Implementation of flexible lifetime distributions in regression models to estimate survival times

dc.contributor.advisorHernández Barajas, Freddy
dc.contributor.authorMosquera Gutiérrez, Jaime
dc.contributor.orcidMosquera Gutiérrez, Jaime [0000-0002-1684-4756]spa
dc.date.accessioned2024-11-12T14:41:43Z
dc.date.available2024-11-12T14:41:43Z
dc.date.issued2023
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractIn the fields of reliability engineering and survival analysis, it is common to find experiments from which data characterized by non-monotonic hazard functions—such as bathtub-shaped or unimodal functions—can be obtained. To model datasets like those mentioned, flexible lifetime distributions are frequently proposed. However, many of these distributions are not yet implemented in statistical software for fitting regression models. In this context, we have developed the EstimationTools R package, which offers a general-purpose framework for fitting and evaluating distributional regression models. This framework employs a syntax that mirrors mathematical notation. We leveraged maximum likelihood estimation and computed the log-likelihood function just using the probability mass/density function implemented in the R global workspace. Our framework is particularly suited for datasets where the response variable follows a flexible lifetime distribution, thereby enabling users to estimate distribution parameters in relation to covariates, even with censored data. It also provides graphical diagnostic tools through Martingale, Cox-Snell, Deviance and Randomized Quantile Residuals. The software has been tested on well-known datasets from health sciences and reliability studies, demonstrating its potential to develop models for applications such as flood prediction, churn analysis, credit risk modeling, recidivism, and student dropout. Overall, our work represents a versatile alternative for fitting parametric time-to-event models. (Tomado de la fuente)eng
dc.description.abstractEn los campos de la ingeniería de confiabilidad y el análisis de supervivencia, es común encontrar experimentos de los cuales se pueden obtener datos caracterizados por funciones de riesgo no monótonas, tales como funciones en forma de bañera o unimodales. Para modelar conjuntos de datos como los mencionados, se proponen frecuentemente distribuciones de vida útil flexibles. Sin embargo, muchas de estas distribuciones aun no están implementadas en software estadístico para ajustar modelos de regresión. En este contexto, hemos desarrollado el paquete R EstimationTools, que ofrece un marco de trabajo de propósito general para ajustar y evaluar modelos de regresión distribucional. Este marco utiliza una sintaxis que refleja la notación matemática. Utilizamos la estimación de máxima verosimilitud y calculamos la función de log-verosimilitud basada en la función de masa/densidad de probabilidad implementada en el espacio de trabajo global de R. Nuestro marco es particularmente adecuado para conjuntos de datos donde la variable de respuesta sigue una distribución de vida útil flexible, lo que permite a los usuarios estimar parámetros de distribución en relación con covariables, incluso con datos censurados. También proporciona herramientas de diagnóstico gráfico a través de residuos de Martingala, Cox-Snell y Deviance. El software ha sido probado en conjuntos de datos bien conocidos de las ciencias de la salud y estudios de confiabilidad, demostrando su potencial para desarrollar modelos para aplicaciones como la predicción de inundaciones, análisis de abandono de clientes, modelado de riesgo crediticio, reincidencia y deserción estudiantil. En general, nuestro trabajo representa una alternativa versátil para ajustar modelos paramétricos de tiempo hasta el evento.spa
dc.description.curricularareaEstadística.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaGeneralized Modelsspa
dc.format.extent177 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87170
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAarset, M. V. (1987). How to Identify a Bathtub Hazard Rate. IEEE Transactions on Reliability, R-36(1):106–108.spa
dc.relation.referencesAbdi, M., Asgharzadeh, A., Bakouch, H. S., & Alipour, Z. (2019). A New Compound Gamma and Lindley Distribution with Application to Failure Data. Austrian Journal of Statistics, 48(3):54–75.spa
dc.relation.referencesAgresti, A. (2015a). Deviance of a GLM, model comparison, and model checking. In Foundations of Linear and Generalized Linear Models, chapter 4, page 132. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1st edition.spa
dc.relation.referencesAgresti, A. (2015b). Likelihood-Ratio Model Comparison Uses Deviance Difference. In Foundations of Linear and Generalized Linear Models, chapter 4, page 134. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1st edition.spa
dc.relation.referencesAlanzi, A. R. A., Jamal, F., Tahir, M. H., Chesneau, C., Kanwal, S., & Sami, W. (2023). A New Detection Function Model for Distance Sampling Based on the Burr XII Model. Symmetry, 15(3):620.spa
dc.relation.referencesAlmalki, S. J. & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124:32–55.spa
dc.relation.referencesAsquith, W. H. (2018). lmomco—L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions.spa
dc.relation.referencesAucoin, F. (2015). FAdist: Distributions that are Sometimes Used in Hydrology.spa
dc.relation.referencesBailey, D. H. & Borwein, J. M. (2015). High-Precision Arithmetic : Progress and Challenges. Mathematics, 3:337–367.spa
dc.relation.referencesBarlow, W. E. & Prentice, R. L. (1988). Residuals for Relative Risk Regression. Biometrika, 75(1):65.spa
dc.relation.referencesBartos, F. (2021). BayesTools: Tools for Bayesian Analyses.spa
dc.relation.referencesBebbington, M., Lai, C.-D., & Zitikis, R. (2006). Useful periods for lifetime distributions with Bathtub shaped hazard rate functions. IEEE Transactions on Reliability, 55(2):245–251.spa
dc.relation.referencesBebbington, M., Lai, C. D., & Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering & System Safety, 92(6):719–726.spa
dc.relation.referencesBergman, B. & Klefsjo, B. (1984). Total Time on Test Concept and Its Use in Reliability Theory. Operations Research, 32(3):596–606.spa
dc.relation.referencesBorchers, H. W. (2022). numbers: Number-Theoretic Functions.spa
dc.relation.referencesBrostr¨om, G. (2018). Event History Analysis with R. CRC Press.spa
dc.relation.referencesBrostr¨om, G. (2020). eha: Event History Analysis.spa
dc.relation.referencesBuckland, S. T. (1992). Algorithm AS 270: Maximum Likelihood Fitting of Hermite and Simple Polynomial Densities. Applied Statistics, 41(1):241.spa
dc.relation.referencesBuckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J. L. (1993). Distance Sampling. Springer Netherlands, Dordrecht.spa
dc.relation.referencesByrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.spa
dc.relation.referencesCanty, A. & Ripley, B. D. (2017). boot: Bootstrap R (S-Plus) Functions.spa
dc.relation.referencesCarlson, B. W. (2020). Simpson’s paradox.spa
dc.relation.referencesCarrasco, J. M. F., Ortega, E. M. M., & Cordeiro, G. M. (2008). A generalized modified Weibull distribution for lifetime modeling. Computational Statistics and Data Analysis, 53(2):450–462.spa
dc.relation.referencesCasella, G. & Berger, R. L. (2002). The Sufficience Principle. In Statistical inference, volume 2, page 281. Duxbury Pacific Grove, CA.spa
dc.relation.referencesCohen, A. C. (1973). The reflected Weibull distribution. Technometrics, 15(4):867–873.spa
dc.relation.referencesColosimo, E. A. & Ruiz Giolo, S. (2006b). Modelos de Regressão Parametricos. In Análise de Sobrevivência Aplicada, chapter 4, pages 123–134. Edgard Blucher, São Paulo.spa
dc.relation.referencesCooray, K. (2006). Generalization of the Weibull distribution: The odd Weibull family. Statistical Modelling, 6(3):265–277.spa
dc.relation.referencesCooray, K. (2015). A study of moments and likelihood estimators of the odd Weibull distribution. Statistical Methodology, 26:72–83.spa
dc.relation.referencesCordeiro, G. M. & NETO, E. d. A. L. (2004). Modelos paramétricos. Pernambuco: UFRPE.spa
dc.relation.referencesCordeiro, G. M., Ortega, E. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8):1399–1429.spa
dc.relation.referencesCox, D. R. (1972). Regression Models and Live-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2):187–220.spa
dc.relation.referencesCox, D. R. & Snell, E. J. (1968). A General Definition of Residuals. Journal of the Royal Statistical Society. Series B (Methodological), 30(2):248–275.spa
dc.relation.referencesDai, Y. & Yuan, Y. (2001). An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization. Annals of Operations Research, 103(1-4):33–47.spa
dc.relation.referencesDai, Y. H. & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1):177–182.spa
dc.relation.referencesDaniels, H. E. (1961). Efficiency of a maximum likelihood estimator. In Neyman, J., editor, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pages 151–163, Berkeley. University of California Press.spa
dc.relation.referencesDavison, A. C. & Hinkley, D. V. (1997). Bootstrap Methods and Their Applications. Cambridge University Press, Cambridge.spa
dc.relation.referencesDe Bruijn, N. G. (1981). Asymptotic methods in analysis, volume 4. Courier Corporation.spa
dc.relation.referencesde Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple Lang, D., & Bodik, R. (2017). Programming with models: writing statistical algorithms for general model structures with NIMBLE. Journal of Computational and Graphical Statistics, 26(2):403– 413.spa
dc.relation.referencesDelignette-Muller, M. L. & Dutang, C. (2015). fitdistrplus : An R Package for Fitting Distributions. Journal of Statistical Software, 64(4):1–34.spa
dc.relation.referencesDevendra, K. & Rangaswamy, T. (2013). Strength Characterization of E-glass Fiber Reinforced Epoxy Composites with Filler Materials. Journal of Minerals and Materials Characterization and Engineering, 01(06):353–357.spa
dc.relation.referencesDiaconis, P. (1987). Application of the Method of Moments in Probability and Statistics. In Landau, H., editor, Moments in Mathematics: Proceedings of Symposia in Applied Mathematics, volume 37 of Proceedings of Symposia in Applied Mathematics, pages 125–142. American Mathematical Society, Providence, Rhode Island.spa
dc.relation.referencesDidonato, A. R. & Morris, A. H. (1992). Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Transactions on Mathematical Software, 18(3):360– 373.spa
dc.relation.referencesDorsey, R. E. & Mayer, W. J. (1995). Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business & Economic Statistics, 13(1):53–66.spa
dc.relation.referencesDrapella, A. (1993). The complementary Weibull distribution: Unknown or just forgotten? Quality and Reliability Engineering International, 9(4):383–385.spa
dc.relation.referencesDunn, P. K. & Smyth, G. K. (1996). Randomized Quantile Residuals. Journal of Computational and Graphical Statistics, 5(3):236.spa
dc.relation.referencesDunn, P. K. & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. Springer Texts in Statistics. Springer New York, New York, NY.spa
dc.relation.referencesEfron, B. (1988). Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve. Journal of the American Statistical Association, 83(402):414.spa
dc.relation.referencesEisinga, R., Heskes, T., Pelzer, B., & Te Grotenhuis, M. (2017). Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers. BMC Bioinformatics, 18(1):68.spa
dc.relation.referencesEscobar, L. A. & Meeker, W. Q. (2006). A Review of Accelerated Test Models. Statistical Science, 21(4):552–577.spa
dc.relation.referencesFamoye, F., Lee, C., & Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4:121–136.spa
dc.relation.referencesFisher, R. (1912). On an Absolute Criterion for Fitting Frequency Curves. Messenger of Mathematics, 41(1):155–160.spa
dc.relation.referencesFisher, R. A. (1922). On the Mathematical Foundations of Theoretical Statistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 222(594-604):309–368.spa
dc.relation.referencesFisher, R. A. (1958). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh, 13th edition.spa
dc.relation.referencesFletcher, R. (1964). Function minimization by conjugate gradients. The Computer Journal, 7(2):149–154.spa
dc.relation.referencesFletcher, R. (1987). Practical Methods of Optimization. John Wiley & Sons, New York, 2nd edition.spa
dc.relation.referencesFox, P. A., Hall, A. P., & Schryer, N. L. (1978). The PORT Mathematical Subroutine Library. ACM Transactions on Mathematical Software, 4(2):104–126.spa
dc.relation.referencesGelman, A., Simpson, D., & Betancourt, M. (2017). The Prior Can Often Only Be Understood in the Context of the Likelihood. Entropy, 19(10):555.spa
dc.relation.referencesGhitany, M., Al-Mutairi, D., Balakrishnan, N., & Al-Enezi, L. (2013). Power Lindley distribution and associated inference. Computational Statistics & Data Analysis, 64:20–33.spa
dc.relation.referencesGoulet, V. (2008). actuar: An R Package for Actuarial Science. Journal of Statistical Software, 25(7).spa
dc.relation.referencesGranzotto, D. C. T., Dos Santos, C. A., & Louzada, F. (2018). The Transmuted Weibull Regression Model: an Application to Type 2 Diabetes Mellitus Data. International Journal of Statistics and Probability, 7(2):1.spa
dc.relation.referencesGruman, J. (2021). Survival Analysis.spa
dc.relation.referencesGumbel, E. J. (1941). The Return Period of Flood Flows. Annals of Statistics, pages 163–190.spa
dc.relation.referencesGumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York, university edition.spa
dc.relation.referencesGurland, J. (1954). On regularity conditions for maximum likelihood estimators. Scandinavian Actuarial Journal, 1954(1):71–76.spa
dc.relation.referencesHalabi, S., Dutta, S., Wu, Y., & Liu, A. (2020). Score and deviance residuals based on the full likelihood approach in survival analysis. Pharmaceutical Statistics, 19(6):940–954.spa
dc.relation.referencesHall, D. (2021). bignum: Arbitrary-Precision Integer and Floating-Point Mathematics.spa
dc.relation.referencesHaupt, R. L. & Haupt, S. E. (2003). Practical Genetic Algorithms. John Wiley & Sons, Inc., Hoboken, NJ, USA.spa
dc.relation.referencesHayes, A., Moller-Trane, R., Jordan, D., Northrop, P., Lang, M. N., & Zeileis, A. (2022). distributions3: Probability Distributions as S3 Objects.spa
dc.relation.referencesHenningsen, A. & Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3):443–458.spa
dc.relation.referencesHernandez, F., Usuga, O., Patino, C., Mosquera, J., & Urrea, A. (2023). RelDists: Estimation for some Reliability Distributions. Medellin, Colombia.spa
dc.relation.referencesIEEE and Open Group (2004a). The Open Group Base Specifications Issue 6 — expm1.spa
dc.relation.referencesIEEE and Open Group (2004b). The Open Group Base Specifications Issue 6 — log1p.spa
dc.relation.referencesJackson, C. (2016). flexsurv : A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8).spa
dc.relation.referencesJames, B. R. (2010). Esperan¸ca Matemática. In Probabilidade: um curso em nível intermediário, chapter 3, page 112. 5th edition.spa
dc.relation.referencesJiang, H., Xie, M., & Tang, L. C. (2008). On the odd Weibull distribution. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222(4):583–594.spa
dc.relation.referencesJohnson, S. G. (2022). The NLopt nonlinear-optimization package.spa
dc.relation.referencesKalbfleisch, J. D. & Prentice, R. L. (2002). Regression models. In The Statistical Analysis of Failure Time Data, page 40. John Wiley & Sons, Inc.spa
dc.relation.referencesKaplan, E. L. & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282):457.spa
dc.relation.referencesKarvanen, J. (2006). Estimation of quantile mixtures via L-moments and trimmed Lmoments. Computational Statistics & Data Analysis, 51(2):947–959.spa
dc.relation.referencesKarvanen, J. (2019). Lmoments: L-moments and quantile mixtures.spa
dc.relation.referencesKhan, S. A. (2018). Exponentiated Weibull regression for time-to-event data. Lifetime Data Analysis, 24(2):328–354.spa
dc.relation.referencesKohl, M. & Ruckdeschel, P. (2010). R Package distrMod: S4 Classes and Methods for Probability Models. Journal of Statistical Software, 35(10).spa
dc.relation.referencesLai, C. D., Xie, M., & Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on Reliability, 52(1):33–37.spa
dc.relation.referencesLange, K. (2010). Newton’s Method and Scoring. In Numerical Analysis for Statisticians, Statistics and Computing, chapter 11. Springer New York, New York, NY.spa
dc.relation.referencesLawless, J. F. (2002). Parametric Regression models. In Statistical Models and Methods for Lifetime Data, Wiley Series in Probability and Statistics, pages 34–35. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2nd edition.spa
dc.relation.referencesLawless, J. F. (2003). Basic Concepts and Models. In Statistical Models and Methods for Lifetime Data, chapter 1, page 1. Wiley, 2nd edition.spa
dc.relation.referencesLee, E. T. & Wang, J. W. (2003). Type I Censoring. In Statistical Methods for Survival Data Analysis, chapter 1, page 2. John Wiley & Sons, Inc., New Jersey, NJ, USA, third edition.spa
dc.relation.referencesLeung, K.-M., Elashoff, R. M., & Afifi, A. A. (1997). Censoring issues in survival analysis. Annual Review of Public Health, 18(1):83–104.spa
dc.relation.referencesLoprinzi, C. L., Laurie, J. A., Wieand, H. S., Krook, J. E., Novotny, P. J., Kugler, J. W., Bartel, J., Law, M., Bateman, M., & Klatt, N. E. (1994). Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 12(3):601–7.spa
dc.relation.referencesLucas, A., Scholz, I., Boehme, R., Jasson, S., & M¨achler, M. (2023). gmp: Multiple Precision Arithmetic.spa
dc.relation.referencesMächler, M. (2011). Arbitrarily Accurate Computation with R: The Rmpfr Package. Technical report, ETH Zurich.spa
dc.relation.referencesMächler, M. (2012). Accurately Computing log(1 - exp(-—a—)) Assessed by the Rmpfr package. Technical report.spa
dc.relation.referencesMächler, M. (2022). Rmpfr: R MPFR - Multiple Precision Floating-Point Reliable.spa
dc.relation.referencesMarinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M., & Nadarajah, S. (2019). AdequacyModel: An R package for probability distributions and general purpose optimization. PLOS ONE, 14(8):e0221487.spa
dc.relation.referencesMarshall, A. W. & Olkin, I. (2007). Life Distributions. Springer Series in Statistics.spa
dc.relation.referencesMartin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov Chain Monte Carlo in R. Journal of Statistical Software, 42(9):22.spa
dc.relation.referencesMazucheli, J., Coelho-Barros, E. A., & Achcar, J. A. (2013). The exponentiated exponential mixture and non-mixture cure rate model in the presence of covariates. Computer Methods and Programs in Biomedicine, 112(1):114–124.spa
dc.relation.referencesMcCullagh, P. & Nelder, J. A. (1989). Deviance Residuals. In Generalized Linear Models, chapter 2, pages 39–40. CRC Press, London, 2nd edition.spa
dc.relation.referencesMeeker, W. Q. & Escobar, L. A. (1998). Distinguishing Features of Reliability Data. In Statistical Methods for Reliability Data, chapter 1, page 3. John Wiley & Sons, Inc.spa
dc.relation.referencesMosquera Guti´erez, J. & Hern´andez, F. (2023). EstimationTools.spa
dc.relation.referencesMudholkar, G. S. & Hutson, A. D. (1996). The exponentiated weibull family: some properties and a flood data application. Communications in Statistics - Theory and Methods, 25(12):3059–083.spa
dc.relation.referencesMudholkar, G. S. & Kollia, G. D. (1994). Generalized weibull family: a structural analysis. Communications in Statistics - Theory and Methods, 23(4):1149–1171.spa
dc.relation.referencesMudholkar, G. S. & Srivastava, D. K. (1993). Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability, 42(2):299–302.spa
dc.relation.referencesMuhammad, M., Bantan, R. A. R., Liu, L., Chesneau, C., Tahir, M. H., Jamal, F., & Elgarhy, M. (2021). A New Extended Cosine—G Distributions for Lifetime Studies. Mathematics, 9(21):2758.spa
dc.relation.referencesMurdock, Bennet B., J. (1961). The retention of individual items. Journal of Experimental Psychology, 62(6):618–625.spa
dc.relation.referencesMurthy, P., Xie, M., & Jiang, R. (2004). Taxonomy for Weibull Models. In Weibull Models, pages 18–37. John Wiley & Sons, Inc.spa
dc.relation.referencesMyung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1):90–100.spa
dc.relation.referencesNachlas, J. A. (2017). Reliability Engineering. CRC Press.spa
dc.relation.referencesNadarajah, S. & Rocha, R. (2016). Newdistns : An R Package for New Families of Distributions. Journal of Statistical Software, 69(10).spa
dc.relation.referencesNair, N. U., Sankaran, P. G., & Balakrishnan, N. (2018). Chapter 5 - Bathtub Distributions. In Nair, N. U., Sankaran, P. G., & Balakrishnan, N., editors, Reliability Modelling and Analysis in Discrete Time, pages 247–279. Academic Press, Boston.spa
dc.relation.referencesNakagawa, T. & Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on Reliability, R-24(5):300–301.spa
dc.relation.referencesNash, J. C. (1979). Compact Numerical Methods for Computers. Linear Algebra and Function Minimisation. Adam Hilger, Bristol, 2nd editio edition.spa
dc.relation.referencesNash, J. C. (2014a). Conjugate gradient and related methods. In Nonlinear parameter optimization using R tools, pages 18–19. John Wiley & Sons.spa
dc.relation.referencesNash, J. C. (2014b). Quasi-Newton or variable metric method. In Nonlinear parameter optimization using R tools, chapter 2, pages 17–18. John Wiley & Sons.spa
dc.relation.referencesNash, J. C. (2014c). Rcgmin: Conjugate Gradient Minimization of Nonlinear Functions.spa
dc.relation.referencesNash, J. C. (2018). Rvmmin: Variable Metric Nonlinear Function Minimization.spa
dc.relation.referencesNelder, J. A. & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4):308–313.spa
dc.relation.referencesNielsen, H. B. & Mortensen, S. B. (2016). ucminf: General-Purpose Unconstrained Non- Linear Optimization.spa
dc.relation.referencesÑıguez, T.-M., Paya, I., Peel, D., & Perote, J. (2019). Flexible distribution functions, higherorder preferences and optimal portfolio allocation. Quantitative Finance, 19(4):699–703.spa
dc.relation.referencesNikulin, M. & Haghighi, F. (2007). A chi-squared test for the genralized power Weibull family for the head-and-neck cancer censored data. Journal of Mathematical Sciences, 142(3):2204–2204.spa
dc.relation.referencesO’Hara-Wild, M., Kay, M., & Hayes, A. (2023). distributional: Vectorised Probability Distributions.spa
dc.relation.referencesOrtega, E. M. M., Cordeiro, G. M., & Carrasco, J. M. F. (2011). The log-generalized modified Weibull regression model. Brazilian Journal of Probability and Statistics, 25(1):64–89.spa
dc.relation.referencesPadgett, W. J. & Spurrier, J. D. (1985). On Discrete Failure Models. IEEE Transactions on Reliability, R-34(3):253–256.spa
dc.relation.referencesPanja, S. C. & Ray, P. K. (2007). Reliability analysis of track circuit of Indian railway signalling system. International Journal of Reliability and Safety, 1(4):428.spa
dc.relation.referencesPawitan, Y. (2013a). Continuos data (example 4.8). In In all likelihood: statistical modelling and inference using likelihood, chapter 4, pages 90–91. Oxford University Press.spa
dc.relation.referencesPawitan, Y. (2013b). In all likelihood: statistical modelling and inference using likelihood. Oxford University Press.spa
dc.relation.referencesPearson, K. (1936). Method of Moments and Method of Maximum Likelihood. Biometrika, 28(1/2):34.spa
dc.relation.referencesPercontini, A., Blas, B., & Cordeiro, G. (2013). The beta Weibull Poisson distribution. Chilean Journal of Statistics, 4(2):3–26.spa
dc.relation.referencesPoncet, P. (2019). modeest: Mode Estimation.spa
dc.relation.referencesPrataviera, F., Ortega, E. M., Cordeiro, G. M., Pescim, R. R., & Verssani, B. A. (2018). A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems. Reliability Engineering & System Safety, 176:13–26.spa
dc.relation.referencesPregibon, D. (1981). Logistic Regression Diagnostics. The Annals of Statistics, 9(4).spa
dc.relation.referencesPrinja, S., Gupta, N., & Verma, R. (2010). Censoring in clinical trials: Review of survival analysis techniques. Indian Journal of Community Medicine, 35(2):217.spa
dc.relation.referencesR Core Team (2022). Double-Precision Vectors.spa
dc.relation.referencesR Core Team (2023). R: A Language and Environment for Statistical Computing.spa
dc.relation.referencesReid, N. (1994). A Conversation with Sir David Cox. Statistical Science, 9(3).spa
dc.relation.referencesRigby, R. A. & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3):507–554.spa
dc.relation.referencesRossi, P. (2023). bayesm: Bayesian Inference for Marketing/Micro-Econometrics.spa
dc.relation.referencesRossi, R. J. (2018). Likelihood-based Estimation. In Mathematical Statistics: An Introduction to Likelihood Based Inference, chapter 5, pages 227–228. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1st edition.spa
dc.relation.referencesRuckdeschel, P. & Kohl, M. (2014). General Purpose Convolution Algorithm in S4 Classes by Means of FFT. Journal of Statistical Software, 59(4):1–25.spa
dc.relation.referencesRuckdeschel, P., Kohl, M., Stabla, T., & Camphausen, F. (2006). S4 Classes for Distributions. R News, 6(2):2–6.spa
dc.relation.referencesShafaei Nooghabi, M., Reza Mohtashami Borzadaran, G., & Hamid Rezaei Roknabadi, A. (2011). Discrete modified Weibull distribution. METRON, 69(2):207–222.spa
dc.relation.referencesSheynin, O. (1994). Chebyshev’s lectures on the theory of probability. Archive for History of Exact Sciences, 46(4):321–340.spa
dc.relation.referencesSinger, S. & Nelder, J. (2009). Nelder-Mead algorithm.spa
dc.relation.referencesStacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of Mathematical Statistics, 33(3):1187–1192.spa
dc.relation.referencesStasinopoulos, D. M. & Rigby, R. A. (2007). Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. Journal of Statistical Software, 23(7).spa
dc.relation.referencesStasinopoulos, M., Rigby, R. A., Heller, G. Z., Voudouris, V., & De Bastiani, F. (2017a). Diagnostics. In Flexible Regression and Smoothing: Using GAMLSS in R. Chapman and Hall/CRC, 1st edition.spa
dc.relation.referencesStasinopoulos, M., Rigby, R. A., Heller, G. Z., Voudouris, V., & De Bastiani, F. (2017b). The GAMLSS family of distributions. In Flexible regression and smoothing using GAMLSS in R, pages 153–189. Chapman and Hall/CRC, 1st edition.spa
dc.relation.referencesStatisticat & LLC. (2021). LaplacesDemon: Complete Environment for Bayesian Inference.spa
dc.relation.referencesStein, W. E. & Dattero, R. (1984). A New Discrete Weibull Distribution. IEEE Transactions on Reliability, R-33(2):196–197.spa
dc.relation.referencesStigler, S. (2005). Fisher in 1921. Statistical Science, 20(1):32–49.spa
dc.relation.referencesStigler, S. M. (1977). Do Robust Estimators Work with Real Data? The Annals of Statistics, 5(6).spa
dc.relation.referencesTang, P.-T. P. (1990). Table-driven implementation of the logarithm function in IEEE floating-point arithmetic. ACM Transactions on Mathematical Software, 16(4):378–400.spa
dc.relation.referencesTang, P. T. P. (1992). Table-driven implementation of the Expm1 function in IEEE floatingpoint arithmetic. ACM Transactions on Mathematical Software, 18(2):211–222.spa
dc.relation.referencesTherneau, T. & Grambsch, P. (2000a). Modeling Survival Data: Extending the Cox Model. Statistics for Biology and Health. Springer New York, New York, NY.spa
dc.relation.referencesTherneau, T. M. & Grambsch, P. M. (2000b). Fraility Models. In Modeling Survival Data: Extending the Cox Model, Statistics for Biology and Health, pages 231–233. Springer New York, New York, NY.spa
dc.relation.referencesTherneau, T. M., Grambsch, P. M., & Fleming, T. R. (1990). Martingale-Based Residuals for Survival Models. Biometrika, 77(1):147.spa
dc.relation.referencesTurkson, A. J., Ayiah-Mensah, F., & Nimoh, V. (2021). Handling Censoring and Censored Data in Survival Analysis: A Standalone Systematic Literature Review. International Journal of Mathematics and Mathematical Sciences, 2021:1–16.spa
dc.relation.referencesVenables, W. N. & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.spa
dc.relation.referencesWagh, Y. S. & Kamalja, K. K. (2018). Zero-inflated models and estimation in zeroinflated Poisson distribution. Communications in Statistics - Simulation and Computation, 47(8):2248–2265.spa
dc.relation.referencesWald, A. (1943). Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. Transactions of the American Mathematical Society, 54(3):426.spa
dc.relation.referencesWang, B., Wu, P., Kwan, B., Tu, X. M., & Feng, C. (2018). Simpson’s Paradox: Examples. Shanghai archives of psychiatry, 30(2):139–143.spa
dc.relation.referencesWang, F. K. (2000). A new model with bath tub-shaped failure rate using an additive Burr XII distribution. Reliability Engineering & System Safety, 70(3):305–312.spa
dc.relation.referencesWang, X.-L. & Li, D.-H. (2011). A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control and Optimization, 1(1):71–82.spa
dc.relation.referencesWeibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of applied mechanics, 103(4):293–297.spa
dc.relation.referencesWestberg, U. & Klefsj¨o, B. (1994). TTT-plotting for censored data based on the piecewise wxponential estimator. International Journal of Reliability, Quality and Safety Engineering, 01(01):1–13.spa
dc.relation.referencesWhitmore, G. A. (1983). A regression method for censored inverse-Gaussian data. Canadian Journal of Statistics, 11(4):305–315.spa
dc.relation.referencesXie, M. & Lai, C. (1996). Reliability analysis using an additive Weibull model with bathtubshaped failure rate function. Reliability Engineering & System Safety, 52(1):87–93.spa
dc.relation.referencesXie, M., Tang, Y., & Goh, T. N. (2002). A modified Weibull extension with bathtub- shaped failure rate function. Reliability Engineering & System Safety, 8320(January).spa
dc.relation.referencesZhang, Z. (2016). Parametric regression model for survival data: Weibull regression model as an example. Annals of Translational Medicine, 4(24):484–484.spa
dc.relation.referencesZhao, Y.-G., Zhang, X.-Y., & Lu, Z.-H. (2018). A flexible distribution and its application in reliability engineering. Reliability Engineering & System Safety, 176:1–12.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembConfiabilidad (Ingeniería) - Métodos estadísticos
dc.subject.lembFactor de seguridad en ingeniería
dc.subject.lembAnálisis de supervivencia (Biometría)
dc.subject.lembAnálisis de regresión
dc.subject.proposalBathtub hazardeng
dc.subject.proposalDeviance residualseng
dc.subject.proposalDistributional regressioneng
dc.subject.proposalFlexible lifetime distributionseng
dc.subject.proposalMartingale residualseng
dc.subject.proposalMaximum likelihood estimationeng
dc.subject.proposalRandomized quantile residualseng
dc.subject.proposalFunción hazard en forma de baneraspa
dc.subject.proposalResiduos devianceespa
dc.subject.proposalRegresión distribucionalespa
dc.subject.proposalDistribuciones de vida útil flexiblesspa
dc.subject.proposalResiduos de Martingalaspa
dc.subject.proposalEstimación de máxima verosimilitudspa
dc.subject.proposalResiduos cuantil aleatorizadosspa
dc.titleImplementation of flexible lifetime distributions in regression models to estimate survival timeseng
dc.title.translatedImplementación de distribuciones flexibles de duración de vida en modelos de regresión para estimar tiempos de supervivenciaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1041326919.2024.pdf
Tamaño:
4.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: