zhao, X. Zhou, and K. Yuan, “Efforts estimation of doctors annotating medical image.” | |
dc.relation.references | C. C. Pulgarín-Ospina, R. d. Amor, J. J. Silva-Rodríguez, A. Colomer, and V. Naranjo, “HistoColAi: An open-source web platform for collaborative digital histology image annotation with AI-driven predictive integration,” vol. 260, p. 108577. | |
dc.relation.references | C. Lancellotti, P. Cancian, V. Savevski, S. R. R. Kotha, F. Fraggetta, P. Graziano, and L. Di Tommaso, “Artificial intelligence & tissue biomarkers: Advantages, risks and perspectives for pathology,” vol. 10, no. 4, p. 787. | |
dc.relation.references | N. Dimitriou, O. Arandjeloviç, and P. D. Caie, “Deep learning for whole slide image analysis: An overview,” vol. 6. | |
dc.relation.references | J. Claros, R. V. Tocino, E. Fonseca, B. Cigarral, B. Barrios, D. Casado, E. Escalera, A. Olivares, L. Figuero, E. Terán, A. López, and J. J. Cruz, “Cáncer gástrico,” vol. 13, no. 24, pp. 1328–1334. Publisher: Elsevier Doyma. | |
dc.relation.references | N. R.-M. V’, ’Montagné, “Generalidades del c´ancer g´astrico,” pp. 22–29. | |
dc.relation.references | M. M. Díaz, S. C. Alonso, M. V. Héctor, R. A. Rodríguez, I. S. Tortoló, and O. H. Díaz, “Gastric cancer: some considerations on risk factors and helicobacter pylori,” vol. 40, no. 2, pp. 433–444. | |
dc.relation.references | A. C. Society, “Cáncer de estómago: Causas, factores de riesgo y prevención.” | |
dc.relation.references | R. Oliveros, R. E. P. Morales, H. F. Navia, and R. S. Pedraza, “Cáncer gástrico: una enfermedad prevenible. estrategias para intervención en la historia natural,” vol. 34, no. 2, pp. 177–189. Number: 2. | |
dc.relation.references | M. Rugge and R. M. Genta, “Staging and grading of chronic gastritis,” vol. 36, no. 3, pp. 228–233. | |
dc.relation.references | L. G. Capelle, A. C. de Vries, J. Haringsma, F. Ter Borg, R. A. de Vries, M. J. Bruno, H. van Dekken, J. Meijer, N. C. T. van Grieken, and E. J. Kuipers, “The staging of gastritis with the OLGA system by using intestinal metaplasia as an accurate alternative for atrophic gastritis,” vol. 71, no. 7, pp. 1150–1158. | |
dc.relation.references | E. Eivazova, “(PDF) histology: Study of human tissue.,” in ResearchGate. [ | |
dc.relation.references | C. L. Srinidhi, O. Ciga, and A. L. Martel, “Deep neural network models for computational histopathology: A survey,” vol. 67, p. 101813. | |
dc.relation.references | M. N. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” vol. 2, pp. 147–171. | |
dc.relation.references | C. W. Elston and I. O. Ellis, “Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: experience from a large study with longterm follow-up,” vol. 19, no. 5, pp. 403–410. | |
dc.relation.references | S. B. Edge and C. C. Compton, “The american joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM,” vol. 17, no. 6, pp. 1471–1474. | |
dc.relation.references | W. Cheng and F. Saleheen, “Assessing color performance of whole-slide imaging scanners for digital pathology - FDA.” | |
dc.relation.references | M. D. Zarella, D. Bowman, F. Aeffner, N. Farahani, A. Xthona, S. F. Absar, A. Parwani, M. Bui, and D. J. Hartman, “A practical guide to whole slide imaging: A white paper from the digital pathology association,” vol. 143, no. 2, pp. 222–234. | |
dc.relation.references | F. Aeffner, M. D. Zarella, N. Buchbinder, M. M. Bui, M. R. Goodman, D. J. Hartman, G. M. Lujan, M. A. Molani, A. V. Parwani, K. Lillard, O. C. Turner, V. N. P. Vemuri, A. G. Yuil-Valdes, and D. Bowman, “Introduction to digital image analysis in wholeslide imaging: A white paper from the digital pathology association,” vol. 10, p. 9. | |
dc.relation.references | S. Al-Janabi, A. Huisman, and P. J. Van Diest, “Digital pathology: current status and future perspectives,” vol. 61, no. 1, pp. 1–9. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2559.2011.03814.x. | |
dc.relation.references | M. Hanna and L. Pantanowitz, “Digital pathology,” | |
dc.relation.references | M. G. Hanna, V. E. Reuter, M. R. Hameed, L. K. Tan, S. Chiang, C. Sigel, T. Hollmann, D. Giri, J. Samboy, C. Moradel, A. Rosado, J. R. Otilano, C. England, L. Corsale, E. Stamelos, Y. Yagi, P. J. Sch¨uffler, T. Fuchs, D. S. Klimstra, and S. J. Sirintrapun, “Whole slide imaging equivalency and efficiency study: experience at a large academic center,” vol. 32, no. 7, pp. 916–928. | |
dc.relation.references | G. Fatima, H. Alhmadi, A. Ali Mahdi, N. Hadi, J. Fedacko, A. Magomedova, S. Parvez, and A. Mehdi Raza, “Transforming diagnostics: A comprehensive review of advances in digital pathology,” vol. 16, no. 10, p. e71890. Publisher: Cureus, Inc. | |
dc.relation.references | T. J. Fuchs and J. M. Buhmann, “Computational pathology: challenges and promises for tissue analysis,” vol. 35, no. 7, pp. 515–530. | |
dc.relation.references | M. Cui and D. Y. Zhang, “Artificial intelligence and computational pathology,” vol. 101, no. 4, pp. 412–422. Publisher: Nature Publishing Group. | |
dc.relation.references | T. Sorell, N. Rajpoot, and C. Verrill, “Ethical issues in computational pathology,” vol. 48, no. 4, pp. 278–284. | |
dc.relation.references | M. Y. Lu, D. F. K. Williamson, T. Y. Chen, R. J. Chen, M. Barbieri, and F. Mahmood, “Data-efficient and weakly supervised computational pathology on whole-slide images,” vol. 5, no. 6, pp. 555–570. Publisher: Nature Publishing Group. | |
dc.relation.references | A. Aggarwal, S. Khalighi, D. Babu, H. Li, S. Azarianpour-Esfahani, G. Corredor, P. Fu, M. Mokhtari, T. Pathak, E. Thayer, S. Modesitt, H. Mahdi, S. Avril, and A. Madabhushi, “Computational pathology identifies immune-mediated collagen disruption to predict clinical outcomes in gynecologic malignancies,” vol. 4, no. 1, pp. 1–12. Publisher: Nature Publishing Group. | |
dc.relation.references | C. Barrera, G. Corredor, V. S. Viswanathan, R. Ding, P. Toro, P. Fu, C. Buzzy, C. Lu, P. Velu, P. Zens, S. Berezowska, M. Belete, D. Balli, H. Chang, V. Baxi, K. Syrigos, D. L. Rimm, V. Velcheti, K. Schalper, E. Romero, and A. Madabhushi, “Deep computational image analysis of immune cell niches reveals treatment-specific outcome associations in lung cancer,” vol. 7, no. 1, pp. 1–17. Publisher: Nature Publishing Group. | |
dc.relation.references | C. McGenity, E. L. Clarke, C. Jennings, G. Matthews, C. Cartlidge, H. Freduah- Agyemang, D. D. Stocken, and D. Treanor, “Artificial intelligence in digital pathology: a diagnostic test accuracy systematic review and meta-analysis.” | |
dc.relation.references | S. J. Wagner, D. Reisenb¨uchler, N. P. West, J. M. Niehues, J. Zhu, S. Foersch, G. P. Veldhuizen, P. Quirke, H. I. Grabsch, P. A. van den Brandt, G. G. A. Hutchins, S. D. Richman, T. Yuan, R. Langer, J. C. A. Jenniskens, K. Offermans, W. Mueller, R. Gray, S. B. Gruber, J. K. Greenson, G. Rennert, J. D. Bonner, D. Schmolze, J. Jonnagaddala, N. J. Hawkins, R. L. Ward, D. Morton, M. Seymour, L. Magill, M. Nowak, J. Hay, V. H. Koelzer, D. N. Church, TransSCOT consortium, C. Matek, C. Geppert, C. Peng, C. Zhi, X. Ouyang, J. A. James, M. B. Loughrey, M. Salto-Tellez, H. Brenner, M. Hoffmeister, D. Truhn, J. A. Schnabel, M. Boxberg, T. Peng, and J. N. Kather, “Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study,” vol. 41, no. 9, pp. 1650–1661.e4. | |
dc.relation.references | B. L. Y. Agbley, J. P. Li, A. U. Haq, E. K. Bankas, C. B. Mawuli, S. Ahmad, S. Khan, and A. R. Khan, “Federated fusion of magnified histopathological images for breast tumor classification in the internet of medical things,” vol. 28, no. 6, pp. 3389–3400. | |
dc.relation.references | K. Bera, K. A. Schalper, D. L. Rimm, V. Velcheti, and A. Madabhushi, “Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology,” vol. 16, no. 11, pp. 703–715. Publisher: Nature Publishing Group. | |
dc.relation.references | J. Van der Laak, G. Litjens, and F. Ciompi, “Deep learning in histopathology: the path to the clinic,” vol. 27, no. 5, pp. 775–784. Publisher: Nature Publishing Group. | |
dc.relation.references | G. Lee, R. W. Veltri, G. Zhu, S. Ali, J. I. Epstein, and A. Madabhushi, “Nuclear shape and architecture in benign fields predict biochemical recurrence in prostate cancer patients following radical prostatectomy: Preliminary findings,” vol. 3, no. 4, pp. 457– 466. | |
dc.relation.references | C. Lu, D. Romo-Bucheli, X. Wang, A. Janowczyk, S. Ganesan, H. Gilmore, D. Rimm, and A. Madabhushi, “Nuclear shape and orientation features from h&e images predict survival in early-stage estrogen receptor-positive breast cancers,” vol. 98, no. 11, pp. 1438–1448. | |
dc.relation.references | G. Corredor, X. Wang, Y. Zhou, C. Lu, P. Fu, K. Syrigos, D. L. Rimm, M. Yang, E. Romero, K. A. Schalper, V. Velcheti, and A. Madabhushi, “Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer,” vol. 25, no. 5, pp. 1526–1534. | |
dc.relation.references | A. Janowczyk and A. Madabhushi, “Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases,” vol. 7, no. 1, p. 29. | |
dc.relation.references | J. Van der Laak, “Deep learning in histopathology: the path to the clinic | nature medicine.” | |
dc.relation.references | M. C. A. Balkenhol, D. Tellez, W. Vreuls, P. C. Clahsen, H. Pinckaers, F. Ciompi, P. Bult, and J. A. W. M. van der Laak, “Deep learning assisted mitotic counting for breast cancer,” vol. 99, no. 11, pp. 1596–1606. | |
dc.relation.references | A. Cruz-Roa, H. Gilmore, A. Basavanhally, M. Feldman, S. Ganesan, N. N. C. Shih, J. Tomaszewski, F. A. Gonz´alez, and A. Madabhushi, “Accurate and reproducible invasive breast cancer detection in whole-slide images: A deep learning approach for quantifying tumor extent,” vol. 7, no. 1, p. 46450. Publisher: Nature Publishing Group. | |
dc.relation.references | H. Wang, A. Cruz-Roa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman, J. Tomaszewski, F. Gonzalez, and A. Madabhushi, “Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features,” vol. 1, no. 3, p. 034003. | |
dc.relation.references | Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved automatic detection and segmentation of cell nuclei in histopathology images,” vol. 57, no. 4, pp. 841–852. | |
dc.relation.references | Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A. Timofeev, P. Q. Nelson, G. S. Corrado, J. D. Hipp, L. Peng, and M. C. Stumpe, “Detecting cancer metastases on gigapixel pathology images.” | |
dc.relation.references | G. Lee, R. Sparks, S. Ali, N. N. C. Shih, M. D. Feldman, E. Spangler, T. Rebbeck, J. E. Tomaszewski, and A. Madabhushi, “Co-occurring gland angularity in localized subgraphs: Predicting biochemical recurrence in intermediate-risk prostate cancer patients,” vol. 9, no. 5, p. e97954. Publisher: Public Library of Science. | |
dc.relation.references | X. Wang, A. Janowczyk, Y. Zhou, R. Thawani, P. Fu, K. Schalper, V. Velcheti, and A. Madabhushi, “Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital h&e images,” vol. 7, no. 1, p. 13543. Publisher: Nature Publishing Group. | |
dc.relation.references | F. M. Howard, J. Dolezal, S. Kochanny, G. Khramtsova, J. Vickery, A. Srisuwananukorn, A. Woodard, N. Chen, R. Nanda, C. M. Perou, O. I. Olopade, D. Huo, and A. T. Pearson, “Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence,” vol. 9, no. 1, p. 25. | |
dc.relation.references | C. Boissin, Y. Wang, A. Sharma, P. Weitz, E. Karlsson, S. Robertson, J. Hartman, and M. Rantalainen, “Deep learning-based risk stratification of preoperative breast biopsies using digital whole slide images,” vol. 26, no. 1, p. 90. | |
dc.relation.references | A. Sharma, S. K. L¨ovgren, K. L. Eriksson, Y. Wang, S. Robertson, J. Hartman, and M. Rantalainen, “Validation of an AI-based solution for breast cancer risk stratification using routine digital histopathology images,” vol. 26, no. 1, p. 123. | |
dc.relation.references | D. Muller, P. Meyer, L. Rentschler, R. Manz, J. B¨acker, S. Cramer, C. Wengenmayr, B. M¨arkl, R. Huss, I. Soto-Rey, and J. Raffler, “DeepGleason: a system for automated gleason grading of prostate cancer using deep neural networks.” | |
dc.relation.references | G. Han, X. Liu, T. Gao, L. Zhang, X. Zhang, X. Wei, Y. Lin, and B. Yin, “Prognostic prediction of gastric cancer based on h&e findings and machine learning pathomics,” vol. 78, p. 101983. | |
dc.relation.references | G. P. Veldhuizen, C. R¨ocken, H.-M. Behrens, D. Cifci, H. S. Muti, T. Yoshikawa, T. Arai, T. Oshima, P. Tan, M. P. Ebert, A. T. Pearson, J. Calderaro, H. I. Grabsch, and J. N. Kather, “Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study,” vol. 26, no. 5, pp. 708–720 | |
dc.relation.references | J. Millward, Z. He, A. Nibali, D. Mouradov, L. A. Mielke, K. Tran, A. Chou, N. J. Hawkins, R. L. Ward, A. J. Gill, O. M. Sieber, and D. S. Williams, “Automated deep learning-based assessment of tumour-infiltrating lymphocyte density determines prognosis in colorectal cancer,” vol. 23, no. 1, p. 298. | |
dc.relation.references | M. Verdicchio, V. Brancato, C. Cavaliere, F. Isgr`o, M. Salvatore, and M. Aiello, “A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images,” vol. 9, no. 3, p. e14371. | |
dc.relation.references | T. Binder, E. M. Tantaoui, P. Pati, R. Catena, A. Set-Aghayan, and M. Gabrani, “Multi-organ gland segmentation using deep learning,” vol. 6, p. 173. | |
dc.relation.references | P. Barmpoutis, W. Waddingham, C. Ross, K. Hamzeh, D. C. Alexander, and M. Jansen, “Gland segmentation in gastric histology images: detection of intestinal metaplasia,” in 2022 30th European Signal Processing Conference (EUSIPCO), pp. 1338–1342. ISSN: 2076-1465. | |
dc.relation.references | C. Mishra and D. L. Gupta, “Deep machine learning and neural networks: An overview,” vol. 6, no. 2, pp. 66–73. Number: 2. | |
dc.relation.references | G. Campanella, M. G. Hanna, L. Geneslaw, A. Miraflor, V. Werneck Krauss Silva, K. J. Busam, E. Brogi, V. E. Reuter, D. S. Klimstra, and T. J. Fuchs, “Clinicalgrade computational pathology using weakly supervised deep learning on whole slide images,” vol. 25, no. 8, pp. 1301–1309. Publisher: Nature Publishing Group. | |
dc.relation.references | J. Schmidhuber, “Deep learning in neural networks: An overview,” vol. 61, pp. 85–117. | |
dc.relation.references | N. Coudray, P. S. Ocampo, T. Sakellaropoulos, N. Narula, M. Snuderl, D. Feny¨o, A. L. Moreira, N. Razavian, and A. Tsirigos, “Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning,” vol. 24, no. 10, pp. 1559–1567. Publisher: Nature Publishing Group. | |
dc.relation.references | A. Younesi, M. Ansari, M. Fazli, A. Ejlali, M. Shafique, and J. Henkel, “A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends,” vol. 12, pp. 41180–41218. Conference Name: IEEE Access. | |
dc.relation.references | M. Tan and Q. V. Le, “EfficientNetV2: Smaller models and faster training.” | |
dc.relation.references | Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the 2020s.” | |
dc.relation.references | X. Ding, X. Zhang, Y. Zhou, J. Han, G. Ding, and J. Sun, “Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs.” | |
dc.relation.references | X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A review of convolutional neural networks in computer vision,” vol. 57, no. 4, p. 99. | |
dc.relation.references | K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition.” | |
dc.relation.references | K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition.” | |
dc.relation.references | C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision.” | |
dc.relation.references | S. Zarif, H. Abdulkader, I. Elaraby, A. Alharbi, W. S. Elkilani, and P. P lawiak, “Using hybrid pre-trained models for breast cancer detection,” vol. 19, no. 1, p. e0296912. | |
dc.relation.references | M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks.” version: 4. | |
dc.relation.references | F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. | |
dc.relation.references | O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention u-net: Learning where to look for the pancreas.” | |
dc.relation.references | S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in vision: A survey,” vol. 54, no. 10, pp. 1–41. | |
dc.relation.references | K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, Z. Yang, Y. Zhang, and D. Tao, “A survey on visual transformer,” vol. 45, no. 1, pp. 87–110. | |
dc.relation.references | H. Touvron, M. Cord, and H. J´egou, “DeiT III: Revenge of the ViT.” | |
dc.relation.references | Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and B. Guo, “Swin transformer v2: Scaling up capacity and resolution.” | |
dc.relation.references | N. Park and S. Kim, “How do vision transformers work?.” | |
dc.relation.references | J. Gu, H. Kwon, D. Wang, W. Ye, M. Li, Y.-H. Chen, L. Lai, V. Chandra, and D. Z. Pan, “Multi-scale high-resolution vision transformer for semantic segmentation.” | |
dc.relation.references | F. Shamshad, S. Khan, S. W. Zamir, M. H. Khan, M. Hayat, F. S. Khan, and H. Fu, “Transformers in medical imaging: A survey.” | |
dc.relation.references | K. He, X. Chen, S. Xie, Y. Li, P. Doll´ar, and R. Girshick, “Masked autoencoders are scalable vision learners.” | |
dc.relation.references | Q. Zhang, Y. Xu, J. Zhang, and D. Tao, “ViTAEv2: Vision transformer advanced by exploring inductive bias for image recognition and beyond.” | |
dc.relation.references | S. Mehta and M. Rastegari, “MobileViT: Light-weight, general-purpose, and mobilefriendly vision transformer.” | |
dc.relation.references | R. Gupta, K. Nair, M. Mishra, B. Ibrahim, and S. Bhardwaj, “Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda,” vol. 4, no. 1, p. 100232. | |
dc.relation.references | H. H. Rashidi, J. Pantanowitz, A. Chamanzar, B. Fennell, Y. Wang, R. R. Gullapalli, A. Tafti, M. Deebajah, S. Albahra, E. Glassy, M. G. Hanna, and L. Pantanowitz, “Generative artificial intelligence in pathology and medicine: A deeper dive,” vol. 38, no. 4, p. 100687. | |
dc.relation.references | H. H. Rashidi, M. G. Hanna, and L. Pantanowitz, “Introducing an essential 7-part artificial intelligence review series: A guided journey into the future of pathology and medicine,” vol. 38, no. 3. Publisher: Elsevier. | |
dc.relation.references | P. Sharma, M. Kumar, H. K. Sharma, and S. M. Biju, “Generative adversarial networks (GANs): Introduction, taxonomy, variants, limitations, and applications,” vol. 83, no. 41, pp. 88811–88858. | |
dc.relation.references | J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. ISSN: 2380-7504. | |
dc.relation.references | D. I. Morís, J. J. de Moura Ramos, J. N. Buján, and M. O. Hortas, “Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest x-ray images,” vol. 185, p. 115681. | |
dc.relation.references | CIEDYN, “Fundacion centro de investigaciones de enfermedades digestivas y nutricionale,” 2022. | |
dc.relation.references | A. Bedoya-Urresta, Y. Y´epez, D. Calvache, Y. Cifuentes, N. Lucero, P. Gonz´alez, A. Bedoya G., E. Manosalva, T. Mart´ınez, A. Pe˜nalosa, B. Piazuelo, A. Bedoya- Urresta, Y. Y´epez, D. Calvache, Y. Cifuentes, N. Lucero, P. Gonz´alez, A. Bedoya G., E. Manosalva, T. Mart´ınez, A. Pe˜nalosa, and B. Piazuelo, “Proyecto urkunina 5000. investigación de la prevalencia de lesiones precursoras y del efecto de la erradicación de helicobacter pylori como prevención primaria del cáncer gástrico en el departamento de nariño,” vol. 33, no. 4, pp. 345–352. Publisher: Revista Colombiana de Cirugía. | |
dc.relation.references | R. Kumar, A. Anand, N. Jain, and R. Sharma, “Performance analysis of InceptionV3, ResNet50 and VGG16 for diabetic retinopathy detection,” pp. 320–335. | |
dc.relation.references | J. M. Gorriz, R. M. Clemente, F. Segovia, J. Ramirez, A. Ortiz, and J. Suckling, “Is k-fold cross validation the best model selection method for machine learning?.” | |
dc.relation.references | M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” vol. 45, no. 4, pp. 427–437. | |
dc.relation.references | A. Sejben, B`athori, F. Heged˝us, B. Vasas, G. Y. Lauwers, and B. K˝ov´ari, “Gastric-like (pseudopyloric and pseudofoveolar) metaplasia and paneth cell hyperplasia—neglected histological features of chronic ileal inflammation,” | |
dc.relation.references | J. R. Goldblum, “Barrett’s esophagus and barrett’s-related dysplasia,” vol. 16, no. 4, pp. 316–324. | |
dc.relation.references | K. Sirinukunwattana, J. P. W. Pluim, H. Chen, X. Qi, P.-A. Heng, Y. B. Guo, L. Y. Wang, B. J. Matuszewski, E. Bruni, U. Sanchez, A. B¨ohm, O. Ronneberger, B. B. Cheikh, D. Racoceanu, P. Kainz, M. Pfeiffer, M. Urschler, D. R. J. Snead, and N. M. Rajpoot, “Gland segmentation in colon histology images: The GlaS challenge contest.” | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Factores de Riesgo | spa |
dc.subject.decs | Risk Factors | eng |
dc.subject.decs | Valor Predictivo de las Pruebas | spa |
dc.subject.decs | Predictive Value of Tests | eng |
dc.subject.decs | Inteligencia Artificial | spa |
dc.subject.decs | Artificial Intelligence | eng |
dc.subject.proposal | Deep learning | eng |
dc.subject.proposal | Computational pathology | eng |
dc.subject.proposal | Gastric cancer | eng |
dc.subject.proposal | Precancerous lesions | eng |
dc.subject.proposal | Aprendizaje profundo | spa |
dc.subject.proposal | Patología computacional | spa |
dc.subject.proposal | Cancer gástrico | spa |
dc.subject.proposal | Lesiones precancerosas | spa |
dc.title | Cuantificación de la progresión de glándulas de control a lesiones precancerosas en el estómago a partir del análisis histopatológico de imágenes | spa |
dc.title.translated | Quantification of the progression from control glands to precancerous lesions in the stomach based on histopathological analysis of images | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1122138028_Thesis.pdf
- Tamaño:
- 2.35 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: