Implementation of flexible lifetime distributions in regression models to estimate survival times
dc.contributor.advisor | Hernández Barajas, Freddy | |
dc.contributor.author | Mosquera Gutiérrez, Jaime | |
dc.contributor.orcid | Mosquera Gutiérrez, Jaime [0000-0002-1684-4756] | spa |
dc.date.accessioned | 2024-11-12T14:41:43Z | |
dc.date.available | 2024-11-12T14:41:43Z | |
dc.date.issued | 2023 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | In the fields of reliability engineering and survival analysis, it is common to find experiments from which data characterized by non-monotonic hazard functions—such as bathtub-shaped or unimodal functions—can be obtained. To model datasets like those mentioned, flexible lifetime distributions are frequently proposed. However, many of these distributions are not yet implemented in statistical software for fitting regression models. In this context, we have developed the EstimationTools R package, which offers a general-purpose framework for fitting and evaluating distributional regression models. This framework employs a syntax that mirrors mathematical notation. We leveraged maximum likelihood estimation and computed the log-likelihood function just using the probability mass/density function implemented in the R global workspace. Our framework is particularly suited for datasets where the response variable follows a flexible lifetime distribution, thereby enabling users to estimate distribution parameters in relation to covariates, even with censored data. It also provides graphical diagnostic tools through Martingale, Cox-Snell, Deviance and Randomized Quantile Residuals. The software has been tested on well-known datasets from health sciences and reliability studies, demonstrating its potential to develop models for applications such as flood prediction, churn analysis, credit risk modeling, recidivism, and student dropout. Overall, our work represents a versatile alternative for fitting parametric time-to-event models. (Tomado de la fuente) | eng |
dc.description.abstract | En los campos de la ingeniería de confiabilidad y el análisis de supervivencia, es común encontrar experimentos de los cuales se pueden obtener datos caracterizados por funciones de riesgo no monótonas, tales como funciones en forma de bañera o unimodales. Para modelar conjuntos de datos como los mencionados, se proponen frecuentemente distribuciones de vida útil flexibles. Sin embargo, muchas de estas distribuciones aun no están implementadas en software estadístico para ajustar modelos de regresión. En este contexto, hemos desarrollado el paquete R EstimationTools, que ofrece un marco de trabajo de propósito general para ajustar y evaluar modelos de regresión distribucional. Este marco utiliza una sintaxis que refleja la notación matemática. Utilizamos la estimación de máxima verosimilitud y calculamos la función de log-verosimilitud basada en la función de masa/densidad de probabilidad implementada en el espacio de trabajo global de R. Nuestro marco es particularmente adecuado para conjuntos de datos donde la variable de respuesta sigue una distribución de vida útil flexible, lo que permite a los usuarios estimar parámetros de distribución en relación con covariables, incluso con datos censurados. También proporciona herramientas de diagnóstico gráfico a través de residuos de Martingala, Cox-Snell y Deviance. El software ha sido probado en conjuntos de datos bien conocidos de las ciencias de la salud y estudios de confiabilidad, demostrando su potencial para desarrollar modelos para aplicaciones como la predicción de inundaciones, análisis de abandono de clientes, modelado de riesgo crediticio, reincidencia y deserción estudiantil. En general, nuestro trabajo representa una alternativa versátil para ajustar modelos paramétricos de tiempo hasta el evento. | spa |
dc.description.curriculararea | Estadística.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.description.researcharea | Generalized Models | spa |
dc.format.extent | 177 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87170 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Aarset, M. V. (1987). How to Identify a Bathtub Hazard Rate. IEEE Transactions on Reliability, R-36(1):106–108. | spa |
dc.relation.references | Abdi, M., Asgharzadeh, A., Bakouch, H. S., & Alipour, Z. (2019). A New Compound Gamma and Lindley Distribution with Application to Failure Data. Austrian Journal of Statistics, 48(3):54–75. | spa |
dc.relation.references | Agresti, A. (2015a). Deviance of a GLM, model comparison, and model checking. In Foundations of Linear and Generalized Linear Models, chapter 4, page 132. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1st edition. | spa |
dc.relation.references | Agresti, A. (2015b). Likelihood-Ratio Model Comparison Uses Deviance Difference. In Foundations of Linear and Generalized Linear Models, chapter 4, page 134. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1st edition. | spa |
dc.relation.references | Alanzi, A. R. A., Jamal, F., Tahir, M. H., Chesneau, C., Kanwal, S., & Sami, W. (2023). A New Detection Function Model for Distance Sampling Based on the Burr XII Model. Symmetry, 15(3):620. | spa |
dc.relation.references | Almalki, S. J. & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124:32–55. | spa |
dc.relation.references | Asquith, W. H. (2018). lmomco—L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions. | spa |
dc.relation.references | Aucoin, F. (2015). FAdist: Distributions that are Sometimes Used in Hydrology. | spa |
dc.relation.references | Bailey, D. H. & Borwein, J. M. (2015). High-Precision Arithmetic : Progress and Challenges. Mathematics, 3:337–367. | spa |
dc.relation.references | Barlow, W. E. & Prentice, R. L. (1988). Residuals for Relative Risk Regression. Biometrika, 75(1):65. | spa |
dc.relation.references | Bartos, F. (2021). BayesTools: Tools for Bayesian Analyses. | spa |
dc.relation.references | Bebbington, M., Lai, C.-D., & Zitikis, R. (2006). Useful periods for lifetime distributions with Bathtub shaped hazard rate functions. IEEE Transactions on Reliability, 55(2):245–251. | spa |
dc.relation.references | Bebbington, M., Lai, C. D., & Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering & System Safety, 92(6):719–726. | spa |
dc.relation.references | Bergman, B. & Klefsjo, B. (1984). Total Time on Test Concept and Its Use in Reliability Theory. Operations Research, 32(3):596–606. | spa |
dc.relation.references | Borchers, H. W. (2022). numbers: Number-Theoretic Functions. | spa |
dc.relation.references | Brostr¨om, G. (2018). Event History Analysis with R. CRC Press. | spa |
dc.relation.references | Brostr¨om, G. (2020). eha: Event History Analysis. | spa |
dc.relation.references | Buckland, S. T. (1992). Algorithm AS 270: Maximum Likelihood Fitting of Hermite and Simple Polynomial Densities. Applied Statistics, 41(1):241. | spa |
dc.relation.references | Buckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J. L. (1993). Distance Sampling. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208. | spa |
dc.relation.references | Canty, A. & Ripley, B. D. (2017). boot: Bootstrap R (S-Plus) Functions. | spa |
dc.relation.references | Carlson, B. W. (2020). Simpson’s paradox. | spa |
dc.relation.references | Carrasco, J. M. F., Ortega, E. M. M., & Cordeiro, G. M. (2008). A generalized modified Weibull distribution for lifetime modeling. Computational Statistics and Data Analysis, 53(2):450–462. | spa |
dc.relation.references | Casella, G. & Berger, R. L. (2002). The Sufficience Principle. In Statistical inference, volume 2, page 281. Duxbury Pacific Grove, CA. | spa |
dc.relation.references | Cohen, A. C. (1973). The reflected Weibull distribution. Technometrics, 15(4):867–873. | spa |
dc.relation.references | Colosimo, E. A. & Ruiz Giolo, S. (2006b). Modelos de Regressão Parametricos. In Análise de Sobrevivência Aplicada, chapter 4, pages 123–134. Edgard Blucher, São Paulo. | spa |
dc.relation.references | Cooray, K. (2006). Generalization of the Weibull distribution: The odd Weibull family. Statistical Modelling, 6(3):265–277. | spa |
dc.relation.references | Cooray, K. (2015). A study of moments and likelihood estimators of the odd Weibull distribution. Statistical Methodology, 26:72–83. | spa |
dc.relation.references | Cordeiro, G. M. & NETO, E. d. A. L. (2004). Modelos paramétricos. Pernambuco: UFRPE. | spa |
dc.relation.references | Cordeiro, G. M., Ortega, E. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8):1399–1429. | spa |
dc.relation.references | Cox, D. R. (1972). Regression Models and Live-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2):187–220. | spa |
dc.relation.references | Cox, D. R. & Snell, E. J. (1968). A General Definition of Residuals. Journal of the Royal Statistical Society. Series B (Methodological), 30(2):248–275. | spa |
dc.relation.references | Dai, Y. & Yuan, Y. (2001). An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization. Annals of Operations Research, 103(1-4):33–47. | spa |
dc.relation.references | Dai, Y. H. & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1):177–182. | spa |
dc.relation.references | Daniels, H. E. (1961). Efficiency of a maximum likelihood estimator. In Neyman, J., editor, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pages 151–163, Berkeley. University of California Press. | spa |
dc.relation.references | Davison, A. C. & Hinkley, D. V. (1997). Bootstrap Methods and Their Applications. Cambridge University Press, Cambridge. | spa |
dc.relation.references | De Bruijn, N. G. (1981). Asymptotic methods in analysis, volume 4. Courier Corporation. | spa |
dc.relation.references | de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple Lang, D., & Bodik, R. (2017). Programming with models: writing statistical algorithms for general model structures with NIMBLE. Journal of Computational and Graphical Statistics, 26(2):403– 413. | spa |
dc.relation.references | Delignette-Muller, M. L. & Dutang, C. (2015). fitdistrplus : An R Package for Fitting Distributions. Journal of Statistical Software, 64(4):1–34. | spa |
dc.relation.references | Devendra, K. & Rangaswamy, T. (2013). Strength Characterization of E-glass Fiber Reinforced Epoxy Composites with Filler Materials. Journal of Minerals and Materials Characterization and Engineering, 01(06):353–357. | spa |
dc.relation.references | Diaconis, P. (1987). Application of the Method of Moments in Probability and Statistics. In Landau, H., editor, Moments in Mathematics: Proceedings of Symposia in Applied Mathematics, volume 37 of Proceedings of Symposia in Applied Mathematics, pages 125–142. American Mathematical Society, Providence, Rhode Island. | spa |
dc.relation.references | Didonato, A. R. & Morris, A. H. (1992). Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Transactions on Mathematical Software, 18(3):360– 373. | spa |
dc.relation.references | Dorsey, R. E. & Mayer, W. J. (1995). Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business & Economic Statistics, 13(1):53–66. | spa |
dc.relation.references | Drapella, A. (1993). The complementary Weibull distribution: Unknown or just forgotten? Quality and Reliability Engineering International, 9(4):383–385. | spa |
dc.relation.references | Dunn, P. K. & Smyth, G. K. (1996). Randomized Quantile Residuals. Journal of Computational and Graphical Statistics, 5(3):236. | spa |
dc.relation.references | Dunn, P. K. & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. Springer Texts in Statistics. Springer New York, New York, NY. | spa |
dc.relation.references | Efron, B. (1988). Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve. Journal of the American Statistical Association, 83(402):414. | spa |
dc.relation.references | Eisinga, R., Heskes, T., Pelzer, B., & Te Grotenhuis, M. (2017). Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers. BMC Bioinformatics, 18(1):68. | spa |
dc.relation.references | Escobar, L. A. & Meeker, W. Q. (2006). A Review of Accelerated Test Models. Statistical Science, 21(4):552–577. | spa |
dc.relation.references | Famoye, F., Lee, C., & Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4:121–136. | spa |
dc.relation.references | Fisher, R. (1912). On an Absolute Criterion for Fitting Frequency Curves. Messenger of Mathematics, 41(1):155–160. | spa |
dc.relation.references | Fisher, R. A. (1922). On the Mathematical Foundations of Theoretical Statistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 222(594-604):309–368. | spa |
dc.relation.references | Fisher, R. A. (1958). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh, 13th edition. | spa |
dc.relation.references | Fletcher, R. (1964). Function minimization by conjugate gradients. The Computer Journal, 7(2):149–154. | spa |
dc.relation.references | Fletcher, R. (1987). Practical Methods of Optimization. John Wiley & Sons, New York, 2nd edition. | spa |
dc.relation.references | Fox, P. A., Hall, A. P., & Schryer, N. L. (1978). The PORT Mathematical Subroutine Library. ACM Transactions on Mathematical Software, 4(2):104–126. | spa |
dc.relation.references | Gelman, A., Simpson, D., & Betancourt, M. (2017). The Prior Can Often Only Be Understood in the Context of the Likelihood. Entropy, 19(10):555. | spa |
dc.relation.references | Ghitany, M., Al-Mutairi, D., Balakrishnan, N., & Al-Enezi, L. (2013). Power Lindley distribution and associated inference. Computational Statistics & Data Analysis, 64:20–33. | spa |
dc.relation.references | Goulet, V. (2008). actuar: An R Package for Actuarial Science. Journal of Statistical Software, 25(7). | spa |
dc.relation.references | Granzotto, D. C. T., Dos Santos, C. A., & Louzada, F. (2018). The Transmuted Weibull Regression Model: an Application to Type 2 Diabetes Mellitus Data. International Journal of Statistics and Probability, 7(2):1. | spa |
dc.relation.references | Gruman, J. (2021). Survival Analysis. | spa |
dc.relation.references | Gumbel, E. J. (1941). The Return Period of Flood Flows. Annals of Statistics, pages 163–190. | spa |
dc.relation.references | Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York, university edition. | spa |
dc.relation.references | Gurland, J. (1954). On regularity conditions for maximum likelihood estimators. Scandinavian Actuarial Journal, 1954(1):71–76. | spa |
dc.relation.references | Halabi, S., Dutta, S., Wu, Y., & Liu, A. (2020). Score and deviance residuals based on the full likelihood approach in survival analysis. Pharmaceutical Statistics, 19(6):940–954. | spa |
dc.relation.references | Hall, D. (2021). bignum: Arbitrary-Precision Integer and Floating-Point Mathematics. | spa |
dc.relation.references | Haupt, R. L. & Haupt, S. E. (2003). Practical Genetic Algorithms. John Wiley & Sons, Inc., Hoboken, NJ, USA. | spa |
dc.relation.references | Hayes, A., Moller-Trane, R., Jordan, D., Northrop, P., Lang, M. N., & Zeileis, A. (2022). distributions3: Probability Distributions as S3 Objects. | spa |
dc.relation.references | Henningsen, A. & Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3):443–458. | spa |
dc.relation.references | Hernandez, F., Usuga, O., Patino, C., Mosquera, J., & Urrea, A. (2023). RelDists: Estimation for some Reliability Distributions. Medellin, Colombia. | spa |
dc.relation.references | IEEE and Open Group (2004a). The Open Group Base Specifications Issue 6 — expm1. | spa |
dc.relation.references | IEEE and Open Group (2004b). The Open Group Base Specifications Issue 6 — log1p. | spa |
dc.relation.references | Jackson, C. (2016). flexsurv : A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8). | spa |
dc.relation.references | James, B. R. (2010). Esperan¸ca Matemática. In Probabilidade: um curso em nível intermediário, chapter 3, page 112. 5th edition. | spa |
dc.relation.references | Jiang, H., Xie, M., & Tang, L. C. (2008). On the odd Weibull distribution. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222(4):583–594. | spa |
dc.relation.references | Johnson, S. G. (2022). The NLopt nonlinear-optimization package. | spa |
dc.relation.references | Kalbfleisch, J. D. & Prentice, R. L. (2002). Regression models. In The Statistical Analysis of Failure Time Data, page 40. John Wiley & Sons, Inc. | spa |
dc.relation.references | Kaplan, E. L. & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282):457. | spa |
dc.relation.references | Karvanen, J. (2006). Estimation of quantile mixtures via L-moments and trimmed Lmoments. Computational Statistics & Data Analysis, 51(2):947–959. | spa |
dc.relation.references | Karvanen, J. (2019). Lmoments: L-moments and quantile mixtures. | spa |
dc.relation.references | Khan, S. A. (2018). Exponentiated Weibull regression for time-to-event data. Lifetime Data Analysis, 24(2):328–354. | spa |
dc.relation.references | Kohl, M. & Ruckdeschel, P. (2010). R Package distrMod: S4 Classes and Methods for Probability Models. Journal of Statistical Software, 35(10). | spa |
dc.relation.references | Lai, C. D., Xie, M., & Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on Reliability, 52(1):33–37. | spa |
dc.relation.references | Lange, K. (2010). Newton’s Method and Scoring. In Numerical Analysis for Statisticians, Statistics and Computing, chapter 11. Springer New York, New York, NY. | spa |
dc.relation.references | Lawless, J. F. (2002). Parametric Regression models. In Statistical Models and Methods for Lifetime Data, Wiley Series in Probability and Statistics, pages 34–35. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2nd edition. | spa |
dc.relation.references | Lawless, J. F. (2003). Basic Concepts and Models. In Statistical Models and Methods for Lifetime Data, chapter 1, page 1. Wiley, 2nd edition. | spa |
dc.relation.references | Lee, E. T. & Wang, J. W. (2003). Type I Censoring. In Statistical Methods for Survival Data Analysis, chapter 1, page 2. John Wiley & Sons, Inc., New Jersey, NJ, USA, third edition. | spa |
dc.relation.references | Leung, K.-M., Elashoff, R. M., & Afifi, A. A. (1997). Censoring issues in survival analysis. Annual Review of Public Health, 18(1):83–104. | spa |
dc.relation.references | Loprinzi, C. L., Laurie, J. A., Wieand, H. S., Krook, J. E., Novotny, P. J., Kugler, J. W., Bartel, J., Law, M., Bateman, M., & Klatt, N. E. (1994). Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 12(3):601–7. | spa |
dc.relation.references | Lucas, A., Scholz, I., Boehme, R., Jasson, S., & M¨achler, M. (2023). gmp: Multiple Precision Arithmetic. | spa |
dc.relation.references | Mächler, M. (2011). Arbitrarily Accurate Computation with R: The Rmpfr Package. Technical report, ETH Zurich. | spa |
dc.relation.references | Mächler, M. (2012). Accurately Computing log(1 - exp(-—a—)) Assessed by the Rmpfr package. Technical report. | spa |
dc.relation.references | Mächler, M. (2022). Rmpfr: R MPFR - Multiple Precision Floating-Point Reliable. | spa |
dc.relation.references | Marinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M., & Nadarajah, S. (2019). AdequacyModel: An R package for probability distributions and general purpose optimization. PLOS ONE, 14(8):e0221487. | spa |
dc.relation.references | Marshall, A. W. & Olkin, I. (2007). Life Distributions. Springer Series in Statistics. | spa |
dc.relation.references | Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov Chain Monte Carlo in R. Journal of Statistical Software, 42(9):22. | spa |
dc.relation.references | Mazucheli, J., Coelho-Barros, E. A., & Achcar, J. A. (2013). The exponentiated exponential mixture and non-mixture cure rate model in the presence of covariates. Computer Methods and Programs in Biomedicine, 112(1):114–124. | spa |
dc.relation.references | McCullagh, P. & Nelder, J. A. (1989). Deviance Residuals. In Generalized Linear Models, chapter 2, pages 39–40. CRC Press, London, 2nd edition. | spa |
dc.relation.references | Meeker, W. Q. & Escobar, L. A. (1998). Distinguishing Features of Reliability Data. In Statistical Methods for Reliability Data, chapter 1, page 3. John Wiley & Sons, Inc. | spa |
dc.relation.references | Mosquera Guti´erez, J. & Hern´andez, F. (2023). EstimationTools. | spa |
dc.relation.references | Mudholkar, G. S. & Hutson, A. D. (1996). The exponentiated weibull family: some properties and a flood data application. Communications in Statistics - Theory and Methods, 25(12):3059–083. | spa |
dc.relation.references | Mudholkar, G. S. & Kollia, G. D. (1994). Generalized weibull family: a structural analysis. Communications in Statistics - Theory and Methods, 23(4):1149–1171. | spa |
dc.relation.references | Mudholkar, G. S. & Srivastava, D. K. (1993). Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability, 42(2):299–302. | spa |
dc.relation.references | Muhammad, M., Bantan, R. A. R., Liu, L., Chesneau, C., Tahir, M. H., Jamal, F., & Elgarhy, M. (2021). A New Extended Cosine—G Distributions for Lifetime Studies. Mathematics, 9(21):2758. | spa |
dc.relation.references | Murdock, Bennet B., J. (1961). The retention of individual items. Journal of Experimental Psychology, 62(6):618–625. | spa |
dc.relation.references | Murthy, P., Xie, M., & Jiang, R. (2004). Taxonomy for Weibull Models. In Weibull Models, pages 18–37. John Wiley & Sons, Inc. | spa |
dc.relation.references | Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1):90–100. | spa |
dc.relation.references | Nachlas, J. A. (2017). Reliability Engineering. CRC Press. | spa |
dc.relation.references | Nadarajah, S. & Rocha, R. (2016). Newdistns : An R Package for New Families of Distributions. Journal of Statistical Software, 69(10). | spa |
dc.relation.references | Nair, N. U., Sankaran, P. G., & Balakrishnan, N. (2018). Chapter 5 - Bathtub Distributions. In Nair, N. U., Sankaran, P. G., & Balakrishnan, N., editors, Reliability Modelling and Analysis in Discrete Time, pages 247–279. Academic Press, Boston. | spa |
dc.relation.references | Nakagawa, T. & Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on Reliability, R-24(5):300–301. | spa |
dc.relation.references | Nash, J. C. (1979). Compact Numerical Methods for Computers. Linear Algebra and Function Minimisation. Adam Hilger, Bristol, 2nd editio edition. | spa |
dc.relation.references | Nash, J. C. (2014a). Conjugate gradient and related methods. In Nonlinear parameter optimization using R tools, pages 18–19. John Wiley & Sons. | spa |
dc.relation.references | Nash, J. C. (2014b). Quasi-Newton or variable metric method. In Nonlinear parameter optimization using R tools, chapter 2, pages 17–18. John Wiley & Sons. | spa |
dc.relation.references | Nash, J. C. (2014c). Rcgmin: Conjugate Gradient Minimization of Nonlinear Functions. | spa |
dc.relation.references | Nash, J. C. (2018). Rvmmin: Variable Metric Nonlinear Function Minimization. | spa |
dc.relation.references | Nelder, J. A. & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4):308–313. | spa |
dc.relation.references | Nielsen, H. B. & Mortensen, S. B. (2016). ucminf: General-Purpose Unconstrained Non- Linear Optimization. | spa |
dc.relation.references | Ñıguez, T.-M., Paya, I., Peel, D., & Perote, J. (2019). Flexible distribution functions, higherorder preferences and optimal portfolio allocation. Quantitative Finance, 19(4):699–703. | spa |
dc.relation.references | Nikulin, M. & Haghighi, F. (2007). A chi-squared test for the genralized power Weibull family for the head-and-neck cancer censored data. Journal of Mathematical Sciences, 142(3):2204–2204. | spa |
dc.relation.references | O’Hara-Wild, M., Kay, M., & Hayes, A. (2023). distributional: Vectorised Probability Distributions. | spa |
dc.relation.references | Ortega, E. M. M., Cordeiro, G. M., & Carrasco, J. M. F. (2011). The log-generalized modified Weibull regression model. Brazilian Journal of Probability and Statistics, 25(1):64–89. | spa |
dc.relation.references | Padgett, W. J. & Spurrier, J. D. (1985). On Discrete Failure Models. IEEE Transactions on Reliability, R-34(3):253–256. | spa |
dc.relation.references | Panja, S. C. & Ray, P. K. (2007). Reliability analysis of track circuit of Indian railway signalling system. International Journal of Reliability and Safety, 1(4):428. | spa |
dc.relation.references | Pawitan, Y. (2013a). Continuos data (example 4.8). In In all likelihood: statistical modelling and inference using likelihood, chapter 4, pages 90–91. Oxford University Press. | spa |
dc.relation.references | Pawitan, Y. (2013b). In all likelihood: statistical modelling and inference using likelihood. Oxford University Press. | spa |
dc.relation.references | Pearson, K. (1936). Method of Moments and Method of Maximum Likelihood. Biometrika, 28(1/2):34. | spa |
dc.relation.references | Percontini, A., Blas, B., & Cordeiro, G. (2013). The beta Weibull Poisson distribution. Chilean Journal of Statistics, 4(2):3–26. | spa |
dc.relation.references | Poncet, P. (2019). modeest: Mode Estimation. | spa |
dc.relation.references | Prataviera, F., Ortega, E. M., Cordeiro, G. M., Pescim, R. R., & Verssani, B. A. (2018). A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems. Reliability Engineering & System Safety, 176:13–26. | spa |
dc.relation.references | Pregibon, D. (1981). Logistic Regression Diagnostics. The Annals of Statistics, 9(4). | spa |
dc.relation.references | Prinja, S., Gupta, N., & Verma, R. (2010). Censoring in clinical trials: Review of survival analysis techniques. Indian Journal of Community Medicine, 35(2):217. | spa |
dc.relation.references | R Core Team (2022). Double-Precision Vectors. | spa |
dc.relation.references | R Core Team (2023). R: A Language and Environment for Statistical Computing. | spa |
dc.relation.references | Reid, N. (1994). A Conversation with Sir David Cox. Statistical Science, 9(3). | spa |
dc.relation.references | Rigby, R. A. & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3):507–554. | spa |
dc.relation.references | Rossi, P. (2023). bayesm: Bayesian Inference for Marketing/Micro-Econometrics. | spa |
dc.relation.references | Rossi, R. J. (2018). Likelihood-based Estimation. In Mathematical Statistics: An Introduction to Likelihood Based Inference, chapter 5, pages 227–228. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1st edition. | spa |
dc.relation.references | Ruckdeschel, P. & Kohl, M. (2014). General Purpose Convolution Algorithm in S4 Classes by Means of FFT. Journal of Statistical Software, 59(4):1–25. | spa |
dc.relation.references | Ruckdeschel, P., Kohl, M., Stabla, T., & Camphausen, F. (2006). S4 Classes for Distributions. R News, 6(2):2–6. | spa |
dc.relation.references | Shafaei Nooghabi, M., Reza Mohtashami Borzadaran, G., & Hamid Rezaei Roknabadi, A. (2011). Discrete modified Weibull distribution. METRON, 69(2):207–222. | spa |
dc.relation.references | Sheynin, O. (1994). Chebyshev’s lectures on the theory of probability. Archive for History of Exact Sciences, 46(4):321–340. | spa |
dc.relation.references | Singer, S. & Nelder, J. (2009). Nelder-Mead algorithm. | spa |
dc.relation.references | Stacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of Mathematical Statistics, 33(3):1187–1192. | spa |
dc.relation.references | Stasinopoulos, D. M. & Rigby, R. A. (2007). Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. Journal of Statistical Software, 23(7). | spa |
dc.relation.references | Stasinopoulos, M., Rigby, R. A., Heller, G. Z., Voudouris, V., & De Bastiani, F. (2017a). Diagnostics. In Flexible Regression and Smoothing: Using GAMLSS in R. Chapman and Hall/CRC, 1st edition. | spa |
dc.relation.references | Stasinopoulos, M., Rigby, R. A., Heller, G. Z., Voudouris, V., & De Bastiani, F. (2017b). The GAMLSS family of distributions. In Flexible regression and smoothing using GAMLSS in R, pages 153–189. Chapman and Hall/CRC, 1st edition. | spa |
dc.relation.references | Statisticat & LLC. (2021). LaplacesDemon: Complete Environment for Bayesian Inference. | spa |
dc.relation.references | Stein, W. E. & Dattero, R. (1984). A New Discrete Weibull Distribution. IEEE Transactions on Reliability, R-33(2):196–197. | spa |
dc.relation.references | Stigler, S. (2005). Fisher in 1921. Statistical Science, 20(1):32–49. | spa |
dc.relation.references | Stigler, S. M. (1977). Do Robust Estimators Work with Real Data? The Annals of Statistics, 5(6). | spa |
dc.relation.references | Tang, P.-T. P. (1990). Table-driven implementation of the logarithm function in IEEE floating-point arithmetic. ACM Transactions on Mathematical Software, 16(4):378–400. | spa |
dc.relation.references | Tang, P. T. P. (1992). Table-driven implementation of the Expm1 function in IEEE floatingpoint arithmetic. ACM Transactions on Mathematical Software, 18(2):211–222. | spa |
dc.relation.references | Therneau, T. & Grambsch, P. (2000a). Modeling Survival Data: Extending the Cox Model. Statistics for Biology and Health. Springer New York, New York, NY. | spa |
dc.relation.references | Therneau, T. M. & Grambsch, P. M. (2000b). Fraility Models. In Modeling Survival Data: Extending the Cox Model, Statistics for Biology and Health, pages 231–233. Springer New York, New York, NY. | spa |
dc.relation.references | Therneau, T. M., Grambsch, P. M., & Fleming, T. R. (1990). Martingale-Based Residuals for Survival Models. Biometrika, 77(1):147. | spa |
dc.relation.references | Turkson, A. J., Ayiah-Mensah, F., & Nimoh, V. (2021). Handling Censoring and Censored Data in Survival Analysis: A Standalone Systematic Literature Review. International Journal of Mathematics and Mathematical Sciences, 2021:1–16. | spa |
dc.relation.references | Venables, W. N. & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media. | spa |
dc.relation.references | Wagh, Y. S. & Kamalja, K. K. (2018). Zero-inflated models and estimation in zeroinflated Poisson distribution. Communications in Statistics - Simulation and Computation, 47(8):2248–2265. | spa |
dc.relation.references | Wald, A. (1943). Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. Transactions of the American Mathematical Society, 54(3):426. | spa |
dc.relation.references | Wang, B., Wu, P., Kwan, B., Tu, X. M., & Feng, C. (2018). Simpson’s Paradox: Examples. Shanghai archives of psychiatry, 30(2):139–143. | spa |
dc.relation.references | Wang, F. K. (2000). A new model with bath tub-shaped failure rate using an additive Burr XII distribution. Reliability Engineering & System Safety, 70(3):305–312. | spa |
dc.relation.references | Wang, X.-L. & Li, D.-H. (2011). A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control and Optimization, 1(1):71–82. | spa |
dc.relation.references | Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of applied mechanics, 103(4):293–297. | spa |
dc.relation.references | Westberg, U. & Klefsj¨o, B. (1994). TTT-plotting for censored data based on the piecewise wxponential estimator. International Journal of Reliability, Quality and Safety Engineering, 01(01):1–13. | spa |
dc.relation.references | Whitmore, G. A. (1983). A regression method for censored inverse-Gaussian data. Canadian Journal of Statistics, 11(4):305–315. | spa |
dc.relation.references | Xie, M. & Lai, C. (1996). Reliability analysis using an additive Weibull model with bathtubshaped failure rate function. Reliability Engineering & System Safety, 52(1):87–93. | spa |
dc.relation.references | Xie, M., Tang, Y., & Goh, T. N. (2002). A modified Weibull extension with bathtub- shaped failure rate function. Reliability Engineering & System Safety, 8320(January). | spa |
dc.relation.references | Zhang, Z. (2016). Parametric regression model for survival data: Weibull regression model as an example. Annals of Translational Medicine, 4(24):484–484. | spa |
dc.relation.references | Zhao, Y.-G., Zhang, X.-Y., & Lu, Z.-H. (2018). A flexible distribution and its application in reliability engineering. Reliability Engineering & System Safety, 176:1–12. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 500 - Ciencias naturales y matemáticas | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.ddc | 510 - Matemáticas | spa |
dc.subject.lemb | Confiabilidad (Ingeniería) - Métodos estadísticos | |
dc.subject.lemb | Factor de seguridad en ingeniería | |
dc.subject.lemb | Análisis de supervivencia (Biometría) | |
dc.subject.lemb | Análisis de regresión | |
dc.subject.proposal | Bathtub hazard | eng |
dc.subject.proposal | Deviance residuals | eng |
dc.subject.proposal | Distributional regression | eng |
dc.subject.proposal | Flexible lifetime distributions | eng |
dc.subject.proposal | Martingale residuals | eng |
dc.subject.proposal | Maximum likelihood estimation | eng |
dc.subject.proposal | Randomized quantile residuals | eng |
dc.subject.proposal | Función hazard en forma de banera | spa |
dc.subject.proposal | Residuos deviancee | spa |
dc.subject.proposal | Regresión distribucionale | spa |
dc.subject.proposal | Distribuciones de vida útil flexibles | spa |
dc.subject.proposal | Residuos de Martingala | spa |
dc.subject.proposal | Estimación de máxima verosimilitud | spa |
dc.subject.proposal | Residuos cuantil aleatorizados | spa |
dc.title | Implementation of flexible lifetime distributions in regression models to estimate survival times | eng |
dc.title.translated | Implementación de distribuciones flexibles de duración de vida en modelos de regresión para estimar tiempos de supervivencia | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1041326919.2024.pdf
- Tamaño:
- 4.4 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: