Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia

dc.contributor.advisorVelásquez-Henao, Juan David
dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.authorGil Vera, Victor Daniel
dc.contributor.researchgroupBig Data y Data Analyticsspa
dc.date.accessioned2022-03-02T16:37:05Z
dc.date.available2022-03-02T16:37:05Z
dc.date.issued2021-11
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl incremento masivo de cursos universitarios virtuales a distancia en universidades e Instituciones de Educación Superior a nivel mundial, ha llevado al incremento en la generación de información relacionada con el rendimiento académico estudiantil; esta información puede ser aprovechada para predecir el desempeño académico y prevenir la mortalidad académica y la deserción. A partir de los resultados de la revisión sistemática de literatura se identificó que no existe una metodología que permita a los docentes de cursos universitarios virtuales a distancia predecir el rendimiento académico estudiantil; algunas investigaciones presentan ejercicios de clasificación sobre el desempeño de los estudiantes; pero no establecen un procedimiento formal que pueda ser empleado por docentes de cualquier área de conocimiento que dicten este tipo de cursos. El principal aporte de esta investigación doctoral es la creación de una metodología para predecir el desempeño académico (Aprueba/Reprueba) en cursos universitarios virtuales a distancia. En resumen, la metodología está conformada por los siguientes pasos; determinación de las variables a analizar, construcción de la base de datos, construcción de los modelos de predicción, evaluación de los modelos y visualización de la predicción. La metodología va más allá del Machine Learning dado que esta considera aspectos relevantes del contexto educativo que deben ser considerados para que las predicciones tengan sentido. Se concluye que la metodología formulada tiene una alta precisión e involucra diferentes aspectos relacionados con la vida académica y personal de los estudiantes, ya que el rendimiento académico estudiantil en este tipo de cursos depende de diversos factores. (Texto tomado de la fuente)spa
dc.description.abstractThe massive increase of virtual university distance learning courses in universities and Higher Education Institutions worldwide has led to an increase in the generation of information related to student academic performance; this information can be used to predict academic performance and prevent academic mortality and dropout. From the results of the systematic literature review, it was identified that there is no methodology that allows teachers of virtual distance university courses to predict student academic performance; some researches present classification exercises on student performance; but they do not establish a formal procedure that can be used by teachers of any area of knowledge who teach this type of courses. The main contribution of this doctoral research is the creation of a methodology to predict academic performance (Pass/Fail) in virtual distance university courses. In summary, the methodology consists of the following steps; determination of the variables to be analyzed, construction of the database, construction of the prediction models, evaluation of the models and visualization of the prediction. The methodology goes beyond Machine Learning since it considers relevant aspects of the educational context that must be considered for the predictions to make sense. This research concludes that the formulated methodology has a high accuracy and involves different aspects related to the academic and personal life of the students, since student academic performance in this type of courses depends on several factors.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAnalíticaspa
dc.format.extentxix, 124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81113
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.referencesAbu Tair, M. M., & El-Halees, A. M. (2012). Mining educational data to improve students’ performance: a case study. Mining Educational Data to Improve Students’ Performance: A Case Study, 2(2).spa
dc.relation.referencesAbu Zohair, L. M. (2019). Prediction of Student’s performance by modelling small dataset size. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0160-3spa
dc.relation.referencesAhammed, F., & Smith, E. (2019). Prediction of students’ performances using course analytics data: A case of water engineering course at the university of south australia. Education Sciences, 9(3). https://doi.org/10.3390/educsci9030245spa
dc.relation.referencesAl-Nofaie, H. (2020). Saudi University Students’ Perceptions towards Virtual Education during COVID-19 Pandemic: A Case Study of Language Learning via Blackboard. Arab World English Journal, 11(3), 4–20.spa
dc.relation.referencesAl-Shehri, H., Al-Qarni, A., Al-Saati, L., Batoaq, A., Badukhen, H., Alrashed, S., Alhiyafi, J., & Olatunji, S. O. (2017). Student performance prediction using support vector machine and k-nearest neighbor. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 1–4.spa
dc.relation.referencesAl-Sudani, S., & Palaniappan, R. (2019). Predicting students’ final degree classification using an extended profile. Education and Information Technologies, 24(4), 2357–2369. https://doi.org/10.1007/s10639-019-09873-8spa
dc.relation.referencesAlarcón, G. G., Añorve, J. R., Sánchez, M. del R. G., & Salgado, T. A. (2016). Los factores psicosociales como impacto en el bajo rendimiento escolar de los estudiantes de la Universidad Autónoma de Guerrero/Psychosocial factors as impact on poor school performance of the students of the Autonomous University of Guerrero. RIDE Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 7(13), 107–125spa
dc.relation.referencesAMIR. (2020). Curso Híbrido. https://academiamir.com/cursos-amir/hibrido/spa
dc.relation.referencesAngeline, D. M. D. (2013). Association rule generation for student performance analysis using apriori algorithm. The SIJ Transactions on Computer Science Engineering & Its Applications (CSEA), 1(1), 12–16.spa
dc.relation.referencesArsad, P. M., Buniyamin, N., & Manan, J. A. (2013). A neural network students’ performance prediction model (NNSPPM). 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), 1–5.spa
dc.relation.referencesBaggs, T., Barnett, D., & McCullough, K. (2015). The value of traditional cognitive variables for predicting performance in graduate speech-language pathology programs. Journal of Allied Health, 44(1), 10–16. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924898093&partnerID=40&md5=3c7591fefc8ae763d803459a9a87dc00spa
dc.relation.referencesBanditvilai, C. (2016). Enhancing students language skills through blended learning. Electronic Journal of E-Learning, 14(3), pp223-232.spa
dc.relation.referencesBastús, V. J. (1855). Diccionario histórico enciclopédico, 2. Roca.spa
dc.relation.referencesBengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.spa
dc.relation.referencesBeyens, I., Vandenbosch, L., & Eggermont, S. (2015). Early adolescent boys’ exposure to Internet pornography: Relationships to pubertal timing, sensation seeking, and academic performance. The Journal of Early Adolescence, 35(8), 1045–1068.spa
dc.relation.referencesBin Mat, U., Buniyamin, N., Arsad, P. M., & Kassim, R. (2013). An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention. 2013 IEEE 5th Conference on Engineering Education (ICEED), 126–130.spa
dc.relation.referencesBlack, S. E., Lincove, J., Cullinane, J., & Veron, R. (2015). Can you leave high school behind? Economics of Education Review, 46, 52–63.spa
dc.relation.referencesBogarín, A., Romero, C., Cerezo, R., & Sánchez-Santillán, M. (2014). Clustering for improving educational process mining. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, 11–15.spa
dc.relation.referencesBrasche, I., & Harrington, I. (2012). Promoting teacher quality and continuity: Tackling the disadvantages of remote Indigenous schools in the Northern Territory. Australian Journal of Education, 56(2), 110–125.spa
dc.relation.referencesBravo-Agapito, J., Romero, S. J., & Pamplona, S. (2021). Early prediction of undergraduate Student’s academic performance in completely online learning: A five-year study. Computers in Human Behavior, 115(January 2020), 106595. https://doi.org/10.1016/j.chb.2020.106595spa
dc.relation.referencesBrito, M., Medeiros, F., & Bezerra, E. (2019). A report-type plugin to indicate dropout risk in the virtual learning environment moodle. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 2161, 127–128.spa
dc.relation.referencesBrook, S., & Roberts, M. (2021). What are the determinants of student performance on an undergraduate accounting degree? Journal of Further and Higher Education. https://doi.org/10.1080/0309877X.2021.1882666spa
dc.relation.referencesBrownlee, J. (2016). Support Vector Machines for Machine Learning. Machine Learning Mastery. https://machinelearningmastery.com/support-vector-machines-for-machine-learning/spa
dc.relation.referencesBuenaño-Fernández, D., Gil, D., & Luján-Mora, S. (2019). Application of machine learning in predicting performance for computer engineering students: A case study. Sustainability, 11(10), 2833.spa
dc.relation.referencesBunkar, K., Kumar, S., PandyaBhupendra, K., & Bunkar, R. (2012). Data mining: Prediction for performance improvement of graduate students using classification. 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN), 1–5.spa
dc.relation.referencesBussu, A., Detotto, C., & Serra, L. (2020). Indicators to prevent university drop-out and delayed graduation: an Italian case. Journal of Applied Research in Higher Education, 12(2), 230–249. https://doi.org/10.1108/JARHE-10-2018-0201spa
dc.relation.referencesCapterra. (2020). Best Learning Management System Software for Windows. https://www.capterra.com/learning-management-system-software/s/windows/spa
dc.relation.referencesCazarez, R. L. U., & Martin, C. L. (2018). Neural Networks for Predicting Student Performance in Online Education. IEEE Latin America Transactions, 16(7), 2053–2060. https://doi.org/10.1109/TLA.2018.8447376spa
dc.relation.referencesChang, Y., & Brickman, P. (2018). When group work doesn’t work: Insights from students. CBE Life Sciences Education, 17(3). https://doi.org/10.1187/cbe.17-09-0199spa
dc.relation.referencesChicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13.spa
dc.relation.referencesChristian, T. M., & Ayub, M. (2014). Exploration of classification using NBTree for predicting students’ performance. 2014 International Conference on Data and Software Engineering (ICODSE), 1–6.spa
dc.relation.referencesCorrea-Burrows, P., Burrows, R., Blanco, E., Reyes, M., & Gahagan, S. (2016). Nutritional quality of diet and academic performance in Chilean students Qualité nutritionnelle de l’alimentation et résultats scolaires des lycéens chiliens Calidad nutricional de la dieta y rendimiento académico de los estudiantes chilenos.spa
dc.relation.referencesCuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of School Psychology, 68, 154–162. https://doi.org/10.1016/j.jsp.2018.03.005spa
dc.relation.referencesDaud, A., Aljohani, N. R., Abbasi, R. A., Lytras, M. D., Abbas, F., & Alowibdi, J. S. (2017). Predicting student performance using advanced learning analytics. Proceedings of the 26th International Conference on World Wide Web Companion, 415–421.spa
dc.relation.referencesDavid, M. C., Eley, D. S., Schafer, J., & Davies, L. (2016). Risk assessment of student performance in the international foundations of medicine clinical science examination by the use of statistical modeling. Advances in Medical Education and Practice, 7, 653–660. https://doi.org/10.2147/AMEP.S122841spa
dc.relation.referencesDeo, R. C., Yaseen, Z. M., Al-Ansari, N., Nguyen-Huy, T., Langlands, T. A. M., & Galligan, L. (2020). Modern Artificial Intelligence Model Development for Undergraduate Student Performance Prediction: An Investigation on Engineering Mathematics Courses. IEEE Access, 8, 136697–136724. https://doi.org/10.1109/ACCESS.2020.3010938spa
dc.relation.referencesDöring, M. (2018). Prediction vs Forecasting. Data Science Blog. https://www.datascienceblog.net/post/machine-learning/forecasting_vs_prediction/spa
dc.relation.referencesDung, D. T. H. (2020). The advantages and disadvantages of virtual learning. IOSR Journal of Research & Method in Education, 10(3), 45–48.spa
dc.relation.referencesDutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. Ieee Access, 5, 15991–16005.spa
dc.relation.referencesEdgar, T. W., & Manz, D. O. (2017). Chapter 6 - Machine Learning. In T. W. Edgar & D. O. Manz (Eds.), Research Methods for Cyber Security (pp. 153–173). Syngress. https://doi.org/https://doi.org/10.1016/B978-0-12-805349-2.00006-6spa
dc.relation.referencesEhsanpur, S., & Razavi, M. R. (2020). A Comparative analysis of learning, retention, learning and study strategies in the traditional and M-learning systems. European Review of Applied Psychology, 70(6), 100605. https://doi.org/https://doi.org/10.1016/j.erap.2020.100605spa
dc.relation.referencesErokhina, E. A., & Anikina, E. M. (2020). Advantages and Disadvantages of Remote Education in the Russian Federation During the Pandemic Period. Непрерывное Профессиональное Образование: Теория и Практика, 121–123.spa
dc.relation.referencesGedrimiene, E., Silvola, A., Pursiainen, J., Rusanen, J., & Muukkonen, H. (2019). Learning Analytics in Education: Literature Review and Case Examples From Vocational Education. Scandinavian Journal of Educational Research, 3831. https://doi.org/10.1080/00313831.2019.1649718spa
dc.relation.referencesGil-Herrera, E., Tsalatsanis, A., Yalcin, A., & Kaw, A. (2011). Predicting academic performance using a Rough Set Theory-based knowledge discovery methodology. International Journal of Engineering Education, 27(5), 992–1002. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052985455&partnerID=40&md5=94ee1759e02b6c5659f7637b9e67aa7aspa
dc.relation.referencesGolden, C. E., Rothrock Jr, M. J., & Mishra, A. (2019). Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Research International, 122, 47–55.spa
dc.relation.referencesGómez-Aguilar, D.-A., García-Peñalvo, F.-J., & Therón, R. (2014). Analítica visual en e-learning. Profesional de La Información, 23(3), 236–245.spa
dc.relation.referencesGómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60–67.spa
dc.relation.referencesGonen, S., & Basaran, B. (2008). The New Method of Problem Solving in Physics Education by Using SCORM-Compliant Content Package. Online Submission, 9(3), 112–120.spa
dc.relation.referencesGoogle. (2021). Colaboratory. Preguntas Frecuentes. https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C or “Colab” for,learning%2C data analysis and education.spa
dc.relation.referencesGray, G., McGuinness, C., & Owende, P. (2014). An application of classification models to predict learner progression in tertiary education. 2014 IEEE International Advance Computing Conference (IACC), 549–554.spa
dc.relation.referencesGray, G., McGuinness, C., Owende, P., & Hofmann, M. (2016). Learning factor models of students at risk of failing in the early stage of tertiary education. Journal of Learning Analytics, 3(2), 330–372.spa
dc.relation.referencesHelal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., & Murray, D. J. (2019). Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 7(3), 227–245. https://doi.org/10.1007/s41060-018-0141-yspa
dc.relation.referencesHelal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134–146.spa
dc.relation.referencesHellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V, Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: A systematic literature review. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 175–199. https://doi.org/10.1145/3293881.3295783spa
dc.relation.referencesHuang, C., Zhou, J., Chen, J., Yang, J., Clawson, K., & Peng, Y. (2021). A feature weighted support vector machine and artificial neural network algorithm for academic course performance prediction. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-05962-3spa
dc.relation.referencesHudson, R. D., & Treagust, D. F. (2013). Which form of assessment provides the best information about student performance in chemistry examinations? Research in Science and Technological Education, 31(1), 49–65. https://doi.org/10.1080/02635143.2013.764516spa
dc.relation.referencesHussain, M., Zhu, W., Zhang, W., & Abidi, S. M. R. (2018). Student engagement predictions in an e-learning system and their impact on student course assessment scores. Computational Intelligence and Neuroscience, 2018.spa
dc.relation.referencesIbrahim, Z., & Rusli, D. (2007). Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. 21st Annual SAS Malaysia Forum, 5th September.spa
dc.relation.referencesIIOT, A. &. (2016). A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python). Analytics. https://analyticks.wordpress.com/2016/07/05/a-complete-tutorial-on-tree-based-modeling-from-scratch-in-r-python/spa
dc.relation.referencesIkonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine learning techniques. WSEAS Transactions on Computers, 4(8), 966–974.spa
dc.relation.referencesImran, M., Latif, S., Mehmood, D., & Shah, M. S. (2019). Student academic performance prediction using supervised learning techniques. International Journal of Emerging Technologies in Learning, 14(14), 92–104. https://doi.org/10.3991/ijet.v14i14.10310spa
dc.relation.referencesJayanthi, G., & Ramesh, V. (2014). Design of Academic Performance Prediction System Using Multi-Layer Perceptron. International Journal of Computer Science and Software Engineering, 1(1), 9–15.spa
dc.relation.referencesJena, R. K. (2016). Investigating the interrelation between attitudes, learning readiness, and learning styles under virtual learning environment: a study among Indian students. Behaviour and Information Technology, 35(11), 946–957. https://doi.org/10.1080/0144929X.2016.1212930spa
dc.relation.referencesJensen, E., Umada, T., Hunkins, N. C., Hutt, S., Huggins-Manley, A. C., & D’mello, S. K. (2021). What you do predicts how you do: Prospectively modeling student quiz performance using activity features in an online learning environment. ACM International Conference Proceeding Series, 121–131. https://doi.org/10.1145/3448139.3448151spa
dc.relation.referencesJia, B., Niu, K., Hou, X., Li, N., Peng, X., Gu, P., & Jia, R. (2019). Prediction for Student Academic Performance Using SMNaive Bayes Model. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11888 LNAI, 712–725. https://doi.org/10.1007/978-3-030-35231-8_52spa
dc.relation.referencesJishan, S. T., Rashu, R. I., Haque, N., & Rahman, R. M. (2015). Improving accuracy of students’ final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique. Decision Analytics, 2(1), 1–25.spa
dc.relation.referencesJoksimović, S., Manataki, A., Gašević, D., Dawson, S., Kovanović, V., & De Kereki, I. F. (2016). Translating network position into performance: Importance of centrality in different network configurations. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 314–323.spa
dc.relation.referencesJones, T. (2018). Supervised learning models. IBM Developer. https://developer.ibm.com/technologies/artificial-intelligence/articles/cc-supervised-learning-models/#:~:text=Supervised learning is a method,then generalize for new examples.&text=In supervised learning%2C you create,data and a wanted output.spa
dc.relation.referencesKhan, A., & Ghosh, S. K. (2021). Student performance analysis and prediction in classroom learning: A review of educational data mining studies. Education and Information Technologies, 26(1), 205–240.spa
dc.relation.referencesKim, B.-H., Vizitei, E., & Ganapathi, V. (2018). GritNet: Student performance prediction with deep learning. ArXiv Preprint ArXiv:1804.07405.spa
dc.relation.referencesKim, J., Park, J. Y., & van Den Noortgate, W. (2020). On the use of Bayesian probabilistic matrix factorization for predicting student performance in online learning environments. International Conference on Higher Education Advances, 2020-June, 751–759. https://doi.org/10.4995/HEAd20.2020.11137spa
dc.relation.referencesKitchenham, B. . (2004). Procedures for undertaking systematic reviews. https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdfspa
dc.relation.referencesKovanović, V., Gašević, D., Dawson, S., Joksimović, S., Baker, R. S., & Hatala, M. (2015). Penetrating the black box of time-on-task estimation. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 184–193.spa
dc.relation.referencesKumar, A., Vijayalakshmi, M., & Kumar, D. A. (2012). Appraising the significance of self-regulated learning in higher education using neural networks. International Journal of Engineering Research and Development, 1(1), 9–15.spa
dc.relation.referencesLakshmi, V., & Ramesh, D. V. (2017). Evaluating students’ descriptive answers using natural language processing and artificial neural networks. International Journal of Creative Research Thoughts (IJCRT), 5(4), 3168–3173.spa
dc.relation.referencesLanzat, A. M. A., López, A. J. G., González, M. L. C., & Navío, E. P. (2018). Causas del fracaso escolar: Un análisis desde la perspectiva del profesorado y del alumnado. Enseñanza & Teaching: Revista Interuniversitaria de Didáctica, 36(1), 129–149.spa
dc.relation.referencesLau, E. T., Sun, L., & Yang, Q. (2019). Modelling, prediction and classification of student academic performance using artificial neural networks. SN Applied Sciences, 1(9), 982. https://doi.org/10.1007/s42452-019-0884-7spa
dc.relation.referencesLi, K. F., Rusk, D., & Song, F. (2013). Predicting student academic performance. 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems, 27–33.spa
dc.relation.referencesLu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Lin, A. J. Q., Ogata, H., & Yang, S. J. H. (2018). Applying learning analytics for the early prediction of Students’ academic performance in blended learning. Journal of Educational Technology & Society, 21(2), 220–232.spa
dc.relation.referencesM. Barb, R. Vilanova, J. Lopez Vicario, R. (2017). Data Mining Tool for Academic Data Exploitation. In Romania (Issue June).spa
dc.relation.referencesMacfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588–599. https://doi.org/10.1016/j.compedu.2009.09.008spa
dc.relation.referencesMacfadyen, L. P., Groth, D., Rehrey, G., Shepard, L., Greer, J., Ward, D., Bennett, C., Kaupp, J., Molinaro, M., & Steinwachs, M. (2017). Developing institutional learning analytics’ communities of transformation’to support student success. Proceedings of the Seventh International Learning Analytics & Knowledge Conference, 498–499.spa
dc.relation.referencesMahmoud Abu Zohair, L. (2019). Prediction of Student’s performance by modelling small dataset size. 16, 18. https://doi.org/10.1186/s41239-019-0160-3spa
dc.relation.referencesMalau-Aduli, B. S. (2011). Exploring the experiences and coping strategies of international medical students. BMC Medical Education, 11(1). https://doi.org/10.1186/1472-6920-11-40spa
dc.relation.referencesMaltby, A., & Mackie, S. (2009). Virtual learning environments – help or hindrance for the ‘disengaged’ student? ALT-J, 17(1), 49–62. https://doi.org/10.1080/09687760802657577spa
dc.relation.referencesMarbouti, F., Ulas, J., & Wang, C.-H. (2021). Academic and Demographic Cluster Analysis of Engineering Student Success. IEEE Transactions on Education, 64(3), 261–266. https://doi.org/10.1109/TE.2020.3036824spa
dc.relation.referencesMathWorks. (2021). Análisis predictivo. Predictive Analytics. https://es.mathworks.com/discovery/predictive-analytics.htmlspa
dc.relation.referencesMauthe, A., & Thomas, P. (2004). Professional content management systems. John Whiley & Sons, Ltd.spa
dc.relation.referencesMax Kuhn. (2021). 15 Variable Importance. https://topepo.github.io/caret/variable-importance.htmlspa
dc.relation.referencesMayilvaganan, M., & Kalpanadevi, D. (2014). Comparison of classification techniques for predicting the performance of students academic environment. 2014 International Conference on Communication and Network Technologies, 113–118.spa
dc.relation.referencesMeit, S. S., Borges, N. J., Cubic, B. A., & Seibel, H. R. (2004). Personality Differences in Incoming Male and Female Medical Students. Online Submission.spa
dc.relation.referencesMinaei-Bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch, W. F. (2003). Predicting student performance: an application of data mining methods with an educational web-based system. 33rd Annual Frontiers in Education, 2003. FIE 2003., 1, T2A-13.spa
dc.relation.referencesMiranda, G. J., Casa Nova, S. P. C., & Cornacchione Jr., E. B. (2013). To Sir with Love: The relations between teacher qualification and student performance in accounting [Ao mestre com carinho: Relações entre as qualificações docentes e o desempenho discente em contabilidade]. Revista Brasileira de Gestao de Negocios, 15(48), 462–480. https://doi.org/10.7819/rbgn.v15i48.1351spa
dc.relation.referencesMishra, T., Kumar, D., & Gupta, S. (2014). Mining students’ data for prediction performance. 2014 Fourth International Conference on Advanced Computing & Communication Technologies, 255–262.spa
dc.relation.referencesMiskioglu, E. (2016). Unseen influences on student performance: Instructor assessment styles. ASEE Annual Conference and Exposition, Conference Proceedings, 2016-June. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983266259&partnerID=40&md5=538ffaaf39189337ccab815bef9db963spa
dc.relation.referencesMoodle. (2020). Course dedication. Moodle Course Dedication. https://moodle.org/plugins/block_dedicationspa
dc.relation.referencesMorris, L. V, Finnegan, C., & Wu, S.-S. (2005). Tracking student behavior, persistence, and achievement in online courses. The Internet and Higher Education, 8(3), 221–231.spa
dc.relation.referencesMoucary, C. El, Khair, M., & Zakhem, W. (2011). Improving student’s performance using data clustering and neural networks in foreign-language based higher education. The Research Bulletin of Jordan ACM, 2(3), 27–34.spa
dc.relation.referencesMoyano, M. (2018). ¿Curso a distancia sincrónico o asincrónico? Online Educaton Center. https://onlineeducation.center/es/curso-a-distancia-sincronico-o-asincronicospa
dc.relation.referencesMuljana, P. S., & Luo, T. (2019). Factors contributing to student retention in online learning and recommended strategies for improvement: A systematic literature review. Journal of Information Technology Education: Research, 18.spa
dc.relation.referencesMutascu, M. (2021). Artificial intelligence and unemployment: New insights. Economic Analysis and Policy, 69, 653–667. https://doi.org/https://doi.org/10.1016/j.eap.2021.01.012spa
dc.relation.referencesNaganandhini, S., & Shanmugavadivu, P. (2019). Effective diagnosis of alzheimer’s disease using modified decision tree classifier. Procedia Computer Science, 165, 548–555.spa
dc.relation.referencesNamoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences (Switzerland), 11(1), 1–28. https://doi.org/10.3390/app11010237spa
dc.relation.referencesNanfor. (2021). Telepresencial. https://nanfor.com/pages/avanzadospa
dc.relation.referencesNapoli, A. R., & Raymond, L. A. (2004). How reliable are our assessment data?: A comparison of the reliability of data produced in graded and un-graded conditions. Research in Higher Education, 45(8), 921–929.spa
dc.relation.referencesNaren, J. (2014). Application of data mining in educational database for predicting behavioural patterns of the students.spa
dc.relation.referencesNatek, S., & Zwilling, M. (2014). Student data mining solution–knowledge management system related to higher education institutions. Expert Systems with Applications, 41(14), 6400–6407.spa
dc.relation.referencesNguyen, Q., Huptych, M., & Rienties, B. (2018). Linking students’ timing of engagement to learning design and academic performance. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, 141–150.spa
dc.relation.referencesNguyen, T. L. H. (2013). Middle-level academic management: A case study on the roles of the heads of department at a Vietnamese university. Tertiary Education and Management, 19(1), 1–15.spa
dc.relation.referencesO’Shaughnessy, S., & Gray, G. (2011). Development and evaluation of a dataset generator tool for generating synthetic log files containing computer attack signatures. International Journal of Ambient Computing and Intelligence (IJACI), 3(2), 64–76.spa
dc.relation.referencesOladokun, V. O., Adebanjo, A. T., & Charles-Owaba, O. E. (2008). Predicting students academic performance using artificial neural network: A case study of an engineering course.spa
dc.relation.referencesOrduña, P., García-Zubia, J., Rodriguez-Gil, L., Irurzun, J., López-de-Ipiña, D., & Gazzola, F. (2012). Using LabVIEW remote panel in remote laboratories: Advantages and disadvantages. Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), 1–7.spa
dc.relation.referencesOsmanbegović, E., AGIĆ, H., & Suljić, M. (2014). PREDICTION OF STUDENTS’SUCCESS BY APPLYING DATA MINING ALGORITHAMS. Journal of Theoretical & Applied Information Technology, 61(2).spa
dc.relation.referencesOsmanbegovic, E., & Suljic, M. (2012). Data mining approach for predicting student performance. Economic Review: Journal of Economics and Business, 10(1), 3–12.spa
dc.relation.referencesOsmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147–158.spa
dc.relation.referencesPadua Rodríguez, L. M. (2019). Factores individuales y familiares asociados al bajo rendimiento académico en estudiantes universitarios. Revista Mexicana de Investigación Educativa, 24(80), 173–195.spa
dc.relation.referencesPakhomova, T. O., Komova, O. S., Belia, V. V, Yivzhenko, Y. V, & Demidko, E. V. (2021). Transformation of the pedagogical process in higher education during the quarantine. Linguistics and Culture Review, 5(S2), 215–230.spa
dc.relation.referencesPal, A. K., & Pal, S. (2013). Analysis and mining of educational data for predicting the performance of students. International Journal of Electronics Communication and Computer Engineering, 4(5), 1560–1565.spa
dc.relation.referencesPalvia, S., Aeron, P., Gupta, P., Mahapatra, D., Parida, R., Rosner, R., & Sindhi, S. (2018). Online education: Worldwide status, challenges, trends, and implications. Taylor & Francis.spa
dc.relation.referencesPapageorgiou, K., & Halabi, A. K. (2014). Factors contributing toward student performance in a distance education accounting degree. Meditari Accountancy Research, 22(2), 211–223. https://doi.org/10.1108/MEDAR-08-2013-0032spa
dc.relation.referencesParack, S., Zahid, Z., & Merchant, F. (2012). Application of data mining in educational databases for predicting academic trends and patterns. 2012 IEEE International Conference on Technology Enhanced Education (ICTEE), 1–4.spa
dc.relation.referencesPatterson, R. W., & Patterson, R. M. (2017). Computers and productivity: Evidence from laptop use in the college classroom. Economics of Education Review, 57, 66–79.spa
dc.relation.referencesPerin, D. (2006). Academic progress of community college nursing aspirants: An institutional research profile. Community College Journal of Research and Practice, 30(8), 657–670.spa
dc.relation.referencesPhan, D.-V., Chan, C.-L., Pan, R.-H., Yang, N.-P., Hsu, H.-C., Ting, H.-W., & Lai, K. R. (2018). A Study of the Effects of Daily Physical Activity on Memory and Attention Capacities in College Students. Journal of Healthcare Engineering, 2018, 2942930. https://doi.org/10.1155/2018/2942930spa
dc.relation.referencesPolsani, P. R. (2003). Use and abuse of reusable learning objects. Journal of Digital Information, 3(4).spa
dc.relation.referencesQuadri, M. M. N., & Kalyankar, N. V. (2010). Drop out feature of student data for academic performance using decision tree techniques. Global Journal of Computer Science and Technology.spa
dc.relation.referencesQuinn, R. J., & Gray, G. (2019). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1). https://doi.org/10.22554/ijtel.v5i1.57spa
dc.relation.referencesQuinn, R. J., & Gray, G. (2020). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1).spa
dc.relation.referencesR. (2021). The Comprehensive R Archive Network. https://cran.r-project.org/spa
dc.relation.referencesRadović-Marković, M. (2010). Advantages and disadvantages of e-learning in comparison to traditional forms of learning. Annals of the University of Petroşani, Economics, 10(2), 289–298.spa
dc.relation.referencesRamesh, V., Parkavi, P., & Ramar, K. (2013). Predicting student performance: a statistical and data mining approach. International Journal of Computer Applications, 63(8).spa
dc.relation.referencesRana, P., Raj Gupta, L., Dubey, M. K., & Kumar, G. (2021). Review on evaluation techniques for better student learning outcomes using machine learning. Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, 86–90. https://doi.org/10.1109/ICIEM51511.2021.9445294spa
dc.relation.referencesRibeiro, Í. J. S., Pereira, R., Freire, I. V, de Oliveira, B. G., Casotti, C. A., & Boery, E. N. (2018). Stress and Quality of Life Among University Students: A Systematic Literature Review. Health Professions Education, 4(2), 70–77. https://doi.org/https://doi.org/10.1016/j.hpe.2017.03.002spa
dc.relation.referencesRivas, A., Gonzalez-Briones, A., Hernandez, G., Prieto, J., & Chamoso, P. (2021). Artificial neural network analysis of the academic performance of students in virtual learning environments. Neurocomputing, 423, 713–720.spa
dc.relation.referencesRodríguez Ayán, M. N., & Ruiz Díaz, M. Á. (2011). Indicadores de rendimiento de estudiantes universitarios: calificaciones versus créditos acumulados. Revista de Educación.spa
dc.relation.referencesRoll, I., Macfadyen, L. P., & Sandilands, D. (2015). Evaluating the Relationship Between Course Structure, Learner Activity, and Perceived Value of Online Courses. Proceedings of the Second (2015) ACM Conference on Learning@ Scale, 385–388.spa
dc.relation.referencesRomero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458–472.spa
dc.relation.referencesSagoo, M. G., Smith, C. F., & Gosden, E. (2016). Assessment of anatomical knowledge by practical examinations: The effect of question design on student performance. Anatomical Sciences Education, 9(5), 446–452. https://doi.org/10.1002/ase.1597spa
dc.relation.referencesSalazar, M. E. L., & de León, A. L. E. (2008). Desempeño académico de estudiantes en educación virtual. Algunos factores negativos.spa
dc.relation.referencesSaltos, W. R. F., & Maldonado, C. G. (2019). Predictive models for the detection of problems in autonomous learning in higher education students virtual modality. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 1–6.spa
dc.relation.referencesSekeroglu, B., Dimililer, K., & Tuncal, K. (2019). Student Performance Prediction and Classification Using Machine Learning Algorithms. Proceedings of the 2019 8th International Conference on Educational and Information Technology, 7–11. https://doi.org/10.1145/3318396.3318419spa
dc.relation.referencesSembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011a). Prediction of student academic performance by an application of data mining techniques. 6, 110–114.spa
dc.relation.referencesSembiring, S., Zarlis, M., Hartama, D., Ramliana, S., & Wani, E. (2011b). Prediction of student academic performance by an application of data mining techniques. International Conference on Management and Artificial Intelligence IPEDR, 6(1), 110–114.spa
dc.relation.referencesShahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. https://doi.org/10.1016/j.procs.2015.12.157spa
dc.relation.referencesShalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.spa
dc.relation.referencesSiemens, G. (2010). 1st international conference on learning analytics & knowledge (lak 2011).spa
dc.relation.referencesSimsek, A., & Balaban, J. (2010). Learning Strategies of Successful and Unsuccessful University Students. Online Submission, 1(1), 36–45.spa
dc.relation.referencesSmith, M. W., Miller, D. W., & Seager, S. (2011). Enhancing undergraduate education in aerospace engineering and planetary sciences at MIT through the development of a CubeSat mission. UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V, 8146, 81460S.spa
dc.relation.referencesSorrell, S. (2007). Improving the evidence base for energy policy: the role of systematic reviews. Energy Policy, 35(3), 1858–1871.spa
dc.relation.referencesStephens, N. M., Brannon, T. N., Markus, H. R., & Nelson, J. E. (2015). Feeling at home in college: Fortifying school‐relevant selves to reduce social class disparities in higher education. Social Issues and Policy Review, 9(1), 1–24.spa
dc.relation.referencesStephens, N. M., Hamedani, M. G., & Destin, M. (2014). Closing the social-class achievement gap: A difference-education intervention improves first-generation students’ academic performance and all students’ college transition. Psychological Science, 25(4), 943–953.spa
dc.relation.referencesStephens, N. M., Townsend, S. S. M., Hamedani, M. G., Destin, M., & Manzo, V. (2015). A difference-education intervention equips first-generation college students to thrive in the face of stressful college situations. Psychological Science, 26(10), 1556–1566.spa
dc.relation.referencesSubirà, M. P.-M., & Catasús, M. G. (2011). Aprender y enseñar en línea. Universitat Oberta de Catalunya.spa
dc.relation.referencesSurenthiran, S., Rajalakshmi, R., & Sujatha, S. S. (2021). Student Performance Prediction Using Atom Search Optimization Based Deep Belief Neural Network. Optical Memory and Neural Networks (Information Optics), 30(2), 157–171. https://doi.org/10.3103/S1060992X21020119spa
dc.relation.referencesSuresh, K., Meghana, J., & Pooja, M. E. (2021). Predicting the E-Learners Learning Style by using Support Vector Regression Technique. Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 350–355. https://doi.org/10.1109/ICAIS50930.2021.9396018spa
dc.relation.referencesTalebian, S., Mohammadi, H. M., & Rezvanfar, A. (2014). Information and communication technology (ICT) in higher education: advantages, disadvantages, conveniences and limitations of applying e-learning to agricultural students in Iran. Procedia-Social and Behavioral Sciences, 152, 300–305.spa
dc.relation.referencesTempelaar, D., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2018). Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, 78, 408–420. https://doi.org/https://doi.org/10.1016/j.chb.2017.08.010spa
dc.relation.referencesTempelaar, D. T., Rienties, B., & Nguyen, Q. (2017). Towards actionable learning analytics using dispositions. IEEE Transactions on Learning Technologies, 10(1), 6–16.spa
dc.relation.referencesTen Ham-Baloyi, W., & Jordan, P. (2016). Systematic review as a research method in post-graduate nursing education. Health {SA} Gesondheid, 21, 120–128. https://doi.org/http://dx.doi.org/10.1016/j.hsag.2015.08.002spa
dc.relation.referencesToskova, A., Toskov, B., Doukovska, L., Daskalov, B., & Radeva, I. (2018). Neural Networks in the Intelligent Educational Space. ANNA ’18; Advances in Neural Networks and Applications 2018, 1–6.spa
dc.relation.referencesTranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222.spa
dc.relation.referencesTucker, B. (2012). The flipped classroom. Education Next, 12(1), 82–83.spa
dc.relation.referencesUmer, R., Susnjak, T., Mathrani, A., & Suriadi, L. (2021). Current stance on predictive analytics in higher education: opportunities, challenges and future directions. Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1933542spa
dc.relation.referencesVamanan, R., Parkavi, P., & Ramar, K. (2013). Predicting Student Performance: A Statistical and Data Mining Approach. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS, 63, 975–8887. https://doi.org/10.5120/10489-5242spa
dc.relation.referencesVasudevan, V., Almozini, B., Almuhanna, S., & Aljubair, A. (n.d.). University Student’s Learning Pattern Analysis and Prediction in LMS Using Data Mining Techniques.spa
dc.relation.referencesVasudevan, V., & Almuhanna, S. (2018). University Student’s Learning Pattern Analysis and Prediction in LMS Using Data Mining Techniques. 7.spa
dc.relation.referencesVelásquez, J. . (2014). Una guía corta para escribir Revisiones Sistemáticas de Literatura. DYNA, 81(187), 9–10. http://www.bdigital.unal.edu.co/44811/1/46758-226992-1-PB.pdfspa
dc.relation.referencesVirvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine learning paradigms: Advances in learning analytics. In Intelligent Systems Reference Library (Vol. 158, pp. 1–5). https://doi.org/10.1007/978-3-030-13743-4_1spa
dc.relation.referencesWaheed, H., Anas, M., Hassan, S.-U., Aljohani, N. R., Alelyani, S., Edifor, E. E., & Nawaz, R. (2021). Balancing sequential data to predict students at-risk using adversarial networks. Computers & Electrical Engineering, 93, 107274.spa
dc.relation.referencesWaheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104, 106189.spa
dc.relation.referencesWasif, M., Waheed, H., Aljohani, N. R., & Hassan, S.-U. (2019). Understanding student learning behavior and predicting their performance. In Cognitive Computing in Technology-Enhanced Learning (pp. 1–28). IGI Global.spa
dc.relation.referencesWebster, M. (2006). Merriam-Webster online dictionary. Retrieved June, 20, 2013.spa
dc.relation.referencesWoolf, B. P. (2009). Chapter 7 - Machine Learning. In B. P. Woolf (Ed.), Building Intelligent Interactive Tutors (pp. 221–297). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00007-1spa
dc.relation.referencesWu, J. (2020). Machine Learning in Education. Proceedings - 2020 International Conference on Modern Education and Information Management, ICMEIM 2020, 56–63. https://doi.org/10.1109/ICMEIM51375.2020.00020spa
dc.relation.referencesXu, J., Moon, K. H., & Van Der Schaar, M. (2017). A Machine Learning Approach for Tracking and Predicting Student Performance in Degree Programs. IEEE Journal on Selected Topics in Signal Processing, 11(5), 742–753. https://doi.org/10.1109/JSTSP.2017.2692560spa
dc.relation.referencesYadav, N., & Srivastava, K. (2020). Student Performance Prediction from E-mail Assessments Using Tiny Neural Networks. 2020 9th IEEE Integrated STEM Education Conference, ISEC 2020, 2020-Janua. https://doi.org/10.1109/ISEC49744.2020.9397817spa
dc.relation.referencesYadav, S. K., & Pal, S. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification. 2(2), 51–56. http://arxiv.org/abs/1203.3832spa
dc.relation.referencesYang, F., & Li, F. W. B. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers & Education, 123, 97–108. https://doi.org/https://doi.org/10.1016/j.compedu.2018.04.006spa
dc.relation.referencesYang, S. J. H., Lu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Ogata, H., & Lin, A. J. Q. (2018). Predicting students’ academic performance using multiple linear regression and principal component analysis. Journal of Information Processing, 26, 170–176.spa
dc.relation.referencesYegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.spa
dc.relation.referencesYu, T., & Jo, I.-H. (2014). Educational technology approach toward learning analytics: Relationship between student online behavior and learning performance in higher education. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, 269–270.spa
dc.relation.referencesZacharis, N. Z. (2010). The impact of learning styles on student achievement in a web-based versus an equivalent face-to-face course. College Student Journal, 44(3), 591–598.spa
dc.relation.referencesZacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27, 44–53.spa
dc.relation.referencesZacharis, N. Z. (2016). Predicting student academic performance in blended learning using artificial neural networks. International Journal of Artificial Intelligence and Applications, 7(5), 17–29.spa
dc.relation.referencesZaporozhko, V. V, Parfenov, D. I., & Shardakov, V. M. (2019). Development Approach of Formation of Individual Educational Trajectories Based on Neural Network Prediction of Student Learning Outcomes. International Conference of Artificial Intelligence, Medical Engineering, Education, 305–314.spa
dc.relation.referencesZhang, Q., Wang, K., & Zhou, S. (2020). Application and Practice of VR Virtual Education Platform in Improving the Quality and Ability of College Students. IEEE Access, 8, 162830–162837.spa
dc.relation.referencesZomaya, A. Y. (2017). Foreword. In J. Miguel, S. Caballé, & F. Xhafa (Eds.), Intelligent Data Analysis for e-Learning (pp. xvii–xviii). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804535-0.09995-0spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc370 - Educación::378 - Educación superior (Educación terciaria)spa
dc.subject.lembDistance education
dc.subject.lembEducación a distancia
dc.subject.lembUniversidad a distancia
dc.subject.proposalEducaciónspa
dc.subject.proposalEstudiantespa
dc.subject.proposalMachine Learningeng
dc.subject.proposalPredicción
dc.subject.proposalRendimiento
dc.subject.proposalEducationeng
dc.subject.proposalStudenteng
dc.subject.proposalMachine Learningeng
dc.subject.proposalPerformanceeng
dc.subject.proposalPredictioneng
dc.titleMetodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distanciaspa
dc.title.translatedMethodology for predicting student performance in virtual university distance learning courseseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152186415.2021.pdf
Tamaño:
3.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: